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Relatedness severely impacts accuracy of marker-assisted
selection for disease resistance in hybrid wheat

M Gowda1, Y Zhao2, T Würschum1, CFH Longin1, T Miedaner1, E Ebmeyer3, R Schachschneider4,
E Kazman5, J Schacht6, J-P Martinant6, MF Mette2 and JC Reif2

The accuracy of genomic selection depends on the relatedness between the members of the set in which marker effects are
estimated based on evaluation data and the types for which performance is predicted. Here, we investigate the impact of
relatedness on the performance of marker-assisted selection for fungal disease resistance in hybrid wheat. A large and diverse
mapping population of 1739 elite European winter wheat inbred lines and hybrids was evaluated for powdery mildew, leaf rust
and stripe rust resistance in multi-location field trials and fingerprinted with 9 k and 90 k SNP arrays. Comparison of the
accuracies of prediction achieved with data sets from the two marker arrays revealed a crucial role for a sufficiently high marker
density in genome-wide association mapping. Cross-validation studies using test sets with varying degrees of relationship to the
corresponding estimation sets revealed that close relatedness leads to a substantial increase in the proportion of total genotypic
variance explained by the identified QTL and consequently to an overoptimistic judgment of the precision of marker-assisted
selection.
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INTRODUCTION

Genome-wide association mapping is a powerful tool to dissect the
genetic architecture of complex traits (Yu et al., 2006). It was
originally developed in human genetics, later extensively used in
animal genetic studies (McCarthy et al., 2008) and nowadays is also
widely applied in numerous crop plants (Thornsberry et al., 2001;
Breseghello and Sorrels, 2006; Cockram et al., 2010; Würschum et al.,
2011). The power of QTL detection and the mapping resolution of
genome-wide association mapping are largely determined by the
extent and pattern of linkage disequilibrium in the germplasm under
study (Myles et al., 2009; Reif et al., 2011). Especially in mapping
populations containing diverse genotypes with a low extent of linkage
disequilibrium, dense marker information is needed for genome-wide
association mapping.

Association mapping is becoming increasingly popular as a first
step in marker-assisted selection because it allows exploiting existing
phenotypic and genomic data routinely collected in applied plant
breeding programmes (Würschum, 2012). After having estimated
effects of the detected functional markers, genotypic values are
predicted based on the genomic profiles of the untested individuals
(Guo et al., 2013). However, the accuracy of marker-assisted selection
greatly depends on the precise assessment of QTL effects. Estimated
marker effects can be unreliable and the proportion of genotypic
variance explained by the detected QTL grossly overestimated, as has
been uncovered by simulation studies (Beavis, 1994) and cross-

validation surveys based on bi-parental (Utz et al., 2000; Schön et al.,
2004) as well as multiple-line crosses (Liu et al., 2013). The potential
bias in the estimation of the explained proportion of genotypic
variance by detected QTL in association mapping was recently
reported using a mapping population of 1739 winter wheat inbred
lines and hybrids (Zhao et al., 2013).

Wheat (Triticum aestivum L.) is one of the most important crops
grown on 200 million hectares of farmland worldwide (Ortiz et al.,
2008). Biotic stress resistance is of central importance for a sustainable
wheat production. Fungal diseases like powdery mildew caused by
Blumeria graminis f. sp. tritici, leaf rust caused by Puccinia triticina
and stripe rust (also known as yellow rust) caused by Puccinia
striiformis f. sp. tritici adversely affect grain yield and quality in winter
wheat. Resistance to the causative pathogens can be based on major,
race-specific, host–pathogen recognition genes that are effective at all
plant stages or on multiple additive minor genes conferring resistance
to seedlings or adult plants in a more stage-specific manner (Singh
et al., 2012). This expected mix of small and large effect genes makes
stripe rust, leaf rust and powdery mildew resistance promising target
traits to investigate the prospects of marker-assisted selection based on
genome-wide association mapping (Miedaner and Korzun, 2012).

In order to elucidate the genetic architecture underlying fungal
pathogen resistances in wheat, we performed an association mapping
and a genomic selection study based on a large and diverse mapping
population of 135 elite winter wheat lines and 1604 factorial F1
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hybrids derived from them. Adult plants were evaluated for powdery
mildew, leaf rust and stripe rust disease severity in multi-location field
trials and fingerprinted with a 9 k and 90 k SNP array. The objectives
of our study were to (1) examine the impact of the marker density on
the power of QTL detection, (2) investigate the influence of genetic
relatedness and significance threshold on the explained proportion of
the total genotypic variance using cross-validation approaches and (3)
propose a strategy to manage fungal disease resistances in wheat
hybrid breeding based on the estimated dominance effects.

MATERIALS AND METHODS
Plant material and field experiments
The present study was based on 135 elite winter wheat lines adapted to Central

Europe and 1604 F1 hybrids derived from them (Longin et al., 2013; Miedaner

et al., 2013; Zhao et al., 2013). The hybrids were generated in a facultative

crossing scheme with 120 inbred lines serving as female and 15 inbred lines

serving as male parents with the aid of chemical hybridization agents

(Figure 1a). All of the above 1739 genotypes and in addition 10 commercial

wheat lines as common checks were evaluated in unreplicated trials in three to

four environments in Germany in the year 2012. The environments were

Böhnshausen (latitude 511510N, longitude 101570E, 146 m above sea level (asl),

sandy loam texture), Hadmersleben (latitude 511590N, longitude 111180E, 88 m

asl, silt loam soil texture), Harzhof (latitude 541240N, longitude 91510E, 25 m

asl, sandy loam soil texture) and Rosenthal (latitude 521180N, longitude

101100E, 73 m asl, loam soil texture). The experimental design was an alpha

design where environments were treated as replications (for details, see Longin

et al., 2013). Sowing density ranged from 230 to 250 seeds per m2 and plot

sizes from 0.56 to 1.50 m2. In each environment, susceptible spreader cultivars

were planted along one side of the plots and additionally around the

experiments. Deliberate inoculation was done for leaf rust tests in Hadmersle-

ben and Böhnshausen, whereas leaf rust disease severities in Rosenthal and

Harzhof were scored based on natural infection. Stripe rust inoculation was

applied in Rosenthal, Hadmersleben and Böhnshausen, but not in Harzhof.

Puccinia triticina and Puccinia striiformis f. sp. tritici inoculates containing a

broad variety of strains of each pathogen were sprayed on spreader lines only

in Hadmersleben and Böhnshausen, while only a variety of strains of Puccinia

striiformis f. sp. tritici was applied to whole testing plots in Rosenthal. Powdery

mildew disease severity was recorded in Rosenthal, Hadmersleben and Harzhof

based on natural infection only. Disease severity caused by the three pathogens

was monitored on the same plots and visually scored on a scale from 1 (fully

resistant) to 9 (fully susceptible) referring to the guidelines of the German

Federal Plant Variety Office (Bundessortenamt, 2000). Data were recorded in

the last week of June 2012 in all environments.

Genotypic data generation
DNA was extracted according to standard procedures from all genotypes and

fingerprinting was performed with a 9 k (Cavanagh et al., 2013; Würschum

et al., 2013) and a 90 k (J-P Martinant, personal communication) SNP array

based on the Illumina Infinium assay (Supplementary Tables S1, S2). All

markers that were either monomorphic, had missing values of 45%,

heterozygosity of 45% in inbred lines or had a minor allele frequency of

o5% were discarded from analysis (Zhao et al., 2013). After this filtering, 1280

and 17 372 high-quality SNP markers were retained in the data set for the 9 k

and 90 k SNP array, respectively. In total 87% of the markers present after

filtering on the 9 k SNP array (Cavanagh et al., 2013) were also included in the

90 k SNP array.

Details on the 9 k SNP array data have been presented previously

(Würschum et al., 2013). The 90 k SNP array data was based on 35 856

evaluable markers. For this set of SNPs, 23 159 were polymorphic. Among the

23 159 polymorphic markers, 17 687 SNPs had minor allele frequencies of

45%. From these SNPs, 315 markers were further discarded as they had

missing values of 45%.

Associations among the 135 inbred lines were analyzed by estimating the

Rogers’ distances among the individuals (Rogers, 1972). The extent of linkage

disequilibrium between pairs of loci was determined by estimating r2 as

described by Hill and Robertson (1968) using the software Plabsoft (Maurer

et al., 2008).

Phenotypic data analyses
All quantitative genetic parameters were estimated based on the performance

of the 1739 inbred lines and hybrids. Residuals for all traits were normally

distributed except for stripe rust, where data was skewed more towards

resistance. Therefore, stripe rust data were transformed by applying an

arcsin(sqrt(x/10)) transformation. We performed analyses of variance accord-

ing to Payne (2006). The variance of hybrids was further split into variance due

to general and variance due to specific combining ability effects (Hallauer and

Miranda, 1981). Significance of variance components was tested by model
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Figure 1 (a) Factorial crossing scheme with 120 wheat inbred lines used as female and 15 lines used as male parents. Non-filled boxes indicate the

presence and filled boxes indicate the absence of a particular hybrid. (b) Scheme for the allocation of hybrids to an estimation set and test sets T2, T1 and

T0 with successively decreasing degrees of relatedness to the estimation set. Estimation sets comprised random selections of 80 (out of 120) female (F)

and 10 (out of 15) male (M) ‘evaluated’ parental inbred lines as well as 610 hybrids derived from them. Test sets included only hybrids not assigned so far

that had both parents (T2), one parent (T1) or no parent (T0) in common with the hybrids in the corresponding estimation set.
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comparison with likelihood ratio tests in which the halved P-values were used

as an approximation (Stram and Lee, 1994). Heritability on an entry-mean

basis was estimated as the ratio of the genotypic (s2G) versus the phenotypic

variance (s2P), that is, s2G/s2P. The phenotypic variance s2P comprises s2G

and the masking variances divided by the number of locations. In addition, we

assumed fixed genetic effects and estimated the best linear unbiased estimates

for the 1739 genotypes involved.

Genome-wide association mapping
SNP marker data from the 9 k and the 90 k arrays were analyzed independently.

Design matrices for additive and dominance effects were specified for the

hybrids and their parental lines according to the FN metric (Falconer and

Mackay, 1996). As a consequence of the FN metric, SNP frequency has no

influence on the estimated genetic effects under the assumption of absence of

epistasis. Data from each environment were used in association mapping scans

with correcting for population stratification with a kinship matrix (Zhao et al.,

2013). The kinship matrices for the inbred lines and hybrids were modeled as

described previously (Reif et al., 2011; Zhao et al., 2013). Briefly, we estimated

the coancestry coefficients yij between inbreds i and j on the basis of marker

data as yij¼ 1þ (Sij –1)/(1–T), where Sij is the proportion of marker loci with

shared variants between inbreds i and j and T is the average probability that a

variant from one parent of inbred i and a variant from one parent of inbred

j are alike in state, given that they are not identical by descent. T was set as

minimum of (1–Sij) values. The kinship matrix for the parental lines was

modeled using twice the estimated coancestry coefficients yij between inbreds i

and j on the basis of marker data. The general combining ability effects reflect

the additive effects of the hybrids (Hallauer and Miranda, 1981). Therefore, the

kinship matrix for the hybrids modeled the covariance among general

combining ability effects (Zhao et al., 2013).

Genome-wide scans for marker–trait associations were conducted to detect

main-effect QTL. The Bonferroni–Holm procedure (Holm, 1979) was applied

to correct for multiple testing at different significance levels (Po0.10, Po0.05,

Po0.01, Po0.001 and Po0.0001). The total proportion of phenotypic

variance explained by the detected QTL was calculated by fitting all QTL

simultaneously in a linear model to obtain R2
adj. The proportion of the

genotypic variance explained by all QTL was calculated as the ratio of

pG¼R2
adj/h

2, with h2 referring to the heritability on an entry-mean basis.

All statistical analyses were performed using the software ASReml-R 3.0 (Butler

et al., 2009).

Cross-validation
The accuracy of the prediction of genotypic values from marker effects was

checked by cross-validation tests based on splitting the total data set into

estimation and test sets. As in factorial mating designs relatedness between

estimation and test set influences prediction accuracy, we followed the

suggestion of Schrag et al. (2009) and sampled estimation sets consisting of

10 (out of 15) male and 80 (out of 120) female parental lines as well as 610

hybrids derived from them (Figure 1b). The sampling of the male and female

lines was performed at random and the sampling scheme is available upon

request. From the remaining hybrids, test sets with three successively decreasing

degrees of relatedness to the estimation set were formed. Test set T2 most closely

related to the estimation set included only hybrids derived from the same

parents as the hybrids that had been evaluated, while the less related test set T1

included hybrids sharing one parent (either female or male parental line) with

the hybrids in the estimation set and the least related test set T0 included only

hybrids having no parents in common with the estimation set.

For each test set, we used 100 cross-validations and estimated marker effects

of the QTL identified in the genome-wide association mapping scan in each

cross-validation run. We applied the association mapping model outlined

above correcting for population stratification with a kinship matrix. The

obtained marker effects were then used to predict the performance of the

hybrids in the T2, T1 and T0 test sets. The prediction accuracy for each test set

was estimated as the Pearson correlation coefficient (r) between the predicted

and the observed hybrid performance. The explained proportion of the total

genotypic variance was computed for each test set (pG TS) as the ratio of r2/h2,

with h2 referring to the heritability on an entry-mean basis. The difference

between the on-average explained proportion of the total genotypic variance

(pG) in the estimation set (pG ES) and a particular test set (pG TS) was denoted

as bias.

Genomic selection
In addition to the association mapping, ridge regression best linear unbiased

prediction (RR-BLUP; Whittaker et al., 2000; Zhao et al., 2013) was applied

based on the adjusted entry means. SNP marker data from the 9 k and the 90 k

arrays were analyzed independently. Design matrices for additive and

dominance effects were again specified for the hybrids and their parental lines

according to the FN metric (Falconer and Mackay, 1996). Details of the

implementation of the RR-BLUP model have been described in Zhao et al.

(2013). The prediction accuracy of the genomic selection approach was

evaluated using the cross-validation scenarios outlined above. The explained

proportion of the total genotypic variance was computed as the ratio of r2/h2,

with h2 referring to the heritability on an entry-mean basis.

RESULTS

High disease pressure across all environments permitted excellent
genetic differentiation
Disease severity scores for all three fungal pathogens indicated
comparable disease pressures across test locations (Supplementary
Figure S1), which resulted in significant (Po0.01) Pearson correlation
coefficients among phenotypic values determined at different envir-
onments (Supplementary Table S3). This suggested that a combined
analysis across environments should not be severely biased by race-
specific stress responses. The three diseases were scored on the same
plots, which could cause an interaction among diseases and conse-
quently a bias. We estimated the pairwise Pearson moment correla-
tions between the adjusted entry means of the three diseases
separately for the inbred and hybrids and observed low absolute
values with a maximum of r¼ �0.21 between leaf and stripe rust
resistance. This finding suggests that interactions between diseases are
most likely not leading to a bias in the estimation of the level of
resistance of the genotypes.

The distribution of the phenotypic values for powdery mildew
resistance across environments followed approximately a normal
distribution (Figure 2). In contrast, that for stripe rust was skewed
towards resistant genotypes and the distribution of residuals did not
follow a normal distribution. As a consequence, phenotypic values for
stripe rust resistance were transformed for the analyses of variance.
For leaf rust resistance, the phenotypic values tended towards a
bimodal distribution, which can be interpreted as an indicator for the
presence of resistance genes exhibiting large effects.

Means and ranges of evaluated disease severities hardly differed
between parental inbred lines and hybrids (Table 1). However, wide
genetic variation in disease resistances resulted in genotypic variances
significantly (Po0.01) larger than zero for the parental lines and
hybrids for all three disease resistance traits. Further decomposition of
the genotypic variance of the hybrids revealed prevalence of additive
gene actions as indicated by s2

GCA for powdery mildew and leaf rust
disease severity. In contrast, non-additive genetic variance as indicated
by s2

SCA was substantial for stripe rust and amounted to 28% of the
total genotypic variance of the hybrids for disease severity. Heritability
estimates for lines and hybrids were high for powdery mildew (0.79
and 0.77) and leaf rust resistance (0.85 and 0.75), and moderate to
high for stripe rust resistance (0.76 and 0.58, respectively).

Family but not population structure was detected with 9 k and 90k
SNP arrays
Previous analysis of 172 European winter wheat inbred lines including
the 135 parental lines used in this study with the 9 k SNP array had
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not revealed major population structure, but showed the presence of
family structures (Würschum et al., 2013). Population structure was
defined following Würschum (2012) as the presence of major
subpopulations such as heterotic groups in maize (Reif et al., 2005).
In contrast, family structure refers to finer-scale degrees of relatedness
among the lines. The genetic distance matrix based on the 90 k SNP
array data was highly correlated (r¼ 0.79) with that of the 9 k SNP
data (Figure 3) and, consequently, the analysis of the 90 k SNP array
data revealed also the presence of family structures (Figure 4a).
Therefore, in the following association mapping analyses we corrected
for family structures using kinship matrices for the parental lines and
hybrids. In the data sets from the 9 k and the 90 k array, a comparable
decline of linkage disequilibrium with genetic map distance was
detected (Figure 4b).

Marker–trait associations were detected for all three disease
resistances based on the full data set
The genome-wide association mapping study exploited data of both
the parents and the hybrids. The genome-wide scan based on the data
from the 9 k SNP array revealed 11, 9 and 10 significant (Po0.05 and
Bonferroni–Holm correction) marker–trait associations for powdery
mildew, leaf rust and stripe rust resistances, respectively
(Supplementary Tables S4, S5). With the data from the 90 k SNP
array, 9, 44 and 62 significant (Po0.05 and Bonferroni–Holm
correction) marker–trait associations were detected for powdery
mildew, leaf rust and stripe rust resistances, respectively
(Supplementary Tables S6, S7). The overlap of regions with significant
(Po0.05 and Bonferroni–Holm correction) marker–trait associations
identified based on data from 9 k and 90 k SNP arrays was moderate
(Figure 5). Several regions with SNPs that exhibited a large
contribution to the genotypic variance were detected based on the
90 k SNP array data but not with data from the 9 k SNP array. In line
with this observation, the explained proportion of genotypic variance
by all significant (Po0.05 and Bonferroni–Holm correction) markers
increased by B50–70% from the analysis based on 9 k to analysis
based on 90 k SNP array data.

The SNPs explaining 415% of the genotypic variation for the
three resistance traits were compared with previously described QTL
using available consensus maps (Huang et al., 2012; Cavanagh et al.,

Table 1 First and second degree statistics for 135 inbred lines and

1604 hybrids derived from them for resistance against powdery

mildew, leaf rust and stripe rust evaluated in field trials at three to

four environments

Source of variation Powdery

mildew (1–9)

Leaf

rust (1–9)

Stripe

rust (1–9)

Means (ranges)

Lines 2.74 (1.07–5.44) 2.88 (0.40–6.90) 1.66 (0.88–6.00)

Hybrids 2.97 (0.92–5.97) 2.97 (0.13–7.54) 1.66 (0.76–6.01)

Variances

s2Lines 0.52a 1.40a 0.0073a

s2Hybrids 0.57a 1.36a 0.0045a

s2GCA—Female 0.48a 1.05a 0.0019a

s2GCA—Male 0.06a 0.07a 0.0012a

s2SCA 0.04a 0.08a 0.0012a

s2GCA—Female�

Environment

0.08a 0.59a 0.0019a

s2GCA—Male�

Environment

0.01a 0.02a 0.0011a

s2e 0.43 0.99 0.0093

HeritabilityLines 0.79 0.85 0.76

HeritabilityHybrids 0.77 0.75 0.58

Abbreviations: GCA, general combining ability; SCA, specific combining ability.
Disease resistance was scored from 1 (no damage) to 9 (no plant survived).
asignificantly different from zero at 0.001 level of probability.

r = 0.79**
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2013). SNP IWA1512 associated with leaf rust resistance was located
on chromosome 2A adjacent to the seedling resistance gene locus
Lr37. Interestingly, the Lr37 locus is clustered with the stripe rust
resistance gene Yr17 (Helguera et al., 2003) and SNP IWA6922
exhibiting an r2 value of 0.36 to IWA1512 explained a large
proportion of the genotypic variance for stripe rust resistance.
LG_Wsnp12474 on chromosome 4A and LG_Wsnp409 on chromo-
some 3D were positioned adjacent to the seedling resistance genes
Lr28 and Lr32, respectively.

Except for powdery mildew resistance, we observed the presence of
significant dominance effects (Supplementary Tables S4 and S6).

Interestingly, only a few marker–trait associations showed combined
significant (Po0.05 and Bonferroni–Holm correction) additive and
dominance effects. For the SNPs with a large contribution to the
genotypic variance (pG415%), we estimated the degrees of dom-
inance (Figure 6). All analyzed SNP markers except for LG_Wsnp7796
associated with stripe rust resistance were in the range of partial
dominance in the direction of the more resistant genotype. Compar-
ing the allele setup of the parental inbred lines and hybrids derived
from them at these SNPs, we found resistance-promoting alleles of
markers LG_Wsnp11629 (R1) concerning powdery mildew,
LG_Wsnp12474 (R1) and LG-Wsnp409 (R4) concerning leaf rust
and LG_Wsnp7796 (R1) and LG_Wsnp5384 (R2) concerning stripe
rust resistance to be in particular relevant for low disease severity
scores (Figure 7). In almost all parental inbred lines at least one SNP-
allele associated with low stripe rust disease severity was fixed,
whereas only approximately one quarter of the lines contained
SNP-alleles associated with low leaf rust and one tenth of the lines
had SNP-allele associated with low powdery mildew disease severity.
In hybrids, the heterozygous presence of only one allele promoting
resistance to powdery mildew and leaf rust was already associated
with low disease severity, while for stripe rust, consistent low disease
severity was only seen if alleles promoting resistance were present in
the homozygous state.

Cross-validation-based determination of the accuracy of prediction
of marker-assisted selection revealed dependency on marker
density and test set relatedness
The test set of the cross-validation study comprises only hybrids and
not the parental lines to avoid confounding effects of the differences
in the mean performance of both germplasm groups on the
prediction accuracy. The cross-validation analysis for the T0 scenario
revealed a severe overestimation of the explained proportion of
genotypic variance pG for all three resistance traits with both marker
densities in association mapping (Figure 8). The bias in the estima-
tion of the explained proportion of genotypic variance pG was
substantial for powdery mildew and stripe rust resistance and slightly
less pronounced for leaf rust resistance.

Trends and levels for pG at varying significance threshold differed
largely for the three test sets T0, T1 and T2 as illustrated for the 90 k
SNP array data (Figure 9). For the T0 test sets least related to the
estimation set, we observed a decrease in pG with more liberal
significance thresholds. In contrast, for T2 test sets closest related to
the estimation set, we observed a decrease in pG with more stringent
significance thresholds, while the intermediate test set T1 was not
severely impacted by the different thresholds. The magnitude of pG

was highest for T2 and lowest for T0 across all significance thresholds.

Cross-validated accuracy of genomic selection
Trends for pG for the three test sets T0, T1 and T2 was similar for
genomic as compared with marker-assisted selection approach
(Table 2). For the T0 test sets least related to the estimation set, we
observed low values in pG often not substantially higher compared
with those for marker-assisted selection. The only exception was the
pG value for leaf rust resistance based on the 90 k SNP array data. For
the T1 and T2 test sets, we observed a substantial increase in pG

compared with T0.

DISCUSSION

Increased marker density leads to higher power to detect QTL
The power to detect QTL in genome-wide association mapping
greatly depends on the number of genotypes included, the heritability
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of the traits under consideration and the applied marker density. Our
study based on a large population of 1739 elite wheat genotypes
comprising 135 inbred lines and 1604 hybrids derived from them
allowed an estimation of genotypic effects for fungal pathogen
resistance with high accuracies (Table 1). Therefore, the population
size and quality of phenotyping provides a solid basis for genome-
wide association mapping for powdery mildew, as well as leaf and
stripe rust resistances.

We observed a comparable decline of linkage disequilibrium with
genetic map distance in the data sets of the parental lines from the 9 k
and the 90 k array (Figure 4b), suggesting that genome-wide associa-
tion mapping in wheat can be expected to profit from an increased
marker density. In accordance with this expectation, we observed in
the analysis of the full data set (Figure 5) and also in our cross-
validation studies (Figure 7) an increased explained proportion of
genotypic variance for 90 k compared with 9 k SNP array-based data.
Therefore, we will in the following focus on the results of the 90 k
SNP data if not mentioned otherwise.

The genome-wide scan revealed only a moderate overlap of
regions with significant (Po0.05 and Bonferroni–Holm correction)

marker–trait associations identified based on data from 9 k and 90 k
SNP arrays (Figure 5). Astonishingly, markers which were significant
at the 9 k SNP array were often not significant at the 90 k SNP array
even when applying the same Bonferroni–Holm corrected significance
threshold (Supplementary Table S4). These discrepancies can be
explained by differences in the kinship matrices, which displayed a
Pearson moment correlation of 0.79 (Po0.01) (Figure 3).

The impact of dominance on marker-assisted selection in wheat
hybrid breeding is trait-dependent
The decomposition of the genetic variance suggested that dominance
effects should mainly influence stripe rust resistance, with the
contribution of dominance effects amounting to 28% of the total
genetic variance, in contrast to only 7% for powdery mildew and leaf
rust resistance (Table 1). Accordingly, no SNPs exhibiting significant
(Po0.05 and Bonferroni–Holm correction) dominance effects
(Supplementary Tables S4 and S6) were detected for powdery mildew
resistance and cross-validation did not indicate the involvement of
dominance effects (Figure 8). In contrast, for leaf rust resistance, a
number of SNPs exhibiting significant dominance effects was detected
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Figure 5 Explained proportion of genotypic variation for significant (Po0.05 and Bonferroni–Holm correction) marker–trait associations observed based on

data from a 9k and a 90k SNP array for resistance against powdery mildew, leaf rust and stripe rust.
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(Supplementary Tables S4 and S6) and including dominance effects in
marker-assisted selection increased the explained proportion of
genotypic variance for leaf rust resistance (Figure 8). In accordance
to the phenotypic data analysis for stripe rust resistance, we also
detected a large number of SNPs exhibiting significant dominance
effects (Supplementary Tables S4 and S6). However, our cross-
validation studies revealed that adding dominance effects into the
prediction model hardly increased the explained proportion of
genotypic variation in comparison to prediction solely based on
additive effects (Figure 8). This might be due to the presence of
multiple dominance effects, each with only a small contribution to the
total genotypic variation of stripe rust resistance.

The estimated degrees of dominance for all markers explaining
415% of the genotypic variation were in the range of partial
dominance except for powdery mildew (Figure 6), indicating that
ideally superior genotypes should carry the resistance genes in a
homozygous state. A closer examination of the distribution of hybrid
genotypes grouped according to their allele status however revealed
that hybrids showing low disease severity for powdery mildew and
leaf rust can also be achieved by the presence of particular resistance
loci in a heterozygous state (Figure 7). This finding abolishes the need
to fix all resistance loci as in inbred lines and opens new options
unique to hybrid breeding to manage disease resistances in wheat via
the combination of male and female parental lines carrying diverse
resistance loci (Longin et al., 2013).

Cross-validation reveals a large bias in genotypic variation
explained by detected QTL
To judge possible options for a further refinement of association
mapping in hybrid wheat breeding, cross-validation and simulation
studies were applied to investigate the bias in estimating the explained
proportion of the genotypic variation. Cross-validations allow distin-
guishing between the goodness of fit of the final list of detected QTL
in the total data set and the prediction accuracy in independent data
sets. Such cross-validation studies have been reported previously in
the context of bi-parental QTL mapping (Beavis, 1998; Schön et al.,
2004). Schön et al. (2004), for instance, used an extended mapping
population in maize of B1000 individuals phenotyped for grain yield
and grain moisture in 19 locations to show that splitting their data set
into smaller subsets led to gross overestimation of the explained
proportion of the genotypic variation, particularly in small mapping
populations. According to their conclusion, increasing the number of
genotypes analyzed added more to the reliability than increasing the
number of environments. Liu et al. (2013) extended these findings for
QTL mapping in multiple crosses with B1000 maize lines evaluated
for grain yield and grain moisture and also observed that QTL results
were unreliable and hampered by a large overestimation of the
explained proportion of genotypic variance based on the detected
QTL. Our association mapping study in winter wheat was also
based on a large set of 135 wheat inbred lines and their 1604
factorial hybrids evaluated for three fungal disease resistance traits.
The genetic architecture of these traits can be expected to be less
complex compared with grain yield and grain moisture in maize.
Nevertheless, we observed that marker-assisted selection even for
these three disease resistance traits is afflicted with a large over-
estimation of the explained proportion of genotypic variance of the
detected QTL (Figure 8). This underlines the necessity for validation
of prediction results also for association mapping employing large
populations.

The observed bimodal distribution for genotypic values for leaf rust
resistance pointed toward the presence of QTL with large effects
(Figure 2). In accordance with this expectation, we observed SNPs on
chromosome 2A, 3D and 4A, each explaining 415% of the genotypic
variation in the full data set (Figure 5, Supplementary Tables S4
and S6). Moreover, cross-validated genotypic variation explained by
all SNPs for the 9 k as well as for the 90 k SNP array was 420%
(Figure 8), supporting the view that a substantial proportion of the
estimated effects are stable. This clearly suggests that marker-assisted
selection based on the 90 k SNP array is valuable for leaf rust
resistance in European wheat. In contrast, the further potential of
marker-assisted selection for powdery mildew and stripe rust resis-
tance based on the 9 k and 90 k SNP array seems limited due to the
high bias and the low proportion of cross-validated genotypic

-a = -1.11 a = 1.11

d = -0.86

-a = -0.85 a = 0.85

d = -0.61

IWA1512

-a = -1.00 a = 1.00

d = -0.69

R1r1

LG_Wsnp7163

R1R1

Genetic effects for Leaf rust

-a = -6.33 a = 6.33

d = 0.99

LG_Wsnp7796

-a = -3.97 a = 3.97

-d = -0.80

LG_Wsnp5384

Genetic effects for Stripe rust

-a = -0.53 a = 0.53

d = -0.56

LG_Wsnp11629

R allele frequency 
Female pool - 0.88
Male pool     - 1.00

Genetic effects for Powdery mildew

-a = -0.86 a = 0.86

d = -0.74

LG_Wsnp409

LG_Wsnp12474
r1r1

R2r2R2R2 r2r2

R3r3R3R3 r3r3

R4r4R4R4 r4r4

R1r1R1R1 r1r1

R2r2
R2R2 r2r2

R1r1R1R1 r1r1

R allele frequency 
Female pool - 0.23
Male pool     - 0.00

R allele frequency 
Female pool - 0.24
Male pool     - 0.07

R allele frequency 
Female pool - 0.27
Male pool     - 0.07

R allele frequency 
Female pool - 0.08
Male pool     - 0.00

R allele frequency 
Female pool - 0.92
Male pool     - 1.00

R allele frequency 
Female pool - 0.86
Male pool     - 0.80

Figure 6 Additive and dominance effects of markers explaining 415% of

the genotypic variance for resistance to powdery mildew, leaf rust and stripe

rust in winter wheat populations. R represents alleles promoting resistance,

r alleles promoting susceptibility. Marker abbreviations starting with IWA

refer to markers on the 9 k SNP array, and LG_W refers to the markers on

the 90k SNP array.

Genome-wide association mapping in hybrid wheat
M Gowda et al

558

Heredity



variance explained by the detected marker–trait associations
(Figure 8).

Choice of the optimal significance threshold in marker-assisted
selection is affected by genetic relatedness
Knapp (1998) suggested application of a conservative significance
threshold to decrease the rate of false positives and hence to improve
the accuracy of marker-assisted selection. This was in contrast to the
results of a simulation study (Moreau et al., 1998) and of a cross-
validation study in maize (Schön et al., 2004) reporting that
increasing the type I error rate led to a higher relative efficiency of
marker-assisted selection because the power of QTL detection

increased more than the risk of detecting false positives. Our results
revealed that for the unrelated test set T0, the explained genotypic
variance increased with application of more stringent significance
thresholds for powdery mildew and leaf rust resistance and stayed the
same for stripe rust (Figure 9). In contrast, for test set T2 most related
to the estimation set, application of more stringent significance
thresholds resulted in a reduction of the explained genotypic variance
for all three traits. This observed discrepancy in the trends clearly
suggests that the optimal choice of significance thresholds in marker-
assisted selection is not only determined by a balance between power
of QTL detection and rate of false positives but also by the possibility
to exploit relatedness to predict genotypic values.
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Figure 7 Disease resistance in dependence on genotypes as determined by associated SNP markers. Box-whisker plots display disease severities determined
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An increase in the accuracy of the prediction of genotypic values
with an enhanced relatedness among the estimation and test sets is
well known from genomic selection studies (Habier et al., 2007). We
confirmed the impact of relatedness in genomic selection using our
data set and applying RR-BLUP, which exploits the information of all
marker data (Table 2). Interestingly, we observed for the T0 scenario
only slight differences between prediction accuracy for the marker-
assisted (Figure 8) and the genomic selection approach (Table 2). In
contrast, for the T1 and T2 scenario, where relatedness is exploited in
a more pronounced manner, genomic selection was substantially
more accurate than marker-assisted selection.

Our cross-validation study for marker-assisted selection revealed
also a severe impact of relatedness between estimation and test set on
the explained genotypic variance. The explained proportion of
genotypic variance was up to 2–7 times higher if estimation and test
populations were highly related (T2) compared with an unrelated test
population (T0; Figure 9). These findings suggest that evaluation of
the prospects of marker-assisted selection based on cross-validation

Figure 8 Average proportion of cross-validated explained genotypic variance in the T0 test sets (pG TS; filled basis of columns) and estimation sets (pG ES;

open top of columns) by all QTL (Po0.05 and Bonferroni–Holm correction) detected through genome-wide association mapping for resistance against

powdery mildew, leaf rust and stripe rust with a 9 k and a 90k SNP array. The difference in the explained proportion of genotypic variance between

estimation set (pG ES) and test set (pG TS) is denoted as the bias (pG bias). The numbers in brackets indicate the average number of significant

marker–trait associations in the estimation set based on 100 cross-validation runs.

Figure 9 Proportion of cross-validated genotypic variance explained in the test sets (pG TS) based on marker–trait associations detected in estimation set for

resistance against powdery mildew, leaf rust and stripe rust with 90k SNP array data at different levels of significance. T2 test sets included hybrids

sharing both parents, T1 test sets hybrids sharing one parent and T0 test sets hybrids having no parents in common with the hybrids in the related

estimation set. Numbers in brackets indicate the average number of significant marker–trait associations in the estimation set based on 100

cross-validations.

Table 2 Average proportion of cross-validated explained genotypic

variance in the test sets of ridge regression best linear unbiased

prediction for resistance against powdery mildew, leaf rust and stripe

rust based on data from a 9k and a 90k SNP array

Powdery mildew Leaf rust Stripe rust

9 k SNP array

T0 0.06 0.26 0.07

T1 0.42 0.57 0.35

T2 0.81 0.92 0.65

90k SNP array

T0 0.06 0.43 0.11

T1 0.43 0.69 0.39

T2 0.81 0.92 0.68

T2 test sets included hybrids sharing both parents, T1 test sets hybrids sharing one parent and
T0 test sets hybrids having no parents in common with the hybrids in the related estimation set.
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studies relying on closely related estimation and test sets—as for
instance in bi-parental QTL mapping studies—yields a too optimistic
picture if the aim is to evaluate the long-term validity of functional
markers. Therefore, robustness and potential of marker-assisted
selection on a long-term should be evaluated using estimation and
test populations exhibiting a low degree of relatedness.
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