# ORIGINAL ARTICLE Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (*Bufo viridis* subgroup)

C Dufresnes<sup>1</sup>, L Bonato<sup>2</sup>, N Novarini<sup>3</sup>, C Betto-Colliard<sup>1</sup>, N Perrin<sup>1</sup> and M Stöck<sup>4</sup>

Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring > 20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (*Bufo viridis* subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, *B. siculus* and *B. balearicus* developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3–1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5–1.3) in northeastern Italy (*B. balearicus, B. viridis*). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.

Heredity (2014) 113, 9-20; doi:10.1038/hdy.2014.26; published online 9 April 2014

# INTRODUCTION

A central assumption in evolutionary biology is that reproductive isolation accumulates with increasing genetic distance, 'more likely as a series of small steps than in a single genetic revolution' (Barton and Charlesworth, 1984), and thus will correlate with divergence time. However, comparative research in natural systems often neglects the time taken to speciate. In fact, diverging evolutionary lineages can be observed anywhere in the continuum from near-panmixia to various levels of increasing genetic isolation and distance, up to complete reproductive isolation. The evolutionary processes combine subtle to complex genomic changes through intrinsic mutation and drift (nonadaptive, 'neutral'), and/or selection caused by extrinsic pressures (adaptive, 'selective'; for example, Pereira and Wake, 2009), with ecology playing a role in most (Sobel *et al.*, 2010).

Hybridization has complex effects on the speciation processes as recently reviewed by Abbott *et al.* (2013). One fascinating aspect for evolutionary research is the formation of secondary hybrid zones, in which 'it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow' (Abbott *et al.*, 2013). While theory and empirical evidence suggest the latter is more likely, strongly selected genomic regions might pose exceptions (Abbott *et al.*, 2013). Despite the potential stochastic occurrence of

single large-effect factors (*cf.* Barton and Charlesworth, 1984), generally a gradual increase in reproductive isolation can be expected over evolutionary time in allopatry. When such lineages come early into secondary contact, with few if any 'barrier loci' (Abbott *et al.*, 2013) evolved, gene flow may negate any incipient speciation (for example, Seehausen *et al.*, 2008). In more advanced stages of allopatric speciation, gradual build up of many isolating factors of small effect (for example, Barton and Charlesworth, 1984 and Abbott *et al.*, 2013) and necessary associations among such loci (Smadja and Butlin, 2011) can further contribute to reduce gene flow between diverging gene pools (Abbott *et al.*, 2013), so that the involved genomes become less permeable and no longer merge.

Considering the likely gradual build up of reproductive isolation (for example, up to a certain 'threshold above which observed differentiation is significantly greater than expected by neutral evolution alone', Nosil and Feder, 2012), we suggest that in closely related lineages with known divergence times (estimated from paleogeographic scenarios or molecularly dated), the degree of natural hybridization at secondary contacts may serve to better understand the timing of onset and progression of speciation. Several amphibians, particularly anurans, offer suitable species systems to test this npg

<sup>&</sup>lt;sup>1</sup>Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland; <sup>2</sup>Dipartimento di Biologia, Università di Padova, Padova, Italy; <sup>3</sup>Museo di Storia Naturale di Venezia, Sezione Erpetologia e Ittiologia delle Acque Interne, Venezia, Italy and <sup>4</sup>Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany Correspondence: Dr M Stöck, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department 5, Müggelseedamm 301, Berlin 12587, Germany. E-mail: matthias.stoeck@igb-berlin.de

Received 3 August 2013; revised 31 January 2014; accepted 24 February 2014; published online 9 April 2014

| Table 1 Loc | alities, regions c | of origin, geographic coordinate | s (degrees) and | number of gree | en toad s | amples fro | m larvae, sı | ubadults an | d adults (\$ | Supplementary | Table S1 | for furthe | er details) |
|-------------|--------------------|----------------------------------|-----------------|----------------|-----------|------------|--------------|-------------|--------------|---------------|----------|------------|-------------|
|             |                    |                                  |                 |                |           | Adult      | ľ            |             |              |               |          | Genetic    | c diversity |
| Loc. number | Province           | Name of locality                 | Latitude (N)    | Longitude (E)  | Male      | Female     | Unsexed      | Juvenile    | Larvae       | Age unknown   | Total    | A.r.       | He          |
| 1           | Treviso            | Nervesa della Battaglia          | 45.8494         | 12.1489        | I         |            |              | 7           |              | I             | 7        | 3.4        | 0.53        |
| 2           | Treviso            | Cusignana Bassa                  | 45.7836         | 12.1942        |           |            | ŝ            | 1           | 7            | 7             | 18       | 3.3        | 0.53        |
| т           | Treviso            | Montebelluna                     | 45.7578         | 12.0524        | D         |            | 2            | 2           | 9            |               | 18       | 3.9        | 0.59        |
| 4           | Padova             | Onara                            | 45.6308         | 11.8262        |           | I          |              | С           | I            | Ð             | 80       | 3.8        | 0.63        |
| 5           | Venezia            | Jesolo                           | 45.5457         | 12.6493        |           | I          | I            | 1           | I            | I             | 1        | I          |             |
| 6           | Venezia            | Favaro Veneto                    | 45.5236         | 12.2902        | 2         | I          |              | I           | I            |               | 2        | I          |             |
| 7           | Venezia            | Salzano                          | 45.5306         | 12.1335        |           | I          | I            |             | 7            |               | 7        | 3.1        | 0.57        |
| 00          | Venezia            | Mestre                           | 45.4991         | 12.2615        |           | 1          | I            |             | Ð            |               | 9        | I          |             |
| 6           | Venezia            | Venezia                          | 45.4807         | 12.3006        |           |            |              | 1           | I            |               | 1        |            |             |
| 10          | Venezia            | Porto Marghera                   | 45.4482         | 12.2349        |           | I          | 2            |             | I            |               | 2        | I          |             |
| 11          | Venezia            | Treporti                         | 45.4661         | 12.4550        |           |            |              |             | ß            |               | e        |            |             |
| 12          | Venezia            | Island of S. Erasmo              | 45.4596         | 12.4208        |           | 1          | 4            | 1           |              |               | 9        |            |             |
| 13          | Venezia            | Venezia                          | 45.4289         | 12.3600        | 1         | D          | ļ            | I           | ∞            |               | 14       |            |             |
| 14          | Venezia            | island of Lido di Venezia        | 45.4260         | 12.3881        |           |            | 1            |             | 1            |               | 2        |            |             |
| 15          | Venezia            | island of Lido di Venezia        | 45.3420         | 12.3237        |           |            |              |             | 4            |               | 4        |            |             |
| 16          | Venezia            | Sambruson                        | 45.4013         | 12.1003        |           | 1          |              | I           | I            |               | 1        | I          |             |
| 17          | Vicenza            | Vicenza/Rettorgole               | 45.5660         | 11.5250        |           | I          | 9            | 4           | 7            | I             | 17       | 3.9        | 0.62        |
| 18          | Padova             | Abano Terme                      | 45.3793         | 11.8049        |           | Ι          |              |             | m            |               | m        | I          |             |
| 19          | Padova             | Legnaro                          | 45.3410         | 11.9629        |           | I          |              | Ι           | I            | 2             | 2        | I          |             |
| 20          | Padova             | Rosara di Codevigo               | 45.2887         | 12.0997        |           |            |              | 4           |              | I             | 4        |            |             |
| 21          | Padova             | Arzergrande                      | 45.2706         | 12.0658        |           |            |              |             |              | 1             | 1        |            |             |
| 22          | Padova             | Brugine                          | 45.2810         | 11.9950        |           | Ι          |              | Ι           | I            | 1             | 1        | I          |             |
| 23          | Venezia            | Island of Pellestrina            | 45.2973         | 12.3092        | 1         | Ι          |              | 7           | I            |               | ∞        | 3.5        | 0.61        |
| 24          | Vicenza            | Albettone                        | 45.3605         | 11.6036        |           | Ι          | 4            | Ι           | I            |               | 4        | I          |             |
| 25          | Verona             | Caldiero                         | 45.4167         | 11.1500        |           | Ι          | 1            | Ι           | I            |               | 1        | I          |             |
| 26          | Vicenza            | Spessa                           | 45.3436         | 11.4433        |           | Ι          |              | I           | Ι            | 6             | 6        | 3.5        | 0.58        |
| 27          | Vicenza            | Campiglia dei Berici             | 45.3222         | 11.5339        |           | I          |              | I           | I            | 1             | 1        | I          |             |
| 28          | Verona             | Cologna Veneta                   | 45.3113         | 11.3855        |           | I          |              | Ι           | I            | 10            | 10       | 3.2        | 0.6         |
| 29          | Padova             | Santa Croce                      | 45.2544         | 11.5806        |           | I          |              | I           | m            |               | m        |            |             |
| 30          | Padova             | Monselice                        | 45.2380         | 11.7263        |           | Ι          | 12           |             | 11           | I             | 23       | 3.9        | 0.64        |
| 31          | Padova             | Monselice                        | 45.2234         | 11.7723        |           | I          | 1            | 4           | I            | I             | ß        | I          | 0.65        |
| 32          | Padova             | Megliadino San Fidenzo/Santa     | 45.2236         | 11.5219        |           | I          | 7            | 1           | с            | 2             | 13       |            |             |
|             |                    | Margherita d'Adige               |                 |                |           |            |              |             |              |               |          |            |             |
| 33          | Padova             | Piacenza d'Adige                 | 45.1228         | 11.5286        |           |            | m            |             | m            | 2             | ∞        | 3.7        | 0.64        |

npg 10

Heredity

Speciation in closely related bufonid toads C Dufresnes et al

| Lat. number     Province     Name of locality     Latitude (N)     Longitude (E)     M       33     Venezia     Isola verde     45.1681     12.3264     -       35     Rovigo     Sart/Anna di Chioggia     45.1681     12.3264     -       36     Rovigo     Rovigo     Rovigo     Rovigo     12.2262     -       37     Rovigo     Scanarello     45.0659     12.2382     -     -       38     Rovigo     Scanarello     45.0610     11.9923     -     -       41     Rovigo     Sart/Apollinare     45.0432     11.32364     -     -       42     Rovigo     Ca' Venier     45.0432     12.2382     -     -       43     Rovigo     Sart/Apollinare     45.0432     11.3923     -     -       44     Rovigo     Fratta     45.0432     11.4355     -     -       45     Rovigo     Fratta     45.0432     11.4435     -     -       46     Rovigo     Fratta <td< th=""><th></th><th></th><th></th><th></th><th></th><th>Adult</th><th></th><th></th><th></th><th></th><th></th><th>Genetic</th><th>diversity</th></td<>                                        |                      |         |              |               |      | Adult  |         |          |        |             |       | Genetic | diversity |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------------|---------------|------|--------|---------|----------|--------|-------------|-------|---------|-----------|
| 34   Venezia   Isola Verde   45,1681   12,3264     35   Venezia   Sant'Anna di Chioggia   45,1208   12,2364     36   Rovigo   Norge Polesine   45,0655   12,2262     37   Rovigo   Resolina Mare   45,0656   12,2328     38   Rovigo   Scanarello   45,0610   11,9923     40   Rovigo   Baricetta   45,0610   11,9923     41   Rovigo   Baricetta   45,0402   11,9923     42   Rovigo   Baricetta   45,0402   11,9923     43   Rovigo   Baricetta   45,0402   11,91923     44   Rovigo   Fratha Polesine   45,0402   11,8495     45   Rovigo   Fratha Polesine   45,033   11,0117     46   Nantova   Sala della Scala   45,0358   10,0117     47   Verona   Cerea   45,0358   10,0117     48   Nantova   Sala della Scala   45,0358   10,642     47   Verona   Cerea   45,0358   10,642   5     48 </th <th>ince Name of localit</th> <th>ty</th> <th>Latitude (N)</th> <th>Longitude (E)</th> <th>Male</th> <th>Female</th> <th>Unsexed</th> <th>Juvenile</th> <th>Larvae</th> <th>Age unknown</th> <th>Total</th> <th>A.r.</th> <th><math>H_e</math></th>        | ince Name of localit | ty      | Latitude (N) | Longitude (E) | Male | Female | Unsexed | Juvenile | Larvae | Age unknown | Total | A.r.    | $H_e$     |
| 35     Venezia     Sart'Anna di Chioggia     45.1208     12.2614       36     Rovigo     Norge Polesine     45.0556     12.2738       37     Rovigo     Scanarello     45.0556     12.2738       39     Rovigo     Scanarello     45.0565     12.2738       39     Rovigo     Scanarello     45.0138     12.33564       41     Rovigo     Adria     45.0138     12.33564       42     Rovigo     Baricetta     45.0138     12.33564       41     Rovigo     Rovigo     Baricetta     45.0402     11.7799       43     Rovigo     Sant'Apollinare     45.0402     11.8230     -       45     Rovigo     Sant'Apollinare     45.0432     11.0117     -       45     Rovigo     Sant'Apolesine     45.0432     11.6453     -       46     Rovigo     Sant'Apolesine     45.0432     11.6453     -       47     Verona     Cerespino     45.0433     11.6453     -       47     Verona <t< td=""><td>zia Isola Verde</td><td></td><td>45.1681</td><td>12.3264</td><td> </td><td> </td><td>2</td><td> </td><td>I</td><td> </td><td>2</td><td> </td><td>I</td></t<>      | zia Isola Verde      |         | 45.1681      | 12.3264       |      |        | 2       |          | I      |             | 2     |         | I         |
| 36     Rovigo     Norge Polesine     45.0659     12.2262       37     Rovigo     Rasolina Mare     45.0565     12.3328       38     Rovigo     Car Venier     45.0565     12.3324       40     Rovigo     Car Venier     45.0565     12.3364       41     Rovigo     Car Venier     45.013     12.3364       42     Rovigo     Adria     45.0101     11.9323       43     Rovigo     Rovigo     Rovigo     11.7799       44     Rovigo     Rovigo     11.9316     11.7799       45     Rovigo     Rovigo     11.9316     11.7799       45     Rovigo     Rovigo     45.0787     11.7799       46     Rovigo     Rovigo     11.8330     11.6433       47     Verona     Isola della Scala     45.0787     11.2127       48     Wantova     San Benedetto Po     45.0733     11.1217       49     Mantova     San Benedetto Po     45.0436     11.6102       51     Mantova     San                                                                                                                                                                                  | zia Sant'Anna di Ch  | hioggia | 45.1208      | 12.2614       |      |        | 0       | 2        |        |             | 4     |         |           |
| 37     Rovigo     Rosolina Mare     45.0565     12.2738     12.3322       38     Rovigo     Scanarello     45.0138     12.3322     12.3364       40     Rovigo     Car Venier     44.9590     12.3364     1       41     Rovigo     Baricetta     45.0138     12.3364     1       42     Rovigo     Baricetta     45.0148     11.9923     1       43     Rovigo     Sant'Apollinare     45.0787     11.7799     1       44     Rovigo     Fratta Polesine     45.0402     11.8495     1       45     Verona     Isola della Scala     45.0439     11.0117     1       47     Verona     Cerea     45.0419     10.6942     1       48     Verona     Leada     Scala     45.0439     11.0117     1       49     Mantova     Suzzara     45.0439     10.6942     1     1       50     Mantova     Suzzara     45.0439     10.6792     1     1       51     Mantov                                                                                                                                                                                                    | go Norge Polesine    |         | 45.0659      | 12.2262       |      |        | 1       |          |        |             | 1     |         |           |
| 38     Rovigo     Scanarello     45.0138     12.3322       39     Rovigo     Ca' Venier     44.9590     12.3364       41     Rovigo     Ca' Venier     45.0238     12.3364       42     Rovigo     Baricetta     45.0238     12.3364       43     Rovigo     Baricetta     45.0238     11.923       44     Rovigo     Rovigo     Rovigo     11.7799       45     Rovigo     San' Apollinare     45.048     11.923       46     Rovigo     Crespine     45.0402     11.8495       47     Verona     Isola della Scala     45.039     11.6453       48     Verona     Isola della Scala     45.033     11.1245       49     Mantova     Suzzara     45.0419     10.0117       49     Mantova     Suzzara     45.033     11.1234       50     Mantova     Suzzara     45.033     11.1234       51     Mantova     Suzzara     45.0419     10.6942       52     Mantova     Suzzara </td <td>go Rosolina Mare</td> <td></td> <td>45.0565</td> <td>12.2738</td> <td> </td> <td>1</td> <td>4</td> <td> </td> <td> </td> <td> </td> <td>5</td> <td>3.8</td> <td>0.59</td> | go Rosolina Mare     |         | 45.0565      | 12.2738       |      | 1      | 4       |          |        |             | 5     | 3.8     | 0.59      |
| 39     Rovigo     Ca' Venier     44.9590     12.3364       40     Rovigo     Adria     45.0238     12.0868       41     Rovigo     Adria     45.010     11.9923     -       42     Rovigo     Baricetta     45.018     11.9316     -       43     Rovigo     Baricetta     45.018     11.9316     -       44     Rovigo     Sart'Apollinare     45.0138     11.9316     -       45     Rovigo     Sart'Apollinare     45.0138     11.0117     -       46     Rovigo     Crespino     44.9988     11.18495     -       47     Verona     Isola della Scala     45.0339     11.11234     -       48     Wantova     San Benedetto Po     45.0338     10.16942     -       50     Mantova     San Benedetto Po     45.0338     10.16943     -       51     Mantova     San Benedetto Po     45.0338     10.16902     -       52     Mantova     San Benedetto Po     45.0733     10.16902 <td>go Scanarello</td> <td></td> <td>45.0138</td> <td>12.3922</td> <td> </td> <td> </td> <td>1</td> <td> </td> <td> </td> <td> </td> <td>1</td> <td> </td> <td> </td>       | go Scanarello        |         | 45.0138      | 12.3922       |      |        | 1       |          |        |             | 1     |         |           |
| 40     Rovigo     Adria     45.0238     12.0868       41     Rovigo     Baricetta     45.0610     11.9923     -       42     Rovigo     Baricetta     45.0610     11.9316     -       43     Rovigo     Sant'Apollinare     45.0787     11.7799     -       44     Rovigo     Sant'Apollinare     45.0702     11.8230     -       45     Rovigo     Crespino     45.0733     11.0117     -       46     Rovigo     Crespino     45.0339     11.6453     -       47     Verona     Isola della Scala     45.033     11.0117     -       48     Nantova     Suzzara     45.033     11.0117     -       49     Mantova     Suzzara     45.0433     10.6092     -       50     Mantova     Suzzara     45.0733     10.12177     -       51     Mantova     Suzzara     45.0433     10.6092     -       51     Mantova     Suzzara     45.0430     10.8096     - <td>go Ca' Venier</td> <td></td> <td>44.9590</td> <td>12.3364</td> <td> </td> <td> </td> <td> </td> <td>1</td> <td> </td> <td> </td> <td>1</td> <td> </td> <td> </td>                                  | go Ca' Venier        |         | 44.9590      | 12.3364       |      |        |         | 1        |        |             | 1     |         |           |
| 41   Rovigo   Baricetta   45.0610   11.9923     42   Rovigo   Pezzoli   45.0787   11.7799     43   Rovigo   Rovigo   Sart'Apollinare   45.0462   11.8230     45   Rovigo   Sart'Apollinare   45.0402   11.8230   -     45   Rovigo   Crespino   45.039   11.8495   -     46   Rovigo   Crespino   44.9988   11.8495   -     47   Verona   Isola della Scala   45.039   11.6453   -     48   Verona   Cerea   45.0358   11.0117   -     49   Mantova   Suzzara   45.0419   10.6942   -     50   Mantova   Suzzara   45.0358   10.8793   -     51   Mantova   Suzzara   45.0358   10.8793   -     52   Mantova   Suzzara   45.0358   10.8793   -     53   Ferrara   Faracolino   44.9018   11.6610   -     54   Ferrara   Faracolino   44.9378   10.8456   - <                                                                                                                                                                                                                                                                                                       | go Adria             |         | 45.0238      | 12.0868       | 1    |        |         | 4        |        |             | 5     |         | 0.5       |
| 42   Rovigo   Pezzoli   45,0448   11.9316     43   Rovigo   Rovigo   Rovigo   85,0448   11.7799     45   Rovigo   Sant'Apollinare   45,0787   11.7799   11.7799     45   Rovigo   Sant'Apollinare   45,039   11.8230   11.8230     46   Rovigo   Crespino   44,9988   11.8495   11.0117     47   Verona   Isola della Scala   45,1927   11.2127   1     48   Verona   Cerea   45,033   11.0117   1     49   Mantova   Ostiglia   45,033   11.1234   1     50   Mantova   Suzzara   45,0358   10.8793   1     51   Mantova   Suzzara   45,0358   10.8793   1     52   Mantova   Suzzara   45,0358   10.8793   1     53   Ferrara   Farrara   45,0358   10.8793   1     53   Ferrara   Farrara   44,9018   11.6610   1     54   Ferrara   Casubogaliano   44,9018   11.                                                                                                                                                                                                                                                                                              | go Baricetta         |         | 45.0610      | 11.9923       |      |        | 1       |          |        | I           | 1     |         |           |
| 43   Rovigo   Rovigo   Rovigo   Rovigo   8art Apollinare   45.0787   11.7799     44   Rovigo   Sart Apollinare   45.0402   11.8230   1     45   Rovigo   Fratta Polesine   45.0402   11.8230   1     46   Rovigo   Fratta Polesine   45.0435   11.0117   1     47   Verona   Isola della Scala   45.1927   11.2127   1     48   Verona   Cerea   45.0419   10.6942   1     50   Mantova   Suzzara   45.0419   10.6942   1     51   Mantova   Suzzara   45.0419   10.6942   1     52   Mantova   Suzzara   45.0358   10.8793   1     53   Ferrara   Francolino   44.9018   11.6610   1     54   Ferrara   Kanona   Casilorsetti   44.45539   10.8456   1     55   Modena   Campogaliano   44.6575   11.4483   1   1     57   Ravenna   Ruscia   44.6575   11.6610   1   1<                                                                                                                                                                                                                                                                                          | go Pezzoli           |         | 45.0448      | 11.9316       |      | I      | 1       | I        |        | I           | 1     | I       |           |
| 44   Rovigo   Sant'Apollinare   45.0402   11.8230     45   Rovigo   Crespino   44.9988   11.8495     46   Rovigo   Fratta Polesine   45.039   11.6453     47   Verona   Isola della Scala   45.1927   11.1217     48   Verona   Cerea   45.0419   10.6942     50   Mantova   Suzzara   45.0419   10.6942     51   Mantova   Suzzara   45.0419   10.6942     53   Ferrara   San Benedetto Po   45.0358   10.8793     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   A4.6675   11.4483   -     55   Modena   Campogaliano   44.6575   10.8456   -     56   Modena   Campogaliano   44.45539   12.2783   -     57   Ravenna   Bagnacavallo   44.45539   12.0317   -     58   Ravenna   Russi   44.4575   11.9714   -     59   Ravenna   Russi   44.4575   12.0317                                                                                                                                                                                                                                                                                   | go Rovigo            |         | 45.0787      | 11.7799       | 1    | Ι      | 4       | ∞        | 9      | Ι           | 19    | 3.7     | 0.63      |
| 45   Rovigo   Crespino   44.9988   11.8495     46   Rovigo   Fratta Polesine   45.0039   11.6453     47   Verona   Isola della Scala   45.1927   11.0117     48   Verona   Isola della Scala   45.0733   11.12127     49   Mantova   Ostiglia   45.0419   10.6942     50   Mantova   Suzzara   45.0419   10.6942     51   Mantova   Suzzara   45.0419   10.6942     53   Ferrara   San Benedetto Po   45.0358   10.8793     53   Ferrara   Campogaliano   44.9018   11.6610   -     54   Ferrara   Francolino   44.6675   11.4483   -     55   Modena   Campogaliano   44.675   10.8456   -     57   Ravenna   Bagnacavalo   44.45253   11.9714   -     58   Ravenna   Russi   44.4202   11.9714   -     59   Ravenna   Russi   44.4292   11.9714   -     60   Ravenna   Russi   <                                                                                                                                                                                                                                                                                 | go Sant'Apollinare   |         | 45.0402      | 11.8230       |      | Ι      | 1       | I        | I      | Ι           | 1     | I       | I         |
| 46   Rovigo   Fratta Polesine   45,0039   11,6453     47   Verona   Isola della Scala   45,1927   11,0117     48   Verona   Isola della Scala   45,033   11,0117     49   Mantova   Ostiglia   45,0733   11,1234     50   Mantova   Ostiglia   45,0733   11,1234     51   Mantova   Suzzara   45,0419   10,6942     53   Ferrara   San Benedetto Po   45,0358   10,8793     54   Ferrara   Francolino   44,9018   11,6610     53   Ferrara   Campogaliano   44,675   11,4483     56   Modena   Campogaliano   44,675   10,8456     57   Ravenna   Bagnacavallo   44,675   10,8456     58   Ravenna   Raseino   44,4122   12,0317   5     59   Ravenna   Russi   44,4122   12,0317   5     60   Ravenna   Russi   44,4122   12,0317   5     61   Milano   44,4295   11,9714   5                                                                                                                                                                                                                                                                                     | go Crespino          |         | 44.9988      | 11.8495       | 1    | I      |         | I        |        | I           | 1     | I       |           |
| 47   Verona   Isola della Scala   45.136   11.0117     48   Verona   Cerea   45.1927   11.2127     49   Mantova   Ostiglia   45.0733   11.1234     50   Mantova   Suzzara   45.0733   11.1234     51   Mantova   Suzzara   45.0733   11.1234     51   Mantova   Suzzara   45.019   10.6942     53   Ferrara   San Benedetto Po   45.0358   10.8793     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Ferrara   44.675   11.4483   -     55   Modena   Campogaliano   44.675   11.4483   -     57   Ravenna   Bagnacavallo   44.675   10.8456   -     58   Ravenna   Russi   44.4292   11.9714   -     59   Ravenna   Russi   44.4292   11.9714   -     50   Ravenna   Russi   44.4292   12.0119714   -     50   Ravenna   Russi   44.4292   12                                                                                                                                                                                                                                                                                                  | go Fratta Polesine   |         | 45.0039      | 11.6453       |      |        | 1       |          |        |             | 1     |         |           |
| 48   Verona   Cerea   45.1927   11.2127     49   Mantova   Ostiglia   45.0733   11.1234     50   Mantova   Suzzara   45.0733   11.1234     51   Mantova   Suzzara   45.0733   11.1234     51   Mantova   Suzzara   45.0733   11.1234     52   Mantova   San Benedetto Po   45.0358   10.6942     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Ferrara   44.6975   11.4433     55   Modena   Campogaliano   44.675   11.4433   -     57   Ravenna   Bagnacavallo   44.675   10.8456   -     58   Ravenna   Bagnacavallo   44.4292   11.9714   -     59   Ravenna   Russi   44.4292   11.9714   -     60   Ravenna   Russi   44.4292   12.01317   -     61   Milano   Att.2976   12.01317   -   -     62   Fortin-Cesena   Russi   44.4202   -<                                                                                                                                                                                                                                                                                                  | lsola della Scal     | la      | 45.2436      | 11.0117       |      |        | 7       |          |        |             | 7     | 4.2     | 0.7       |
| 49   Mantova   Ostiglia   45.0733   11.1234     50   Mantova   Suzzara   45.0419   10.6942     51   Mantova   Suzzara   45.0419   10.6942     52   Mantova   San Benedetto Po   45.0358   10.8793     52   Mantova   San Benedetto Po   45.0358   10.6942     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Ferrara   44.6975   11.4433     55   Modena   Campogaliano   44.6975   11.4433   -     57   Ravenna   Rasenborsetti   44.6975   10.8456   -     58   Ravenna   Bagnacavallo   44.4292   11.9714   -     59   Ravenna   Russi   44.4292   11.9714   -     60   Ravenna   Russi   44.4292   12.0317   -     61   Milano   A14.202   12.01799   -   -     62   Forti-Cesena   Ronco   44.4202   9.1700   -     61   Milano   A14.202 <t< td=""><td>la Cerea</td><td></td><td>45.1927</td><td>11.2127</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>Ω</td><td>ę</td><td> </td><td> </td></t<>                                                                                                                               | la Cerea             |         | 45.1927      | 11.2127       |      |        |         |          |        | Ω           | ę     |         |           |
| 50   Mantova   Suzzara   45.0419   10.6942     51   Mantova   San Benedetto Po   45.0358   10.8793     52   Mantova   San Benedetto Po   45.0358   10.8793     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Ferrara   44.675   11.4483     55   Bologna   Oasi Ca' la Riza   44.6975   11.4483     56   Modena   Campogaliano   44.6975   10.8456   -     57   Ravenna   Bagnacavallo   44.6975   10.8456   -     58   Ravenna   Rasi   44.4292   11.9714   -     59   Ravenna   Russi   44.4122   12.0317   -     60   Ravenna   Campiano   44.4202   11.9714   -     61   Milano   Alf.2976   12.0317   -   -     62   Forlin-Cesena   Russi   44.4202   9.1700   -     61   Milano   44.2976                                                                                                                                                                                                                                                                                              | ova Ostiglia         |         | 45.0733      | 11.1234       |      |        |         |          |        | 1           | 1     |         |           |
| 51 Mantova San Benedetto Po 45.0358 10.8793   52 Mantova Pegognaga 44.9018 11.6610   53 Ferrara Francolino 44.9018 11.6610   54 Ferrara Ferrara 77 10.8696   55 Bologna Oasi Ca' Ia Riza 44.6675 11.4483   56 Modena Campogaliano 44.675 11.4483   57 Ravenna Casalborsetti 44.675 11.9714   58 Ravenna Ragencavallo 44.4292 11.9714   59 Ravenna Rusen 44.4122 12.0317   60 Ravenna Campiano 44.4296 11.9714   61 Milano 44.4202 11.9714 4   62 Fortin-Cesena Rusen 44.4202 12.0317 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ova Suzzara          |         | 45.0419      | 10.6942       |      |        |         |          |        | 14          | 14    | 3.5     | 0.54      |
| 52   Mantova   Pegognaga   44.9878   10.8696     53   Ferrara   Francolino   44.9018   11.6610     54   Ferrara   Faracolino   44.9018   11.6610     55   Bologna   Oasi Ca' la Riza   44.6675   11.4483     56   Modena   Campogaliano   44.6675   10.8456   -     57   Ravenna   Campogaliano   44.675   10.8456   -     57   Ravenna   Casalborsetti   44.675   10.8456   -     58   Ravenna   Bagnacavallo   44.4292   11.9714   -     59   Ravenna   Russi   44.4122   12.0317   -     60   Ravenna   Campiano   44.4296   12.1956   -     61   Milano   Alf.2976   12.1956   -   -     62   Forlin-Cesena   Ronco   44.2028   12.0317   -                                                                                                                                                                                                                                                                                                                                                                                                                    | ova San Benedetto    | Po      | 45.0358      | 10.8793       |      |        |         | ļ        |        | 1           | 1     |         |           |
| 53 Ferrara Francolino 44.9018 11.6610   54 Ferrara Fancolino 44.8269 11.6092   55 Bologna Oasi Ca' la Riza 44.6675 11.4483   56 Modena Campogaliano 44.6975 10.8456   57 Ravenna Casalborsetti 44.6975 10.8456   58 Ravenna Casalborsetti 44.6975 10.8456   59 Ravenna Rasi 44.4292 11.9714   60 Ravenna Russi 44.4122 12.0317   61 Milano 44.2976 12.1956   62 Forli-Cesena Ronco 44.2028 12.0317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ova Pegognaga        |         | 44.9878      | 10.8696       |      | Ι      |         | I        | I      | 2           | 5     | 2.5     | 0.44      |
| 54 Ferrara Ferrara Ferrara 11.6092   55 Bologna Oasi Ca' la Riza 44.6675 11.4483   56 Modena Campogalliano 44.6675 10.8456   57 Ravenna Casalborsetti 44.6975 10.8456   57 Ravenna Casalborsetti 44.6975 10.8456   58 Ravenna Bagnacavallo 44.4292 11.9714   59 Ravenna Russi 44.4122 12.0317   60 Ravenna Campiano 44.2976 12.1956   61 Milano 45.4300 9.1700   62 Forlì-Cesena Ronco 44.2028 12.0389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ra Francolino        |         | 44.9018      | 11.6610       |      | I      | 4       | Ι        | Ι      | I           | 4     | I       |           |
| 55 Bologna Oasi Ca' la Riza 44.6675 11.4483   56 Modena Campogaliano 44.6975 10.8456   57 Ravenna Casalborsetti 44.6975 10.8456   58 Ravenna Casalborsetti 44.6975 10.8456   59 Ravenna Bagnacavallo 44.4122 11.9714   59 Ravenna Russi 44.4122 12.0317   60 Ravenna Campiano 44.2976 12.1956   61 Milano Milano 45.4300 9.1700   62 Forlì-Cesena Ronco 44.2028 12.0789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ra Ferrara           |         | 44.8269      | 11.6092       |      | I      | 4       |          | 2      |             | 9     |         | 0.56      |
| 56     Modena     Campogaliano     44.6975     10.8456     -       57     Ravenna     Casalborsetti     44.5539     12.2783     -       58     Ravenna     Bagnacavallo     44.4592     11.9714     -       59     Ravenna     Russi     44.4292     11.9714     -       60     Ravenna     Russi     44.4122     12.0317     -       61     Milano     Aff.4720     12.1956     -       62     Forlì-Cesena     Ronco     45.4300     9.1700     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gna Oasi Ca' la Riza | a       | 44.6675      | 11.4483       |      |        | 4       |          | l      |             | 4     |         |           |
| 57 Ravenna Casalborsetti 44.5539 12.2783 -   58 Ravenna Bagnacavallo 44.4292 11.9714 -   59 Ravenna Russi 44.4122 12.0317 -   60 Ravenna Campiano 44.4122 12.1956 -   61 Milano Milano 45.4300 9.1700 -   62 Forlì-Cesena Ronco 44.2028 12.0789 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ena Campogalliano    |         | 44.6975      | 10.8456       |      | I      |         | I        | Ð      |             | ß     | 2.3     | 0.4       |
| 58     Ravenna     Bagnacavallo     44,4292     11.9714     -       59     Ravenna     Russi     44,4122     12.0317     -       60     Ravenna     Campiano     44,4122     12.0317     -       61     Milano     Afilano     44,2076     12.1956     -       62     Forlì-Cesena     Ronco     45,4300     9.1700     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nna Casalborsetti    |         | 44.5539      | 12.2783       |      |        |         | I        | 1      |             | 1     |         |           |
| 59     Ravenna     Russi     44,4122     12.0317     -       60     Ravenna     Campiano     44,2976     12.1956     -       61     Milano     Milano     45,4300     9.1700     -       62     Forlì-Cesena     Ronco     44,2028     12.0789     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nna Bagnacavallo     |         | 44.4292      | 11.9714       |      |        |         | I        | m      |             | ę     |         |           |
| 60     Ravenna     Campiano     44.2976     12.1956     -       61     Milano     Milano     45.4300     9.1700     -       62     Forlì—Cesena     Ronco     44.2028     12.0789     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nna Russi            |         | 44.4122      | 12.0317       |      |        | 1       | I        | I      |             | 1     |         |           |
| 61     Milano     Milano     45,4300     9.1700     -       62     Forlì—Cesena     Ronco     44,2028     12.0789     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nna Campiano         |         | 44.2976      | 12.1956       |      | I      |         | Ι        | 1      | I           | 1     | I       |           |
| 62 Forli—Cesena Ronco 44.2028 12.0789 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no Milano            |         | 45.4300      | 9.1700        |      |        | 2       | I        | I      |             | 2     |         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cesena Ronco         |         | 44.2028      | 12.0789       |      | I      |         | I        | 1      |             | 1     |         |           |
| - Kovigo Kosolina Mare 40.1349 12.3230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | go Rosolina Mare     |         | 45.1349      | 12.3235       |      | I      | 1       | I        | I      |             | 1     |         |           |
| Total 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |              | Total         | 12   | 6      | 87      | 54       | 06     | 64          | 316   |         |           |

Table 1 (Continued)

Heredity

assumption, but studies on incipient speciation in this group have rarely been performed.

Meta-analyses of anuran (bufonid) breeding experiments suggest that reproductive isolation (measured by reduction in hatching success, number of larvae produced, and percentage of metamorphosis) increases with phylogenetic distance (Malone and Fontenot, 2008). It appears that very large time spans (>8 My) are required to achieve hybrid infertility or inviability. We recently discussed such laboratory data on anurans (Colliard et al., 2010), with divergence time estimates from immunological (Wilson et al., 1974), allozyme (Sasa et al., 1998) and mitochondrial distances (Malone and Fontenot, 2008), or mitochondrial and nuclear sequence data (Sumida et al., 2007), showing that in the laboratory some anurans may still produce viable  $F_1$  offspring after >20 My divergence, but may develop 'partial or complete hybrid inviability' after >8 My divergence (Sumida et al., 2007). However, under natural conditions, several empirical studies on anurans suggest reproductive isolation to have arisen after divergence initiated in the Pliocene (5.3-2.6 My) or earlier, as best studied in parapatric Bombina (for example, Szymura, 1993, Kruuk et al., 1999, Vines et al., 2003 and Hofman et al., 2007), assumed to have diverged between Upper Miocene and Lower Pliocene (B. bombina-B. variegata, 8.96 (12.74-4.93) My or 6.48 (8.89-4.19) My, depending on two different calibration settings; Pabijan et al., 2013). Similar time frames were estimated for single hybrid systems of Australian and European hylid frogs (Hoskin et al., 2005; Verardi et al., 2009), South-American dendrobatids (Simões et al., 2012) and green toads (Colliard et al., 2010). By contrast, case studies on clades of more recent, Pleistocene (2.5 My-11 Ky) divergence (for example, 1.33 My in ranid frogs, Canestrelli and Nascetti, 2008; 1.69-0.33 My in bufonid toads, Sequeira et al., 2011) may form 'wide hybrid zone(s) with a considerable genetic exchange between both gene pools' (Santucci et al., 1996), where reproductive barriers could be weak or absent.

One challenge for testing an inverse relationship between divergence time and natural hybridization in anuran amphibians in the long term is the disconnected evidence from multiple (often) distantly related species groups. The radiation of Palearctic green toads (Bufo viridis subgroup) offers an excellent opportunity as it includes several lineages that arose at different times and form secondary contact zones. Specifically, the central and northeastern Mediterranean shores, the Apennine Peninsula and Sicily, are inhabited by four lineages with secondary contacts bringing together pairs with three different Plio-Pleistocene divergence times (Stöck et al., 2006, 2008a, b). These are Bufo variabilis (PALLAS, 1769) on the eastern Balkan Peninsula, in Asia Minor, and northern Central Asia, B. viridis (LAURENTI 1768), on the western Balkan Peninsula and in Central Europe, B. balearicus (BOETTGER, 1880) on the Apennine Peninsula, Corsica, Sardinia and the Balearic Islands, and finally B. siculus Stöck, Sicilia, Belfiore, BUCKLEY, LO BRUTTO, LO VALVO, ARCULEO 2008, in Sicily.

We have recently shown that the Sicilian endemic *B. siculus* and the Italian mainland-origin *B. balearicus*, with an estimated divergence time of 2.7 My (4.9–1.1, Stöck *et al.*, 2008a), form a narrow hybrid zone east of Mt. Etna. Analysis of nuclear genomes showed very sharp transition at the contact, with essentially no admixture (Colliard *et al.*, 2010). The highest pairwise  $F_{ST}$  values (>0.50) were found between populations from each side of this contact zone (only ~16 km apart). All individuals from these populations were assigned with maximum likelihood (100%) to either *B. siculus* or *B. balearicus*, respectively. MtDNA analyses evidenced some limited bidirectional introgression over ~40 km, with few cases of cyto-nuclear discordances, testifying to rare events of past hybridization, but no wild-caught F<sub>1</sub> individuals.

Altogether, this analysis suggested very low, if any, current gene flow, as furthermore supported by several experimental crosses, showing strong hybrid breakdown in  $F_2$  and backcrosses (Colliard *et al.*, 2010).

In the present paper, we compare signatures of secondary contact and introgression in Sicily with another contact zone in northeastern Italy, where the same lineage *B. balearicus* meets another but more recently diverged lineage, namely *B. viridis*. As we show, this contact zone offers a striking contrast to the Sicily situation, with much wider introgression both at nuclear and at mitochondrial levels, suggesting that gene flow is barely constrained by intrinsic genomic incompatibilities in these less differentiated lineages.

#### MATERIALS AND METHODS

#### Sampling

Samples (buccal swabs from adults and subadults; muscle from road kills and scientific vouchers; tail tips from tadpoles) were collected during fieldwork (2008-2010; Figure 1, Table 1; Supplementary Table S1), or came from scientific collections (Museo di Storia Naturale di Venezia, MSNVE; Museo Civico di Storia Naturale di Ferrara, MCSNFE). Overall, 316 specimens from 63 localities were available across the eastern Po Plain, between the northern Apennine and the Venetian Pre-Alps. The majority of samples per population (term used in the sense of 'locality sample' throughout this paper) came from single sampling sites. As long as no potential barriers like rivers (see Discussion) or highways (for example, Forman et al., 2003) were in between, very few samples from neighboring sites were pooled (Supplementary Table S1) if their distance was <2 km, corresponding to the lower limit of the migration distance of green toads in a single year (2-10 km; Blab et al., 1991). This seems justified because the Po Plain is otherwise almost free of elevation differences and major natural barriers for amphibian movement. For tadpoles, to avoid the collection of siblings, samples were taken from unconnected ponds or, in rare instances, where it was not possible, very distant positions within the same pond, and in such cases always from differently sized cohorts.

#### DNA extraction and generation of genotype and sequence data

DNA was extracted using the Qiagen DNeasy kit. Twelve microsatellites, polymorphic in both species, were amplified for 254 samples as described (Colliard *et al.*, 2010, Dufresnes *et al.*, 2011). In 287 individuals, we sequenced *ca.* 860 bp of the mitochondrial *D-loop*, according to Stöck *et al.* (2006). For direct comparisons, only a fragment (591 bp) of this, also available from a previous study (Stöck *et al.*, 2008a), could be included to estimate the divergence time. We also cloned and sequenced 580 bp of a sufficiently variable nuclear intron of *alpha-Tropomyosin* (details: Stöck *et al.*, 2008a), in 13 individuals from the contact zone and representatives of both species from throughout their distribution ranges.

#### Sequence alignment and phylogenetic analyses

Sequences were edited in SEQUENCHER v. 4.9 (Gene Codes) and aligned using SEAVIEW v.4.2.4 (Gouy *et al.*, 2010). For the population analyses of mtDNA, we used the program TCS v.1.21 (Clement *et al.*, 2000). Phylogenetic analyses were made using PHYML, v.2.4.5 as implemented in SEAVIEW (Gouy *et al.*, 2010), and HKY + G models (JMODELTEST v.0.1.1; Posada, 2008) for both mtDNA and nuDNA. We choose a BioNJ as a starting tree, and used the combined subtree pruning and regrafting plus nearest neighbor interchange options for tree improvement; otherwise, default parameters were used (http://atgc.lirmm.fr/phyml/ for details). We generated bootstrap values based on 1000 resampled data sets.

#### Molecular dating

Molecular dating for major mitochondrial and nuclear lineages was performed using BEAST v.1.6.1 (Drummond *et al.*, 2007; http://beast.bio.ed.ac.uk/). To obtain relative divergence time estimates for the most recent common ancestor of *B. viridis* vs *B. balearicus*, we calibrated the previously obtained divergence date for *B. siculus* vs *B. boulengeri* at 1.8 My (3.5–0.63, 95% highest posterior density intervals, HPDIs; Stöck *et al.*, 2008a), and the divergence of lineages



Figure 1 Assignment to *Bufo balearicus* or *B. viridis* for all populations, based on Bayesian clustering (STRUCTURE) of 12 microsatellite genotypes. Assignment per population (pie charts) corresponds to the average assignment probabilities of individuals at this location to each of the two groups. Pie size proportional to sample size; bar plots from STRUCTURE to the right (K=2); approximate Bronze Age paleohydrographic system (Piovan *et al.*, 2010) in purple.

boulengeri-siculus vs balearicus-viridis at 2.75 My (4.9–1.18) on a previously used fragment of the mtDNA control region (591 bp; Stöck *et al.*, 2008a), assuming an uncorrelated lognormal relaxed molecular clock and a Yule birthrate tree prior (constant speciation rate per lineage) as most appropriate for species level divergences (Drummond *et al.*, 2007). We applied the same calibrations for the nuclear data set (*alpha-Tropomyosin*). We used an UPGMA starting tree. Two independent analyses for 50 million generations were run with tree sampling every 1000 generations. Convergence and stationarity were checked in the program TRACER v.1.5. Results were combined in the BEAST module LOGCOMBINER v.1.6.0. The 'burn-in' value was selected after visualizing log likelihoods associated with the posterior distributions of trees in TRACER. All trees generated before the log likelihood curve flattened out were discarded.

#### Demographic analyses

To calculate the distributions of observed and expected pairwise nucleotide site differences between individual mtDNA haplotypes under a model of demographic expansion (mismatch distributions), we used DNASP v.5 (Librado and Rozas, 2009). We included only *D-loop* markers for which 874 bp 100% readable sequences were available. Ages of expansions were calculated from the parameter  $\tau$ , estimated by DNASP ( $\tau = 2 \mu t$ , where  $\mu$  is the substitution rate and *t* is the time since expansion), using a substitution rate for the *D-loop* of *ca.* 2% per million years (Stöck *et al.*, 2008a). In addition, we computed (DNASP) the following tests of selective neutrality: Fu's F<sub>s</sub>, Tajima's D and Ramos-Onsins & Rozas's R<sup>2</sup> (Ramos-Onsins and Rozas, 2002 and references therein); significances were tested by coalescent simulations (10 000 replicates).

#### Genotype data analyses

We used MICRO-CHECKER v.2.2.3 (Van Oosterhout *et al.*, 2004) to exclude genotyping errors due to null alleles, stuttering and allelic dropout. Using FSTAT v.2.9.3 (Goudet, 1995), we tested for linkage disequilibrium between each pair of loci in each population. Hardy–Weinberg equilibrium and pairwise differentiation ( $F_{ST}$ ) were assessed for populations with sufficient sample sizes ( $n \ge 5$ ) in ARLEQUIN v.3.5 (Excoffier *et al.*, 2005). For these populations, we also computed allelic richness (A. r.) and observed heterozygosity ( $H_e$ ) with FSTAT, which performs a rarefication procedure to a common sample per locus. Analyses of microsatellite genotypes provided no evidence for large allelic dropout from any locus or population.

We used the Bayesian clustering algorithm STRUCTURE v.2.3 (Pritchard *et al.*, 2000) to assess interspecific and intraspecific genetic structures of populations based on microsatellite genotypes. We applied the admixture model and allowed for correlated allele frequencies between populations, as recommended for cases of subtle population structure. A range of different cluster sizes (*K*) from 1 to the number of localities per analysis was tested. Each run was replicated 10 times with  $10^5$  iterations following a 'burn-in' period of  $10^4$ . To infer the number of clusters (*K*) that best fitted our data, we applied the  $\Delta K$  *ad hoc* statistics (Evanno *et al.*, 2005).

In interspecific analyses, individuals were considered as hybrids if their STRUCTURE assignment probability to either cluster (K = 2) was < 0.9, with 90% credible intervals (CIs) neither reaching 0 nor 1, or if they were assigned by STRUCTURE to one clade (that is, nuclearly 'pure': 90% CI within 0.9 and 1) but contained the mitochondrial haplotype of the other lineage (cyto-nuclear

13

14



**Figure 2** Frequency of mitochondrial *D-loop* haplotypes for all populations (map), mismatch distributions of three mtDNA haplotype groups (corners), and microsatellite genotypes (STRUCTURE assignment probabilities) along three transects A, B and C (barplots). Pie size is proportional to mtDNA sample size; approximate Bronze Age paleohydrographic system (rivers, coast line; Piovan *et al.*, 2010) in purple; relative locations of the modern Po and Adige Rivers in blue (in purple for paleo-rivers) within bar plots; mismatch distributions: the dotted line shows the frequency distribution of the observed pairwise differences; the solid line shows the frequency distribution of the expected pairwise differences under the sudden expansion model.

Table 2 Neutrality tests (mitochondrial DNA) for the *B. viridis* clade, and the *B. balearicus* subclades 1A and 1B

|                    | n   | Fu's F <sub>s</sub> | Tajima's D | Ramos-Onsins & Rozas's R <sup>2</sup> |
|--------------------|-----|---------------------|------------|---------------------------------------|
| Bufo viridis       | 129 | -6.8***             | -1.7***    | 0.35*                                 |
| Bufo balearicus 1A | 97  | -11.9***            | -2.3***    | 0.34*                                 |
| Bufo balearicus 1B | 33  | -3.1**              | -1.4*      | 0.08*                                 |

\*P-value<0.1, \*\*P-value<0.05, \*\*\*P-value<0.001.

discordance). Considering CIs allows distinguishing between individuals that harbor alleles uninformative about the source taxa, and confidently assigned hybrid or 'pure' individuals (for example, Sá-Pinto *et al.*, 2010). To get insights into the nature of hybrids, we analyzed our microsatellite data set with NEWHYBRIDS v.1.1 (Anderson and Thompson, 2002), which computes the Bayesian posterior probability of assignment of each individual to several genotypic classes (parental,  $F_1$ ,  $F_2$ , backcrosses). Runs were repeated with various numbers of iterations. Several individuals were pre-assigned as 'parents' (using the *z* parameter), but we restricted this pre-assignment to

individuals whose assignment by STRUCTURE was higher than 0.99 (with 90% confidence interval within 0.9 and 1), to discard potential highly backcrossed individuals. We also conducted a principal component analysis using PCAGEN v.2 (Goudet, 1999) on allelic frequencies to visualize population differentiation. Significance of axes was tested by 10 000 randomizations of genotypes.

#### Geographic transects

We conducted additional STRUCTURE analyses along three transects evenly distributed in the flat corridor delimited by the Pre-Alps in the northwest and Adriatic Sea in the east, crossing the Po and Adige rivers (Figure 2; A –C), and presumably corresponding to major, topographically possible migration directions of the two toad lineages (transect A: locs. 1–4, 17, 25–26, 28, 47–52, 56; transect B: locs. 1–4, 18, 24, 27, 29–33, 43–46, 53–55; transect C: 5, 6, 8–15, 23, 34–40, 57–60). Along transects, the frequencies of alleles diagnostic for *B. balearicus* (that is, absent from pure *viridis* populations) were calculated for localities with  $n \ge 4$  (transect A: locs. 1–4, 17, 26, 28, 47, 50, 56; transect B: locs. 1–4, 30, 31, 43, 53–55; transect C: 5, 6, 8–15, 23, 34–40, 57–60). For two transects (A, B; C was dismissed due to a sampling gap in its southern part), we computed genetic clines for the mitochondrial marker and for microsatellites possessing species-specific alleles (that is, alleles that contributed to



**Figure 3** Phylogenetic tree based on a nuclear sequence marker. Maximum likelihood tree based on clones ('cl') obtained from 580 bp of an intron of *alpha-Tropomyosin*. Sample number (sometimes several with same haplotype and locality) is followed by locality information and population number (as in Figure 1, Supplementary Table S1); individual 'Po2', highlighted green, possessed a *D-loop* of one lineage but *Tropomyosin* alleles from the opposite species; toads BV247 and Po16 each contained an allele from *balearicus* and *viridis*, respectively.

cluster differences and for which frequencies, when narrowed down to a twoallele system, were higher than 0.9 in pure populations of one species). We further cross-checked the diagnostic value of alleles according to coordinates on the first axis of a multiple correspondence analysis (GENETIX v.4.05; Belkhir et al., 1998) of allelic frequencies of pure populations (Gay et al., 2008). For each microsatellite, selected alleles were assigned to species-specific compound alleles to reduce the variation to a two-allele system. Along each transect, clines were fitted to allelic (microsatellites) and haplotype (mtDNA) frequencies with the program CFIT v.7.0 (Gay et al., 2008), using a three-part stepped cline model, comprising a central sigmoid and two exponential tails (Szymura and Barton, 1986). We performed a likelihood search for a common center (coincidence) and slope (concordance) of all clines (Gay et al., 2008), reiterating each fit with different random seeds to check for convergence. Models with different constraints (common center, common slope and both) were successively fitted to all markers simultaneously, and likelihood-ratio tests were performed to compare constrained with unconstrained clines. In the final models, individual clines, for which the constrained models were rejected (likelihood-ratio tests significant, 5% level), were fitted independently. For each transect, we chose the final model with the lowest Akaike information criterion (AICc).

To examine isolation by distance and the role of major rivers (Adige, Po) as potential barriers to dispersal, we computed partial correlations between pairwise  $F_{\rm ST}$  geographic distances and a matrix of the number of rivers between populations ( $n \ge 5$ ) by partial Mantel tests (ARLEQUIN). The geographic distance matrix was obtained using Geographic DISTANCE MATRIX GENERATOR v.1.2.3 (Ersts, 2006). Significance of correlations was tested by a permutation procedure (10 000 permutations).

# RESULTS

# Phylogenetic analyses and divergence times

The *viridis* mtDNA clade is homogenous across the study region, and reveals a significant range expansion that occurred *ca.* 16 Ky ago (Figure 2; Table 2). In contrast, the *balearicus* haplotypes form three subclades (1a, 1b and 2; Figure 2; Supplementary Figure S1) with some geographic structure. Two subclades show significant signs of expansions (Figure 2; Table 2), dating back to 43 Ky ago for haplotype 1A (the most northern), but only 3 Ky for haplotype 1B (Figure 2). Transects show a large region of co-occurrence and a smooth transition in frequencies over > 100 km from *balearicus* to *viridis* haplotypes. Networks for the major clades are provided with maximum-likelihood bootstrap support in Supplementary Figure S1 (see also trees in Stöck *et al.*, 2006, 2008a).

Nuclear sequences (*alpha-Tropomyosin* intron) also differentiate two highly supported clades, corresponding to *B. viridis* and *B. balearicus*, respectively (Figure 3). The *B. balearicus* clade is widespread on the Apennine Peninsula, from the Po Plain (study area) to southern Italy, and also found on Sardinia, the Balearic Islands and easternmost Sicily. Interestingly, two individuals (Po16, loc. 30; BV247, loc. 1, Figure 3) harbored an allele from *balearicus* as well as *viridis*, demonstrating their nuclear hybridity.

Molecular dating of mitochondrial and nuclear sequence data using BEAST suggests a Lower Pleistocene divergence of *B. viridis* and *B. balearicus*. Estimates point to 1.9 My (95% HPDI: 2.5–1.3 My) for the mtDNA *D-loop*, and 2.0 My (95% HPDI 3.04–1.09 My) for intronic sequences of the nuclear *Tropomyosin*. The posterior predictions for the divergence time between *B. siculus* and *B. balearicus* were very close to the mode assumed for the prior, and consistent between mtDNA and nuDNA: namely 2.65 (95% HPDI: 3.3–1.9 My) and 2.5 My (95% HPDI: 3.5–1.55 My) for the *D-loop* and the *Tropomyosin*, respectively.

# Population structure

In two populations, assigned to *B. balearicus* (pop. 50, 56), null alleles were detected for locus C201 and corrections performed. We did not find significant linkage disequilibrium in any population after sequential Bonferroni corrections. All but one population (pop. 40, *B. balearicus*) met Hardy–Weinberg expectations. Analyses of microsatellite genotypes using STRUCTURE clearly grouped individuals into two clusters (K = 2, best fitting the whole data set), corresponding to *viridis* and *balearicus* gene pools (Figure 1). Most individuals from the northeastern part of the study area (north of Euganei hills and Venice; pop. 1–4, 7–8, 12–13, 15) were assigned to pure *viridis*, whereas individuals from south of the Po River were mainly assigned to pure *balearicus* (pop. 50, 52, 54–56, 58). Individuals from localities in between showed intermediate but robust probabilities of assignment (that is, 90% CI neither reaching 0 nor 1), suggesting clear signs of nuclear admixture (Figure 1).

Pairwise  $F_{ST}$  values revealed a clear pattern of isolation by distance, as illustrated by the principal component analysis (Figure 4). The first



Figure 4 Principal component analysis on allelic frequencies including all populations, using PCAGEN (Goudet, 1999). Only the first axis is significant (*P*<0.01); green/red coloration is proportional to average assignment probability to *B. viridis/B. balearicus*, respectively (see Figure 1).

Table 3 Partial correlations between  $F_{ST}$ , geographic distances and number of large rivers between populations, analyzed by partial Mantel tests

|                                        | F <sub>ST</sub> vs distance + current rivers | F <sub>ST</sub> vs distance + paleo-rivers | F <sub>ST</sub> vs<br>distance |
|----------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------|
| Correlation F <sub>ST</sub> – distance | 0.67***                                      | 0.67***                                    | 0.67***                        |
| Correlation F <sub>ST</sub> –rivers    | 0.72***                                      | 0.66***                                    | _                              |
| Determination of $F_{ST}$ by distance  | 25%                                          | 31%                                        | 44%                            |
| Determination of $F_{ST}$ by rivers    | 36%                                          | 29%                                        | _                              |
| Explained variance of $F_{ST}$         | 61%                                          | 60%                                        | 44%                            |
| Unexplained variance of $F_{ST}$       | 39%                                          | 40%                                        | 56%                            |

Distinct tests considered the current major rivers or the paleo-river beds (Bronze Age, ca. 5 Kya, Piovan *et al.*, 2010).

and only significant axis explaining 33.6% of the variance (P = 0.0001, bootstrapping) opposes pure *viridis* (right) to pure *balearicus* (left) populations. The transition in-between is continuous through the contact zone. The populations farthest away from the contact zone center display the highest  $F_{\rm ST}$  values (0.53), whereas those at the contact zone show little or no differentiation ( $F_{\rm ST}$  0.00–0.03; Supplementary Table S2).

Isolation by distance was confirmed by Mantel tests; over the whole data set, pairwise  $F_{ST}$  increased significantly with geographic distance (44% of the variance explained, P < 0.001). In addition, partial Mantel tests revealed a significant effect of major rivers (Po and Adige). Including the present-day riverbeds explained 61% of the variance, of which 25% was due to geographic distance, and the remaining (36%) to the number of large rivers (0, 1 or 2) separating populations. Interestingly, very close and significant values are also obtained when historical (Bronze Age), rather than present-day riverbeds are included (Table 3).

Genetic diversity was quite uniform over the study region, although values at the contact zone ( $H_e \ge 0.60$ ) were slightly higher than in the pure *viridis* or *balearicus* range (Table 1).

# Cline analyses

Seven microsatellites with at least one species-specific allele (STRUCTURE) and the mitochondrial marker were selected for cline analyses (Figure 5; Supplementary Table S3). The overall pattern shows two extrinsic effects: that of geographic distances and that of riverbeds (Figure 5). The proportion of balearicus-specific alleles decreases smoothly with increasing latitude, with marked drops corresponding approximately to the (historic beds of) Po and Adige Rivers. No viridis-specific nuclear alleles were detected south of the Po River. At both transects, the best models had a shared center and a shared slope for six out of the seven nuclear markers (Supplementary Table S4, AICc). The common center was located between the two major rivers (20.0 km northeast of the Po for transect A and 20.5 km for transect B; that is, near the historic Po River bed). Cline widths, calculated as the inverse of the slope, were remarkably narrow (2.3 km for transect A, 2.6 km for transect B; Supplementary Table S3), given that *B. viridis* can migrate 2–10 km in a single year (Blab *et al.*, 1991), but flanked with large introgression tails, expanding northwards of Adige into the viridis range (Figure 5). For the mtDNA, the shape of the clines differed strongly from those of nuclear markers, with centers of mtDNA clines located much further north (46.6 km northeast of the Po for transect A; 96.4 km for transect B).

# Additional evidence for wide asymmetric introgression and backcrosses

Many cases of cyto-nuclear discordances were detected, with an asymmetric distribution. Of the individuals confidently assigned to *viridis* by nuclear markers (51 inds.), 29% possessed *balearicus* mtDNA (15 inds.), including some from populations distant from the center of the contact (pops. 3–4, 7–8; Figure 1). However, none of those confidently assigned to *balearicus* (23 inds.) presented *viridis* mtDNA (all possessed *balearicus* mtDNA). NewHybrids also identified many hybrids at localities displaying admixture: populations 22–35 had 42% of  $F_2$  hybrids and 16% of backcrosses, while populations 37–48 had 59%  $F_2$  hybrids and 3–5% of backcrosses (Supplementary



Figure 5 Genetic clines for seven microsatellite loci with species-specific alleles and the mitochondrial control region (*D-loop*) along transects A (a) and B (b). Relative position of the Po and Adige rivers (current and, if different within the transect, paleo-river beds) is plotted as dashed lines. Transects are the same as in Figure 2, but including only localities where  $n \ge 4$ .

Figure S2). No  $F_1$  hybrids were detected. The geographic distribution of the *Tropomyosin* alleles also provides evidence for introgression, with admixed populations mostly at the center of the contact zone.

# DISCUSSION

# Differences in the degree of introgression

As our results show, the Italian (*B. balearicus*) and the European green toad (*B. viridis*) come into parapatry in the lower Po and Adige drainages. Despite substantial mitochondrial and nuclear sequence differentiation, accumulated over 1.9 My divergence (Figure 3 and Supplementary Figure S1; see also Stöck *et al.*, 2008a), these two lineages show extensive hybridization in their secondary contact zone.

This situation contrasts strikingly with the one documented in Sicily between *B. balearicus* and *B. siculus*, two lineages with a deeper divergence (2.6 My). MtDNA introgression was limited to 40 km in Sicily (Colliard *et al.*, 2010), but stretches up to 130 km in the Po Plain (Figure 2). Similarly, nuclear admixture (that is, >10% assignment probability to the alternative taxon) was almost absent in Sicily, but expands over 40–50 km in the *balearicus/viridis* contact zone (Figure 1).

This contrast is reflected in the patterns of isolation by distance: in Sicily, pairwise  $F_{ST}$  reach their highest values (0.50) between the *siculus* and *balearicus* populations immediately adjacent to the contact zone (only ~16 km apart), but increase smoothly with geographic

Heredity

17

distance in the balearicus/viridis contact zone, reaching their maximum ( $F_{ST} = 0.53$ ) between the most distant populations. Genetic diversity shows a similar contrast: in Sicily, He values were the lowest at the balearicus/siculus contact zone (Colliard et al., 2010), but were largely uniform over the Po Plain, with slightly higher values  $(H_e \ge 0.60)$  at the viridis/balearicus contact zone. This and the advanced degree of hybridization in the Po Plain zone, including many individuals exhibiting a cyto-nuclear discordance, suggest that no major pre- and post-zygotic reproductive barriers limit the gene flow between both species, although detailed bioacoustic studies and examination of Haldane effects (see below) are still missing. Taken together, all population genetics parameters reveal two clearly dissimilar situations: introgression under secondary contacts is still extensive between B. balearicus and B. viridis (1.9 (2.5-1.3) My divergence) but virtually absent between B. balearicus and B. siculus (2.6 (3.3-1.9) My divergence).

Although our results are well in line with the relatively few scattered studies in anurans in which the relationship between divergence time and natural degree of hybridization has been studied (see Introduction), the two hybrid zones compared so far do not allow us to draw general conclusions yet. Nevertheless, we note that narrow hybrid zones form in secondary contacts of lineages with Pliocene divergence (>3 My; Szymura, 1993; Hofman et al., 2007, Verardi et al., 2009, Simões et al., 2012), whereas secondary contacts of lineages with more recent Plio-Pleistocene divergence (2.5 My-11 Kya) result in wide(r) hybrid zones with considerable genetic exchange between both gene pools (Santucci et al., 1996, Canestrelli and Nascetti, 2008; Sequeira et al., 2011). While few if any comparative studies within the same radiation have been undertaken in anurans, among urodeles, the Ensatina ring species complex presents a famous system, in which 'extant intermediate stages of terminal forms have a nearly continuous range, offering replicated interactions at several stages of divergence' (Pereira and Wake, 2009). Reproductive isolation in Ensatina 'is likely to be a byproduct of processes that contribute to overall [nuclear] genetic divergence, such as time in geographic isolation' (Pereira et al., 2011), and recent evidence supports 'asymmetric reproductive isolation between terminal forms' of the ring (Devitt et al., 2011).

Beyond divergence time, additional specificities of the two green toad hybrid zones may contribute to the observed introgression differences. Island populations, like that of *B. siculus*, can experience increased drift and selection and thus accelerated rates of molecular evolution (for example, Woolfit and Bromham, 2005), which could enhance the incompatibility between *B. balearicus* and *B. siculus* gene pools. Moreover, we assume that the time since toad lineages came first into secondary contact in Sicily dates at least back to low sea levels during the Last Glacial Maximum (20 Kya; allowing *B. balearicus* to colonize Sicily). Signatures of population expansion (43–3 Kya; see above; and river translocations, see below) point to similar, and thus an overlapping time period for the first contact between *B. balearicus* and *B. viridis* in the Po Plain. Therefore, the age of contact zones would hardly explain the contrasting introgression patterns.

#### Hybrid zone movement, geography and colonization history

Gene flow in the Po Plain seems barely restricted by genomic incompatibilities and rather reflects the history of colonization and dispersal effects as well as fine scale influences of geographic features.

Interestingly, the clines of nuclear markers are asymmetric, with a long tail on the *viridis* side (Figure 3). A tail of clines of unlinked neutral markers with apparent unidirectional introgression across the

zone (Moran, 1981, cited in Buggs, 2007) is typical of a 'moving hybrid zone'. Barton and Hewitt (1985) suggested that evidence for hybrid zone movement should be based on many neutral alleles, introgressing in the same direction. This is the case for *balearicus* microsatellite alleles and suggests zone movement as partial explanation for the introgression asymmetry and tail at the *viridis* side of the zone in the Po Plain. This evidence is further supported by an asymmetry of nuDNA vs mtDNA introgression, again with a tail at the *viridis* side of the hybrid zone. Contrasting with most nuclear markers that share a common center (20 km north of the modern Po river), the mtDNA cline centers much further north (Figure 5), in line with the patterns of cyto-nuclear discordances: we found many *balearicus* mtDNAs in a *viridis* nuclear background but not the reverse.

Beyond introgression asymmetry and isolation by distance, the balearicus/viridis hybrid zone reflects signatures of physical barriers (Figures 2 and 5) to gene flow imposed by the current and historic position of large rivers (Po and Adige). Partial Mantel-tests could assign 36% of the variance in pairwise  $F_{ST}$  to the number of main (or historic) rivers (0, 1 or 2), separating populations. Cline analyses also showed marked drops in the frequency of balearicus specific alleles, corresponding to these main, current or historic, rivers (Figure 5). Intriguingly, all hybrid populations showing nuclear introgression (Figure 1) are almost perfectly delimitated to the south by the modern Po river, and to the northeast by the ancient Po and Adige riverbeds, which, some 5 Kya, were situated 20-40 km farther northeast than today (pink in Figures 1 and 2; Piovan et al., 2010). As the Mantel tests supported, the locations of historical riverbeds were only slightly less important than modern ones in accounting for present day population structure (Table 3).

All of this suggests the following scenario for this secondary contact zone. Since the Last Glacial Maximum (LGM), the Po Plain vegetation changed from a natural steppe-like to a densely forested habitat. This was followed some 4-5 Ky ago by human deforestation (Amorosi, 2004), which presumably facilitated green toad range expansion. The region was progressively colonized by balearicus and viridis from their glacial refugia, respectively, south and east of the study area. The contact zone might have been established at the Po and/or Adige paleo-riverbeds, which at this time posed faster running river barriers than today (Fontana et al., 2008), with relatively few, but some migrants overcoming them (for example, balearicus may have expanded further north). A 20-40 km southward river translocation into the modern beds then trapped some balearicus populations northeast of the present-day Po River. Continuous gene flow from incoming northern viridis colonizers progressively diluted local balearicus genomes, now isolated by the Po River from the main range of balearicus. The long tail of mtDNA and nuDNA clines in the north might be a result of this influx of viridis genes into the hybrid zone, explicable as 'balearicus dilution' itself and/or by truly southwestwards migrating viridis populations. In any case, this dynamic, apparently ongoing process exhibits the clear features of a 'moving hybrid zone'. In accordance with a scenario of 'balearicus dilution', NEWHYBRIDS analyses did not detect any pure balearicus or F1 genotypes north of the Po River, suggesting instead an advanced state of nuclear admixture ('F2' and backcrosses; Supplementary Figure S2). The absence of 'F1' suggests that the individuals labeled 'F2' might in fact also represent backcrosses. Most importantly, these data imply that at least some hybrids become adult and fertile, as they successfully reproduce. This scenario would suggest a minimal age of 5 Ky for the hybrid zone (that is, >2500 generations, assuming a 2-year generation time; Stöck et al., 2008b), as inferred from the last

major Po River translocation. The further reaching mitochondrial than nuclear introgression of balearicus into a viridis background might further indicate a smaller female effective size in viridis invaders, possibly stemming from sex differences in dispersal ability. A male-biased dispersal is expected to increase male effective population size at the front of invading populations, favoring mtDNA over nuclear introgression (Petit and Excoffier, 2009). We do not know whether slight size differences between the green toad lineages involved (Stöck et al., 2008b) could skew the mating preferences as, for example, observed within B. bufo for differently sized males (Davies and Halliday, 1979). Another alternative that could explain nuDNA/mtDNA introgression asymmetry might stem from sex differences in hybrid fitness or fecundity. Haldane's rule predicts lower hybrid fitness in the heterogametic sex. Several taxa of the B. viridis group, probably including B. balearicus, have a male heterogametic (XY) sex determination system (Stöck et al., 2013). Although Haldane's rule might be less prevalent in taxa with homomorphic sex chromosomes, too few non-model hybrid organisms have been studied, especially in natural systems of amphibians, to exclude this scenario (Schilthuizen et al., 2011).

# CONCLUSIONS

Our data show a striking contrast in the degree of hybridization between closely related green toad lineages in secondary contact. In comparison with the system of greater divergence (Sicily, 2.6 My), the North-Italian green toad hybrid zone (of lineages diverged 1.9 My) exhibits a much wider and asymmetric introgression at nuclear and mitochondrial levels. Gene flow in this apparently dynamic system seems mainly constrained by local geographic barriers (large rivers), and less by intrinsic genomic incompatibilities. All of this suggests that reproductive isolation during incipient speciation increases gradually with the time of divergence (up to a certain threshold; for example, Nosil and Feder, 2012), and might be driven by complex genomic processes rather than single speciation genes. Our study represents a contribution toward comparative studies of secondary contacts of closely related anuran lineages. It is well in line with scattered research in other anuran species, with examples among discoglossoids, bufonids, hylids and ranids, but has the advantage to compare lineages with different divergence times from the same radiation.

#### DATA ARCHIVING

Genotype data available from the Dryad Digital Repository: doi:10.5061/dryad.85pr1. GenBank accessions for the *D-loop* and *alpha-Tropomyosin* have in part been published by Stöck *et al.* (2008a) and Colliard *et al.* (2010); new data in the present paper have accessions: KJ532478-KJ532515 (alpha-Tropomyosin) and KJ532516-KJ532802 (D-loop).

## CONFLICT OF INTEREST

The authors declare no conflict of interest.

## ACKNOWLEDGEMENTS

This work was partly supported by a Heisenberg-Fellowship (Sto 493/2-1), and grant Sto 493/3-1 of the German Science Foundation (DFG), as well as in part by the Fondation Agassiz of the University of Lausanne (1 July 2010)—all to MS; by funds to NP (Swiss National Science Foundation, grant 31003A-129894), CD (PhD fellowship from the Faculty of Biology and Medicine of the University of Lausanne), and the Italian Ministry of the University (PRIN 20085YJMTC) to LB. We thank M Benà, L Bedin, S Bertollo, E Boschetti, E Cirani, F di Montereale, M Dovigo, B Favaretto, GF Ficetola, B Golfieri,

S Mazzotti, D Miserocchi, MG Mitri, L Ometto, R Pollo, P Reggiani, J Richard, E Romanazzi, M Semenzato, M Simonazzi, GF Turrisi, M Uliana, for contributing samples and/or helping with fieldwork, L Ometto and A Sicilia for initiating some of the contacts leading to our collaboration, and AS for help in the lab; D Pio, O Broennimann and S Antoniazza for discussions and three anonymous reviewers for helpful comments on previous versions of this paper.

- Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N et al. (2013). Hybridization and speciation. J Evol Biol 26: 229–246.
- Amorosi A (2004). Po plain. In: Margottini C, Vai GB (eds) Climex Maps Italy. Litho-Paleoenvironmental Maps of Italy During the Last Two Climatic Extremes – Explanatory notes. Museo Geologico Cappellini: Bologna, pp 38.
- Anderson EC, Thompson EA (2002). A model-based method for identifying species hybrids using multilocus genetic data. *Genetics* 160: 1217–1229.
- Barton NH, Charlesworth B (1984). Genetic revolutions, founder effects and speciation. Annu Rev Ecol Evol Syst 15: 133–164.
- Barton NH, Hewitt GM (1985). Analysis of hybrid zones. Annu Rev Ecol Evol Syst 16: 113–148.
- Belkhir K, Borsa P, Chikhi L, Goudet J, Bonhomme F (1998). GENETIX 3.07, WindowsTM software for population genetics. University of Montpellier II: Montpellier, France.
- Blab J, Brüggemann P, Sauer H (1991). Tierwelt in der Zivilisationslandschaft, Teil II: Raumeinbindung und Biotopnutzung bei Reptilien und Amphibien im Drachenfelser. Land. Schriftenr. Landschaftspfl. Naturschutz (Bonn-Bad Godesberg) 34: 1–94.

Buggs RJA (2007). Empirical study of hybrid zone movement. Heredity 99: 301-312.

- Canestrelli D, Nascetti G (2008). Phylogeography of the pool frog *Rana (Pelophylax) lessonae* in the Italian Peninsula and Sicily: Multiple refugia, glacial expansions and nuclear-mitochondrial discordance. *J Biogeogr* **35**: 1923–1936.
- Clement M, Posada D, Crandall K (2000). TCS: a computer program to estimate gene genealogies. *Mol Ecol* 9: 1657–1660.
- Colliard C, Sicilia A, Turrisi GF, Arculeo M, Perrin N, Stöck M (2010). Strong reproductive barriers in a narrow hybrid zone of West-Mediterranean green toads (*Bufo viridis* subgroup) with Plio-Pleistocene divergence. *BMC Evol Biol* **10**: 232.
- Davies NB, Halliday TR (1979). Competitive mate searching in male common toads, *Bufo bufo. Anim Behav* 27: 1253–1267.
- Devitt TJ, Baird SJE, Moritz C (2011). Asymmetric reproductive isolation between terminal forms of the salamander ring species *Ensatina eschscholtzii* revealed by fine-scale genetic analysis of a hybrid zone. *BMC Evol Biol* 11: 245.
- Dufresnes C, Betto-Colliard C, Perrin N, Stöck M (2011). Thirteen polymorphic microsatellite markers for the European green toad *Bufo viridis viridis*, a declining amphibian species. *Conserv Genet Resour* 3: 311–313.
- Drummond AJ, Ho SYW, Rawlence N, Rambaut A (2007). A Rough Guide to BEAST 1.4. University of Auckland: Auckland, New Zealand. http://beast-mcmc.googlecode.com/ files/BEAST14\_Manual\_6July2007.pdf
- Ersts PJ (2006). Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History: New York, USA. http://biodiversityinformatics.amnh.org/open\_source/gdmg
- Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol Ecol* 14: 2611–2620.
- Excoffier L, Laval G, Schneider S (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. *Evol Bioinform* 1: 47–50.
- Fontana A, Mozzi P, Bondesan A (2008). Alluvial megafans in the Venetian-Friulian Plain (north-eastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. *Quat Int* 189: 71–90.
- Forman RTT, Sperling D, Bissonette JA, Clevenger AP, Cutshall CD, Dale VH et al. (2003). Road Ecology. Island Press: Washington, DC.
- Gay L, Crochet PA, Bell DA, Lenormand T (2008). Comparing clines on molecular and phenotypic traits: a window on tension zone models. *Evolution* 62: 2789–2806.
- Goudet J (1995). FSTAT (version 1.2): A computer program to calculate F-statistics. *J Hered* **86**: 485–486.
- Goudet J (1999). PCAGEN v. 1.2.1. University of Lausanne: Switzerland. http:// www2.unil.ch/popgen/softwares /pcagen.htm
- Gouy N, Guindon S, Gascuael O (2010). SeaView version 4: a multiplatform user interface for sequence alignment and phylogenetic tree building. *Mol Biol Evol* 27: 221–224.
- Hofman S, Spolsky C, Uzzell T, Cogalniceanu D, Babik W, Szymura JM (2007). Phylogeography of the fire-bellied toads *Bombina*: independent Pleistocene histories inferred from mitochondrial genomes. *Mol Ecol* 16: 2301–2316.
- Hoskin CJ, Higgie M, McDonald KR, Moritz C (2005). Reinforcement drives rapid allopatric speciation. *Nature* **437**: 1353–1356.
- Kruuk LEB, Gilchrist JS, Barton NH (1999). Hybrid dysfunction in fire-bellied toads (Bombina). Evolution 53: 1611–1616.
- Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451–1452.
- Malone JH, Fontenot BE (2008). Patterns of reproductive isolation in toads. *PLoS One* 12: e3900.
- Nosil P, Feder JL (2012). Genomic divergence during speciation: causes and consequences. *Philos Trans R Soc B* 367: 332–342.

- Speciation in closely related bufonid toads C Dufresnes et al
- Pabijan M, Wandycz A, Hofman S, Wecek K, Piwczynski M, Szymura JM (2013). Complete mitochondrial genomes resolve phylogenetic relationships within *Bombina* (Anura: Bombinatoridae). *Mol Phylogenet Evol* 69: 63–74.
- Petit RJ, Excoffier L (2009). Gene flow and species delimitation. *Trends Ecol Evol* 24: 386–393.
- Pereira R, Wake DB (2009). Genetic leakage after adaptive and non-adaptive divergence in the *Ensatina eschscholtzii* ring species. *Evolution* 63: 2288–2301.
- Pereira R, Monahan WB, Wake DB (2011). Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence. *BMC Evol Biol* 11: 194. Piovan S, Mozzi P, Stefani C (2010). Bronze age paleohydrography of the southern
- Venetian Plain. *Geoarchaeology* **25**: 6–35. Posada D (2008). jModelTest: phylogenetic model averaging. *Mol Biol Evol* **27**: 1253–1256.
- Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. *Genetics* 155: 945–959.
- Ramos-Onsins SE, Rozas J (2002). Statistical properties of new neutrality tests against population growth. *Mol Biol Evol* 19: 2092–2100.
- Santucci F, Nascetti G, Bullini L (1996). Hybrid zones between two genetically differentiated forms of the pond frog *Rana lessonae* in southern Italy. *J Evol Biol* 9: 429–450.
- Sá-Pinto A, Baird SJE, Pinho C, Alexandrino P, Branco M (2010). A three-way contact zone between forms of *Patella rustica* (Mollusca: Patellidae) in the central Mediterranean Sea. *Biol J Linn Soc* **100**: 154–169.
- Sasa MM, Chippindale PT, Johnson NA (1998). Patterns of postzygotic isolation in frogs. Evolution 52: 1811–1820.
- Schilthuizen M, MCWG Giesbers, Beukeboom LW (2011). Haldane's rule in the 21st century. *Heredity* 107: 95–102.
- Seehausen O, Takimoto G, Roy D, Jokela J (2008). Speciation reversal and biodiversity dynamics with hybridization in changing environments. *Mol Ecol* **17**: 30–44.
- Sequeira F, Sodre D, Ferrand N, Bernardi JAR, Sampaio I, Schneider H et al. (2011). Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads *Rhinella marina* and *R. schneideri* inferred from mtDNA and nuclear markers. *BMC Evol Biol* 11: 264.
- Simões PI, Lima AP, Farias IP (2012). Restricted natural hybridization between two species of litter frogs on a threatened landscape in southwestern Brazilian Amazonia. *Conserv Genet* 13: 1145–1159.
- Smadja CM, Butlin RK (2011). A framework for comparing processes of speciation in the presence of gene flow. *Mol Ecol* 20: 5123–5140.
- Sobel JM, Chen GF, Watt LR, Schemske DW (2010). The biology of speciation. Evolution 64: 295–315.
- Stöck M, Moritz C, Hickerson M, Frynta D, Dujsebayeva T, Eremchenko V et al. (2006). Evolution of mitochondrial relationships and biogeography of Palearctic green toads

(*Bufo viridis* subgroup) with insights in their genomic plasticity. *Mol Phylogenet Evol* **41**: 663–689.

- Stöck M, Sicilia A, Belfiore N, Buckley D, Lo Brutto S, Lo Valvo M et al. (2008a). Post-Messinian evolutionary relationships across the Sicilian channel: Mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evol Biol 8: 56.
- Stöck M, Roth P, Podloucky R, Grossenbacher K (2008b). Wechselkröten–unter Berücksichtigung von Bufo viridis virdis Laurenti, 1768; Bufo variabilis (Pallas, 1769); Bufo boulengeri Lataste, 1879; Bufo balearicus Böttger, 1880 und Bufo siculus Stöck, Sicilia, Belfiore, Lo Brutto, Lo Valvo und Arculeo, 2008. In: Grossenbacher K (ed) Handbuch der Amphibien und Reptilien Europas vol. 5 (Froschlurche II). AULA-Verlag: Wiesbaden, pp 413–498.
- Stöck M, Savary R, Betto-Colliard C, Biollay S, Jourdan-Pineau H, Perrin N (2013). Low rates of XY recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Paleartic green toads (*Bufo viridis* subgroup). *J Evol Biol* 3: 674–682.
- Sumida M, Kotaki M, Islam MM, Djong TH, Igawa T, Kondo Y et al. (2007). Evolutionary relationships and reproductive isolating mechanisms in the rice frog (*Fejervarya limnocharis*) species complex from Sri Lanka, Thailand, Taiwan and Japan, inferred from mtDNA gene sequences, allozymes, and crossing experiments. *Zool Sci* 24: 547–562.
- Szymura JM (1993). Analysis of hybrid zones with *Bombina*. In: Harrison R (ed) *Hybrid Zones and the Evolutionary Process*. Oxford University Press: New York, pp 261–289.
- Szymura J, Barton N (1986). Genetic analysis of a hybrid zone between the fire-bellied toads, *Bombina bombina* and *Bombina variegata*, near Cracow in southern Poland. *Evolution* **40**: 1141–1159.
- Van Oosterhout C, Hutchinson WF, Derek P, Wills M, Shipley P (2004). MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. *Mol Ecol Notes* 4: 535–538.
- Verardi A, Canestrelli D, Nascetti G (2009). Nuclear and mitochondrial patterns of introgression between the parapatric European treefrogs *Hyla arborea* and *H. intermedia*. Annls Zool Fennici 46: 247–258.
- Vines TH, Köhler SC, Thiel M, Ghira I, Sands TR, MacCullum CJ et al. (2003). The maintenance of reproductive isolation in a mosaic hybrid zone between the fire-bellied toads Bombina bombina and B. variegata. Evolution 57: 1876–1888.
- Wilson AC, Maxson LR, Starich VM (1974). Two types of molecular evolution. Evidence from studies of interspecific hybridization. *Proc Natl Acad Sci USA* 71: 2843–2847.
- Woolfit M, Bromham L (2005). Population size and molecular evolution on islands. Proc R Soc B 272: 2277–2282.

Supplementary Information accompanies this paper on Heredity website (http://www.nature.com/hdy)