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Cross-validation in association mapping and its relevance
for the estimation of QTL parameters of complex traits

T Würschum1 and T Kraft2

Association mapping has become a widely applied genomic approach to identify quantitative trait loci (QTL) and dissect the
genetic architecture of complex traits. However, approaches to assess the quality of the obtained QTL results are lacking. We
therefore evaluated the potential of cross-validation in association mapping based on a large sugar beet data set. Our results
show that the proportion of the population that should be used as estimation and validation sets, respectively, depends on the
size of the mapping population. Generally, a fivefold cross-validation, that is, 20% of the lines as independent validation set,
appears appropriate for commonly used population sizes. The predictive power for the proportion of genotypic variance
explained by QTL was overestimated by on average 38% indicating a strong bias in the estimated QTL effects. The cross-
validated predictive power ranged between 4 and 50%, which are more realistic estimates of this parameter for complex traits.
In addition, QTL frequency distributions can be used to assess the precision of QTL position estimates and the robustness of
the detected QTL. In summary, cross-validation can be a valuable tool to assess the quality of QTL parameters in association
mapping.
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INTRODUCTION

Association mapping was developed by human geneticists but in
recent years has become a widely applied approach in plant genetics
to dissect the genetic architecture underlying complex traits. In
contrast to linkage mapping, which is based on a biparental family,
association mapping uses a diversity panel of lines with different
degrees of relatedness (Würschum, 2012). This population structure is
a major issue for association mapping as it increases the risk of
detecting false-positive quantitative trait loci (QTL) and must there-
fore be accounted for in the biometrical model (Sillanpää, 2011).
Model comparison studies revealed that a model incorporating a
kinship matrix performs well, as it adequately controls the false-
positive rate without overly reducing the QTL detection power (Yu
et al., 2006; Würschum et al., 2011a). Association mapping has been
applied to detect QTL for agronomically important traits in different
crop species, for example, maize (Buckler et al., 2009; Liu et al., 2011),
wheat (Reif et al., 2011a, b; Kulwal et al., 2012; Kollers et al., 2013),
barley (Wang et al., 2012a; Berger et al., 2013; Zhou and Steffenson
2013), sugar beet (Stich et al., 2008; Würschum et al., 2011b) and
rapeseed (Snowdon et al., 2010; Wang et al., 2012b; Würschum et al.,
2012a).

The primary intention of all QTL mapping approaches in crops is
the identification of QTL underlying the traits of interest and
estimation of their chromosomal positions, their effects, as well as
the proportion of genotypic variance explained by them. In plant
breeding, the identified QTL can then be used for marker-assisted
selection programs that promise to enhance selection gain per time
unit. However, for marker-assisted selection to be superior to classical
phenotypic selection based on field evaluation, the following criteria

must be met: (i) the QTL positions must be estimated accurately to
minimize the number of recombinations between the QTL and the
markers used for selection, (ii) QTL effects must be estimated with
high precision and (iii) the genotypic variance explained by the
detected QTL must be high and estimated without bias. For linkage
mapping, it has been shown through simulation studies (Beavis 1998)
and experimental data analysis (Utz et al., 2000; Schön et al., 2004),
that both the QTL effects and the proportion of explained genotypic
variance are often overestimated. This results in a wrong, oftentimes
excessively optimistic assessment of the prospects of marker-assisted
selection. Reasons for this overestimation of the genotypic variance
explained by QTL include epistatic and genotype-by-environment
interactions, but also that estimation of QTL effects and assessment of
their predictive power are done with the same data. To obtain
unbiased estimates of QTL effects and to determine the magnitude of
bias of the predictive power, different approaches have been
suggested. Of these, cross-validation has been shown to perform well
for linkage mapping (Utz et al., 2000) but also for association
mapping in multiple families (Liu et al., 2013). For cross-validation,
QTL detection and effect estimation are done in a subset of the lines
(estimation set, ES) while the remaining lines of the population are
set aside to serve as an independent validation set (test set, TS).
Although this resampling can potentially alter the existing population
structure in the subsets as compared with the full data set, it also
offers the advantage to evaluate the robustness of the obtained results.
QTL which are only detected given a specific composition of the
mapping population have a higher probability of being false positives
and are also of little interest for use in marker-assisted selection.
In plant breeding, the detected QTL will not be used in the population
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in which they have been detected but in different, oftentimes related
germplasm, a situation that is mimicked by cross-validation.

Despite the routine application of association mapping in crop
genetics, little attention is paid to the validation of the estimated
QTL-related parameters in association mapping. Here, we used a
large sugar beet data set to evaluate the potential of cross-validation
to address these questions. In particular, the objectives of this
study were to (1) determine the optimum proportion of the
independent TS in dependence on the population size, (2) assess
the bias in the estimation of the proportion of genotypic variance
explained by the detected QTL and (3) investigate the robustness of
the detected QTL and the precision of QTL position estimates in
association mapping.

MATERIALS AND METHODS
Plant materials, field experiments and molecular markers
This study was based on 924 diploid elite sugar beet (Beta vulgaris L.) inbred

lines described by Würschum et al. (2011a, b). In brief, testcross progenies were

produced by crossing the genotypes to a single-cross hybrid as tester. All

material used in this study was provided by the breeding company Syngenta

Seeds AB (Landskrona, Sweden).

The 924 genotypes were evaluated in routine plant breeding trials with two

replicates at 1–7 locations in 2008. The evaluated traits were white sugar yield

(WSY, t ha�1), sugar content (SC, %), root yield (RY, t ha�1), potassium

content (K, mM), sodium content (Na, mM) and a-amino nitrogen content

(N, mM). Genotypes were grown in different trials per location that were

connected by common checks. Based on these, adjusted entry means (best

linear unbiased estimates (BLUEs)) were estimated for each location as: yij¼
mþ giþ tjþ eij, where yij is the phenotypic value of the ith sugar beet line in

the jth trial, m the intercept term, gi the genetic effect of the ith sugar beet line,

tj the effect of the jth trial, and eij the residual. Heritability (h2) on an entry-

mean basis was estimated as the ratio of genotypic to phenotypic variance

according to Melchinger et al. (1998).

The 924 genotypes were fingerprinted following standard protocols with 677

single-nucleotide polymorphism markers. These markers were randomly

distributed across the sugar beet genome with an average marker distance of

1 cM and a maximum gap between adjacent markers of 23 cM. Map positions of

all markers were based on the linkage map of Syngenta Seeds AB with a total

map length of 698 cM.

Association mapping
For association mapping, a mixed model incorporating a kinship matrix was

used: yijp¼ mþ apþ giþ ljþ eijp, where yijp is the adjusted entry mean of the

ith sugar beet line at the jth location carrying allele p, m the intercept term, ap

the allele substitution effect of allele p, gi the genetic effect of the ith sugar beet

line, lj the effect of the jth location and eijp the residual including the genotype

times location interaction effect. The allele substitution effect ap was modeled

as fixed effect whereas gi and lj were regarded as random effects. The variance

of the random genetic effect was assumed to be Var(g)¼Ks2
g, where s2

g

refers to the genetic variance estimated by REML and K was a 924� 924 matrix

of kinship coefficients that define the degree of genetic covariance between all

pairs of entries. We followed the suggestion of Bernardo (1993) and calculated

the kinship coefficient Kij between inbreds i and j on the basis of marker data

as described by Würschum et al. (2011a, b, 2012b). For the detection of main

effect QTL, a genome-wide scan for marker–trait associations was conducted.

To control for multiple testing, we followed the suggestion of Kraakman et al.

(2004) and tested at a false discovery rate of 0.20 (Benjamini and Hochberg,

1995). All mixed model calculations were performed using the software

ASReml 2.0 (Gilmour et al., 2006).

The total proportion of genotypic variance (pG) explained by the detected

QTL was calculated by fitting all QTL simultaneously in a linear model in the

order of the strength of their association (most significantly associated markers

first) to obtain R2
adj. The ratio pG¼R2

adj/h
2, where h2 refers to the heritability

of the trait, yielded the proportion of genotypic variance (Utz et al., 2000).

Cross-validation
To obtain unbiased estimates of the proportion of genotypic variance

explained by the detected QTL, a cross-validation approach was established

similar to that used by Utz et al. (2000) in the context of linkage mapping in

biparental populations. We used a cross-validation in which a certain

percentage of the lines were used as ES in which QTL detection was done.

The remaining lines represented the TS, which was used for validation. The

following proportions of TS were tested: 5%, 10%, 20%, 30%, 40%, 50%. For

validation, the QTL mapping results from the ES were used to predict the

genotypic value of line j in TS QTS.ESj according to QTS.ESj¼XTSj bES, where

XTSj is the vector of marker information of line j at the QTL positions, and bES

is the vector of genetic effects of these QTL estimated as partial regression

coefficients from a simultaneous fit in the ES (Utz et al., 2000). The proportion

of genotypic variance explained by the QTL in the TS (pG�TS) was calculated

from the adjusted squared correlation coefficient, R2
adj, between the pheno-

typic values observed for the lines in the TS and the predicted genotypic values

QTS.ESj, divided by the heritability of the trait. The bias in the proportion of

explained genotypic variance was calculated as the difference in pG between the

ES (pG�ES) and the TS (pG�TS) and the relative bias as 1–(pG�TS/pG�ES). The

presented results are the median values from 300 cross-validation runs for the

different proportions of TS tested and 1000 runs for the fivefold cross-

validation (80% ES and 20% TS).

RESULTS

This study is based on a large population of sugar beet with a total of
924 individuals. Details on the population structure present in this
population, the linkage disequilibrium and the results from QTL
analyses have been described in detail by Würschum et al. (2011a).
Briefly, three yield-related (WSY, SC and RY) and three quality-related
traits (Na, K and N) have been investigated and the number of
detected QTL ranged between 4 for SC and K to 15 for Na. The
proportion of genotypic variance explained by these QTL was 73.4%
for WSY, 38.1% for SC, 63.1% for RY, 58.7% for Na, 12.8% for K and
10.4% for N. We first assessed the effect of genotypic sampling on
population structure and allele frequencies. For fivefold cross-valida-
tion, that is, 80% of the lines as ES and 20% as TS, we observed only
negligible changes for both population structure and genetic kinship,
as well as for the polymorphic information content (Figure 1).

Next, we used a yield-related trait (RY) and a quality-related trait
(Na) with comparable heritability of 0.55 and 0.53, respectively, to
evaluate the optimum proportion of the TS for cross-validation in
dependence on the population size. To this end, we varied the
proportion of plants used as TS from 5 to 50% and performed the
analyses for the full data set (N¼ 924), as well as reduced data sets
with N¼ 500 and N¼ 200 randomly sampled genotypes (Figure 2).
As expected, the median number of QTL detected in the ES decreased
with decreasing size of the ES, that is, increasing proportion of the TS.
This effect was more pronounced for the largest population size. The
median cross-validated proportion of genotypic variance explained by
detected QTL (pG�TS) was also affected by the percentage of plants in
the TS. It decreased with decreasing size of the ES for the largest
population, remained on a similar level for N¼ 500, and increased for
N¼ 200. Notably, the observed increase in pG�TS for N¼ 200 was
mainly for the proportion of the TS of 5–20% while it did not change
much between 20 and 50%. The relative bias in the estimation of pG,
that is, the difference in pG between estimation and test set, was
relatively stable for N¼ 924 and N¼ 500, but decreased for N¼ 200
with increasing size of the TS, especially between 5 and 20%. Taken
together, considering the most important parameter, the cross-
validated proportion of genotypic variance explained by QTL, the
optimum proportion of plants to be used as TS is dependent on the
population size. For commonly used population sizes, however, a
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fivefold cross-validation, that is, 20% of the lines as TS, appears most
appropriate. In the following, we therefore further characterized
fivefold cross-validation for association mapping.

Applying fivefold cross-validation in the full data set, we observed
for the six traits a substantially reduced cross-validated proportion of
explained genotypic variance (pG�TS) as compared with that
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Figure 1 Changes in population structure and allele frequencies in the ES during fivefold cross-validation with the full data set (N¼924). (a) Explained
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estimated in the full data set (pG�DS) (Figure 3). For all traits the
relative bias averaged 38%. The number of detected QTL, the
proportion of genotypic variance explained by QTL in the ES (pG�
ES) and in the TS (pG�TS), and the relative bias all showed
considerable variation across runs (Figure 4). The range in pG�TS

was of similar magnitude or even smaller than that in pG�ES.
To assess the precision and the reliability of the identified QTL

positions, we used the QTL frequency distributions derived from
fivefold cross-validation (Figure 5). With the exception of a-amino
nitrogen, most of the QTL detected with the full data set were
identified in at least 40% of the runs. The QTL frequency distribu-
tions also revealed that some QTL detected with the full data set were
only identified as QTL in a small number of runs, whereas a few other
positions were identified as QTL in 420% of the runs, but not in the
full data set (for example, SC QTL on chromosome 7).

DISCUSSION

Association mapping has become a popular genomic tool to dissect
the genetic architecture of complex traits and to identify QTL, which
in plant breeding are of interest for their implementation in marker-
assisted selection programs. However, a prerequisite is that the QTL
parameters are estimated with high accuracy and precision. In this
study, we used a large sugar beet data set to evaluate cross-validation
as an approach to obtain more robust estimates of QTL parameters in
association mapping.

Genetic kinship and population structure
Biparental populations as used for linkage mapping possess balanced
allele frequencies and are not burdened with the confounding effects
of population structure or genetic relatedness. By contrast, both
effects are well known to be present in association mapping
populations and must be accounted for in the analysis as they can
inflate the false-positive rate (Sillanpää, 2011). In addition, association

mapping populations will show the full range of allele frequencies
including rare alleles with a frequency below 10%. Thus, in contrast
to biparental populations, genotypic subsampling in association
mapping populations may affect both the population structure and
the allele frequencies and consequently the false-positive rate and the
QTL detection power. For fivefold cross-validation, that is, 80% of the
lines as subsample for QTL detection, we observed only slight
variations in population structure among the cross-validation runs
suggesting that the genotypic subsampling does not substantially
affect population structure (Figures 1a and b). The same holds true
for the allele frequencies as illustrated by the negligible variation in
polymorphic information content values (Figure 1c). It must be
noted, however, that for rare alleles the frequency in the ES may drop
below a threshold that does not permit a significant association any
more. Taken together, although genotypic subsampling in association
mapping is potentially more critical than in linkage mapping, our
results suggest that the effect on population structure and allele
frequencies, and consequently on the false discovery rate and the QTL
detection power, are small and should not prohibit the use of cross-
validation in association mapping. A major advantage of the
genotypic subsampling is that it enables an evaluation of the
robustness of the mapping results and mirrors the situation in
breeding programs where the population in which QTL are detected
is different from that in which the QTL are to be used for marker-
assisted selection.

Cross-validation approach
The correct statistical model to estimate QTL effects would require
their true number and their precise position to be known. Conse-
quently, all approaches for QTL analysis share the problem of model
selection. In association mapping, QTL are identified based on their
association with the trait given a predefined significance threshold. As
shown extensively for linkage mapping, model selection generally
results in an overestimation of the QTL effects and the proportion of
explained genotypic variance, especially for small sample sizes (Beavis,
1998). For linkage mapping, cross-validation is therefore commonly
used to obtain an unbiased assessment of the prospects of marker-
assisted selection. Here, we evaluated cross-validation for association
mapping and first addressed the question of the proportion of the ES
and the TS in dependence on the population size (Figure 2).

For population sizes of N¼ 924 and to a lesser extent also for
N¼ 500, a decrease in the size of the ES resulted in fewer QTL being
detected, that is, in the selection of models with too few variables, and
consequently in a lower accuracy of prediction. In contrast, for the
smallest population size (N¼ 200), we observed the opposite trend as
the median proportion of cross-validated genotypic variance (pG�TS)
increased with decreasing size of the ES, especially up to a proportion
of the TS of 20% after which pG�TS reached a plateau. A likely reason
for this observation is that the TS must have a certain minimum size
to enable a reliable validation of the estimated QTL effects. If for small
population sizes, like, for example, N¼ 200, the proportion of the TS
is chosen too small, the number of individuals left in the TS will be
insufficient for robust validation. Consistently, we observed an
extremely high median relative bias for N¼ 200 and proportions of
the TS below 20%. For N¼ 924 and 500 the median relative bias was
not affected by varying sizes of the TS for RY whereas for Na it slightly
increased with increasing size of the TS. This illustrates that the
proportion of plants that should be used as independent TS strongly
depends on the population size. With population sizes of 1000
individuals or more, 5% of the lines will provide a sufficiently large
TS for robust validation while enabling a maximum QTL detection
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power because of a large ES. Conversely, for population sizes of a few
hundred individuals as commonly used for association mapping, a
fivefold cross-validation, that is, 20% of the lines as TS, as routinely
used in linkage mapping, also appears appropriate for association
mapping. In the following, we therefore characterize fivefold cross-
validation in more detail.

Predictive power and its bias
The predictive power for the proportion of genotypic variance
explained by the detected QTL is an important parameter as it
determines whether a marker-assisted selection is justified in a
breeding program. Recent work has shown this parameter to be
overestimated with a relative bias between 10 and 60% depending on
the population and the complexity of the trait (Utz et al., 2000; Schön
et al., 2004; Liu et al., 2013). This reduction of pG�TS as compared
with pG�ES indicates a large upward bias in predictors of the
proportion of explained genotypic variance, that is, QTL effects
inferred from the ES. The poor precision of QTL effect estimation is
also reflected in the large range of estimated pG�ES and pG�TS values
(Figure 4). Our results corroborate previous findings (Schön et al.,
2004; Liu et al., 2013) as we observed an average relative bias of 38%.
This is higher than what was observed in a previous study using the
same data set where a cross-validation was used assuming the QTL
detected with the full data set as fixed (Würschum et al., 2011a). This
in combination with the results from the QTL frequency distributions
illustrates that a robust cross-validation to obtain realistic estimates
for the predictive power must include a QTL detection in each cross-
validation run.

The bias in QTL effect estimates is introduced when effects are
estimated in the same data set that was used to identify the QTL. The
degree of overestimation is thereby a function of the power of the
study such that QTL effects will be more upwardly biased with low
power, that is, small effect sizes (Xu 2003; Zöllner and Pritchard
2007). Ingvarsson et al. (2008) performed a candidate gene associa-
tion mapping approach in European aspen and identified two single-
nucleotide polymorphisms significantly associated with bud set. They
used an ad hoc method described by Allison et al. (2002) to obtain less
biased estimates of QTL effects. Based on data-perturbation simula-
tions and a methods-of-moments approach they showed the effects of

the two single-nucleotide polymorphisms and consequently their
contribution to the phenotypic variance to be strongly overestimated.
Our findings corroborate this overestimation of QTL effects observed
in a candidate gene approach, which emphasizes the need for robust
validation of association mapping results.

It must be noted that the relative bias observed here was higher for
K and N, the two traits for which the predictive power was low
(B10%). For the other four traits, the relative bias averaged 30%,
which thus appears to be the level of overestimation that must be
expected in association mapping for complex traits, even with large
population sizes close to 1000 as applied here. It must be noted that
for smaller population sizes this relative bias will be even higher
(Figure 2) and that in addition to the trait will to some extent also
depend on the underlying data set.

The cross-validated proportion of genotypic variance was highest
for WSY (50%) despite the presumably high complexity of this trait.
For SC, RY and Na, it was approximately 30% while for K and N it
was only 5% or below. These values are consistent with the
quantitative nature of the traits under consideration and illustrate
the unbiased potential of marker-assisted selection.

Robustness of QTL and precision of QTL localization
Another important QTL parameter is the precision of QTL position
estimates. Only if QTL positions are estimated precisely can closely
linked markers be identified for efficient selection of plants carrying
the favorable QTL allele. Sillanpää and Arjas (1998) suggested the use
of QTL intensity distributions for detailed analysis of putative QTL
regions. This concept has been applied in cross-validation to judge the
robustness and the reliability of QTL position estimates as the
number of runs in which each position is identified as QTL in the
different estimation sets (Utz et al., 2000; Liu et al., 2013). In our
study, most QTL identified in the full data set were supported by their
detection in a high number of runs. However, as mentioned above, a
difference to linkage mapping is that minor allele frequency QTL may
not be detected in some estimation sets if the allele frequency becomes
too low to permit detection. Broad QTL frequency peaks indicate a
fairly vague localization of the QTL and consequently a biased
estimation of their true genetic effects. In association mapping, the
achievable mapping resolution will depend on the linkage
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disequilibrium in the respective QTL regions (Würschum, 2012). The
shape of the QTL frequency peaks is thus affected by the linkage
disequilibrium varying among the resampled ESs and, in addition, by
the resampling of individuals with variable errors of their phenotypic
value estimates. We mainly observed rather narrow, clearly defined
peaks, which illustrates the high precision of QTL position estimates
(Figure 5). This will, however, also depend on the available marker
density and QTL frequency distributions will be most informative
applying high marker densities. In summary, QTL frequency dis-
tributions can be used to further assess the quality of the obtained
mapping results.

CONCLUSIONS

In this study, we evaluated the potential of cross-validation for
association mapping. Our results suggest that the interpretation of
association mapping results can be improved applying cross-valida-
tion. The predictive power of the proportion of genotypic variance
explained by detected QTL can be assessed more realistically. In
addition, the construction of QTL frequency distributions can serve as
a measure for the precision of QTL localization and the robustness of
the detected QTL. Taken together, cross-validation can be a valuable
tool for association mapping to draw realistic conclusions on the
prospects of the identified QTL for marker-assisted selection.
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QTLs with main and epistatic effects underlying grain yield and heading time in soft
winter wheat. Theor Appl Genet 123: 283–292.

Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004). Quantitative
trait locus mapping based on resampling in a vast maize testcross experiment and its
relevance to quantitative genetics for complex traits. Genetics 167: 485–498.
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