

www.nature.com/hdv

Heredity

ORIGINAL ARTICLE

Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in *Drosophila melanogaster*

KH Takahashi¹, K Teramura², S Muraoka², Y Okada² and T Miyatake²

Biological clocks regulate various behavioural and physiological traits; slower circadian clocks are expected to slow down the development, suggesting a potential genetic correlation between the developmental period and circadian rhythm. However, a correlation between natural genetic variations in the developmental period and circadian rhythm has only been found in *Bactrocera cucurbitae*. The number of genetic factors that contribute to this genetic correlation is largely unclear. In this study, to examine whether natural genetic variations in the developmental period and circadian rhythm are correlated in *Drosophila melanogaster*, we performed an artificial disruptive selection on the developmental periods using wild-type strains and evaluated the circadian rhythms of the selected lines. To investigate whether multiple genetic factors mediate the genetic correlation, we reanalyzed previously published genome-wide deficiency screening data based on DrosDel isogenic deficiency strains and evaluated the effect of 438 genomic deficiencies on the developmental periods. We then randomly selected 32 genomic deficiencies with significant effects on the developmental periods and tested their effects on circadian rhythms. As a result, we found a significant response to selection for longer developmental periods and their correlated effects on circadian rhythms of the selected lines. We also found that 18 genomic regions had significant effects on the developmental periods and circadian rhythms, indicating their potential for mediating the genetic correlation between the developmental period and circadian rhythm. The novel findings of our study might lead to a better understanding of how this correlation is regulated genetically in broader taxonomic groups.

Heredity (2013) 110, 312-320; doi:10.1038/hdy.2012.88; published online 5 December 2012

Keywords: circadian rhythm; deficiency screening; disruptive selection; free-running period

INTRODUCTION

Biological clocks regulate various behavioural and physiological traits and allow organisms to accommodate to daily and seasonal environmental cycles (Panda *et al.*, 2002; Paranjpe *et al.*, 2004; Mazzoni *et al.*, 2005). The core molecular mechanisms of these clocks are highly conserved across taxa, and the generation of molecular oscillation has been well studied in flies and mammals (Panda *et al.*, 2002; Grima *et al.*, 2004; Chiu *et al.*, 2011; Goda *et al.*, 2011). In general, faster circadian clocks are expected to speed up development and shorten the pre-adult developmental period, whereas slower clocks prolong this period (Paranjpe *et al.*, 2005), suggesting a potential genetic correlation between the developmental period and circadian rhythm.

A genetic correlation between the developmental period and circadian rhythm has been demonstrated in two fly species, Drosophila melanogaster and Bactrocera cucurbitae. In D. melanogaster, period (per) mutants have a wide range of circadian rhythm variations represented by largely different free-running periods (τ) (wild type: $\tau = 24 \, \text{h}$, per^{S} : $\tau = 19 \, \text{h}$, per^{L} : $\tau = 28 \, \text{h}$) that are positively correlated with the developmental periods (per develops faster than per^{L} regardless of the light conditions; Kyriacou et al., 1990). The positive genetic correlation between the free-running and developmental periods might be mediated by the pleiotropic effects of per mutations. Another example in D. melanogaster is the genetic correlation between

the timing of adult emergence and circadian clocks found by Kumar et al., 2007. Flies selected to emerge in the morning showed shorter circadian rhythm than the ones selected to emerge at evening, indicating the regulation of pre-adult period by a circadian clock (Kumar et al., 2007). In B. cucurbitae, Miyatake (1995) performed a disruptive selection on the developmental period and established selected lines with shorter and longer developmental periods. Under constant darkness, Shimizu et al. (1997) then observed that the selected lines with shorter developmental periods had shorter freerunning periods, whereas the lines with longer developmental periods had longer free-running periods, indicating a positive genetic correlation between the developmental period and circadian rhythm in this species. In addition, the developmental and free-running periods of B. cucurbitae were also genetically correlated with the timing of mating (Miyatake et al., 2002). This genetic correlation between life-history and behavioural traits might have an important role in ecological diversifications (Miyatake, 2002). However, in a broader range of organisms it is still unknown whether natural genetic variations in the developmental period and circadian rhythm are correlated with each other. In addition, the number of quantitative trait loci other than per that contribute to genetic correlation are largely unclear.

To examine whether the correlation between natural genetic variations in the developmental period and circadian rhythm in

¹Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan and ²Graduate School of Environmental Science, Okayama University, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan. E-mail: miyatake@cc.okayama-u.ac.jp

B. cucurbitae also exists in D. melanogaster, we performed an artificial disruptive selection on the developmental periods of strains that originated from wild populations. We then evaluated the circadian rhythms represented as the free-running periods of these lines. To map the genomic regions that had effects on the developmental periods, we reanalyzed the genome-wide deficiency mapping data of Takahashi et al. (2011a) and evaluated the effect of 438 isogenic deficient strains covering about 65% of the D. melanogaster genome. We then randomly selected 32 genomic deficiencies with significant effects on the developmental periods, and tested their effects on the free-running periods. As a result, we found a significant response to the selection for longer developmental periods, and their correlated effects to prolong free-running periods in the selected lines. We also found that 253 genomic deficiencies had significant effects on the developmental periods. Of the 32 deficiencies randomly selected from the deficiencies that had effects on the developmental periods, we found 18 deficiencies that had significant effects on the free-running periods. These results clearly show that there was an ample natural genetic variation in developmental period in D. melanogaster, and it had significant correlation with the natural genetic variation in circadian rhythm. The deficiency mapping identified a number of genomic regions that affected the developmental periods and circadian rhythms, suggesting that genetic correlation between them might be mediated by multiple genetic factors.

MATERIALS AND METHODS Selection experiments

Flies. We obtained 20 wild strains of D. melanogaster that had been collected from across the Japanese islands and maintained in EHIME-Fly, the laboratory for Drosophila resources at Ehime University. We used the same strains that were described in Tsujino and Takahashi (2012), and complete details of the strains can be found in that publication. We mixed four individuals (two females and two males) from each strain to produce a base population of 80 individuals. In this manner, we produced three independent base populations originated from the same set of flies that were reared for three generations at 23 °C under constant light in incubators (MIR-254 or MIR-154; SANYO, Osaka, Japan) in 250-ml plastic bottles containing 50 ml of fly medium containing dried yeast, soy flour, cornmeal, agar, malt extract and dextrose.

Artificial selection on the developmental periods

The developmental period in our study was characterized by days from oviposition of the eggs to their eclosion. We established three 'short' lines that were selected for shorter developmental periods and three 'long' lines that were selected for a longer developmental periods by mixing 30 females and 30 males from each base population. During each selection round, we collected all the emerged flies and calculated their developmental periods. Collections were made every 12 h to ensure the virginity of females. We ranked all the emerged females and males on the basis of their developmental periods, and established the next generation using the top 30 females and 30 males for each short line, and the bottom 30 females and 30 males for each long line. The average number of emerged adults was 283.44 throughout the selection, indicating that our current selection procedure selected on an average 21% of individuals from the top or the bottom of the trait score distribution in each generation. We mixed the selected females and males, and maintained them together for a few days to allow them to mate freely. We then transferred the flies to experimental 250-ml plastic bottles and allowed the flies to oviposit for 12 h to maintain the larval density in the plastic bottles at a sufficiently low level to avoid intense intra-specific competition. We incubated the bottles until the flies of the next generation emerged. We reared the flies in the incubators at 23 °C under constant light conditions. Three control lines were also established from the three base populations and were maintained in the same way as the selection lines except for the selection process. We measured the developmental periods of the control lines every five generations.

Locomotor activity rhythm assay of the artificially selected lines

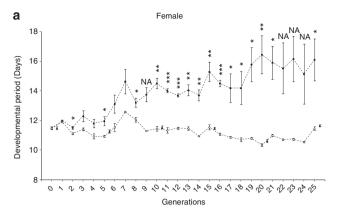
To examine whether artificial selection on the developmental periods had an effect on the circadian rhythms, we measured the locomotor activity of the short, long and control strains at the 25th generation by evaluating the free-running periods. Flies aged 3-7 days after eclosion were entrained for 4 days in cycles of 12-h light and 12-h darkness at 25 °C in incubators. The locomotor activity of these flies was monitored using a DAM2 system (TriKinetics, Waltham, MA, USA) for 10 days in constant darkness. To characterize the rhythmicity of the locomotor activity of these flies, we performed a χ^2 periodogram analysis using Clocklab software (Actimetrics, Wilmette, IL, USA) that identified rhythmic flies and determined their freerunning periods (τ) .

Statistical analysis

To evaluate the divergence in the developmental periods of the short and long lines, we performed a one-way analysis of variance (ANOVA) repeatedly for every generation using the developmental periods as a dependent variable, and the selection treatments (short or long) as an independent variable. We used the mean developmental period of each line in this analysis and regarded three lines of each treatment as biological replicates.

We also tested the effect of artificial selection on the free-running periods at the 25th generation using a one-way ANOVA. In this analysis, we compared the control lines with the long and short lines in a pairwise manner. We used τ scores as the dependent variables and the treatments (control/long or control/ short) as independent variables.

To confirm the normality and equality of variance of the data sets used for the above analyses, we performed the Kolmogorov-Smirnov test and F test. When the data sets did not fulfil the requirements of ANOVA, we did not apply ANOVA.


Reanalysis of deficiency screening data to identify genomic regions with effects on the developmental periods

To map genomic regions with effects on the developmental periods, we reanalyzed the deficiency screening data of Takahashi et al. (2011a) in which they solely focused on temporal variation in the developmental periods and not on the mean developmental period. Takahashi et al. (2011a) used DrosDel isogenic deficiency strains and evaluated the developmental period defined as days from oviposition of the eggs to their eclosion. The breakpoints of the deletions were determined at a single base-pair resolution, allowing highresolution mapping of the candidate genomic regions. The control strain (DSK001: w^{1118}_{iso} ; 2_{iso} ; 3_{iso}) was isogenized for the X, second and third chromosomes, and all the deficiency strains shared the same genetic background as the control strain (Ryder et al., 2004, 2007). In our study, we reanalyzed the developmental period data of 438 DrosDel deficiency strains that covered about 65% of the whole genome region (Appendix 1). Additional details of the deletion strains are available on the DrosDel web page (http://www.drosdel.org.uk/).

Deficiency effects on the locomotor activity rhythms

We randomly chose 32 deficiencies whose effects on the developmental periods were detected by deficiency screening and evaluated their effect on the locomotor activity rhythms. Because of the homozygous lethality of most deficiencies, we tested deficiency-control heterozygotes (Df/+) for the locomotor activity rhythms, as in Takahashi et al., 2011a. We introduced 100 eggs from each of the crosses between the control strain and the deletion strains into a glass vial along with a standard cornmeal agar medium (details are described in Takahashi et al., 2011b). We crossed females of the control strain with males of each deficiency strain to control the maternal effect. The eggs were reared at 23 °C under constant light in incubators. We genotyped emerging adults (target genotype, Df/+; nontarget genotype, balancer/+) and collected flies for locomotor activity measurements. To obtain control individuals (+/+), we collected 100 eggs from strain DSK001 and reared them as described above. We then monitored the locomotor activity of these control flies in the same way as we did for the selection experiment to determine their free-running periods (τ).

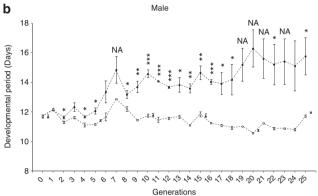
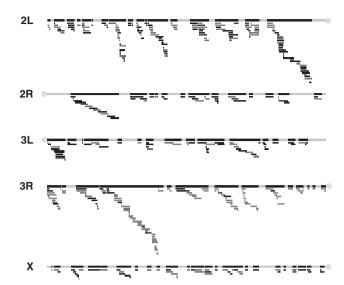



Figure 1 Selection responses of the female flies (a) and the male flies (b). Short lines (\bigcirc) were selected for a shorter developmental period, long lines (\bigcirc) were selected for a longer developmental period, whereas control lines (\triangle) were not subjected to any selection. Error bars represent s.e's. Asterisks represent statistically significant differences between short and long lines: $^*P < 0.05$, $^*P < 0.001$, $^{***}P < 0.001$. NA indicates cases where the data sets violated the requirements of ANOVA and the test was not applied.

Statistical analysis

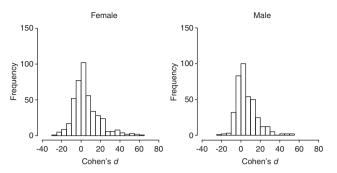
To evaluate the effects of deletions on the mean developmental periods and free-running periods, we performed pairwise comparisons between +/+ and each Df/+ using one-way ANOVA. We used average vial-level scores for the developmental periods and individual-level scores for the free-running periods. We checked the normality of the distribution of the scores for each genotype separately using the Kolmogorov-Smirnov test, and equality of variance of the data sets using F test. To correct for multiple tests with different genotypes, we applied the Benjamini and Hochberg (1995) procedure to control the false discovery rate. Deviation from the normal distribution was considered significant if the adjusted false discovery rate P-value was < 0.05. As a result, no significant deviations from the normal distribution were detected in any of the cases in our study. For the ANOVA, we used the average vial-level developmental period or individual-level free-running period as the dependent variable, whereas the genotype (+/+ or Df/+) as the independent variable. Correction for multiple tests was performed using the Benjamini-Hochberg procedure, as in the normality test described above. In addition, we calculated the effect size (Cohen's d) of each deficiency to draw a robust conclusion, regardless of the sample size variation and the existence of outliers, and to make the results of different tests comparable. For the developmental periods, we performed separate analyses of sexes and tested correlation of the effect sizes of the developmental periods between males and females to determine any sexspecific effect of the deletions. We also tested the correlation between the effect sizes of deletions on the developmental and free-running periods to determine any genetic correlation. All statistical analyses were performed using the statistical software R 2.8.1 (R Development Core Team 2005).

Figure 2 Distribution of deficiencies on the second, third and X chromosomes. Genomic regions covered by deficiencies are filled with black, while bars below each chromosome represent the location of each deficiency. Bars representing deficiencies with significant effects on the developmental periods are filled with different colours based on sex specificity, that is, a significant effect only in female flies is shown in red; a significant effect only in male flies is shown in blue; and a significant effect in both female and male flies is shown in purple. A full color version of this figure is available at the *Heredity* journal online.

RESULTS

Effects of artificial selection on the developmental periods

As a result of artificial selection, the developmental periods of long and short lines diverged significantly in both females and males where there were a few cases that violated the requirements for ANOVA and were not analysed (Figure 1). The mean developmental periods of the short lines remained at the same level as the control lines throughout selection, whereas the mean developmental periods of the long lines increased continuously until the 20th generation (Figure 1).


Locomotor activity rhythms of the selected lines

The free-running periods of the long lines (average score \pm s.e.: 24.25 \pm 0.09) were significantly increased (P= 0.016) compared with the control lines (23.82 \pm 0.06), whereas those of the short lines (23.96 \pm 0.08) were not significantly different from the control lines.

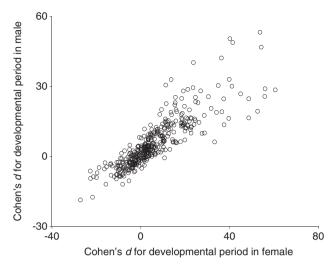
Effects of deficiencies on the developmental periods

As a result of screening, we found 81 genomic regions with significant effects on the development periods in females only, 27 genomic regions with significant effects in males only and 145 genomic regions with significant effects in both females and males (Figure 2, Appendix 1).

Compared with the developmental period of +/+ (13.51 days in female and 13.45 days in male on average), developmental period of Df/+ deviated positively in both females and males (0.39 on average ranging from -1.35 to 4.89 days in females and 0.53 on average ranging from -1.45 to 4.71 days in males). The frequency distribution of the effect size of deficiencies on the developmental periods was assessed using Cohen's d for the term 'genotype' in the ANOVA model as shown in Figure 3. The effect sizes were centred around zero, indicating that most deficiencies had little effect on the developmental periods. Longer tails of the effect size distributions on the positive side

Figure 3 Frequency distribution of the effect size (Cohen's *d*) of deletions on the developmental periods in female and male flies.

indicated that deficiencies tended to prolong the developmental periods in females and males (Figure 3). We found a positive correlation between the effect sizes in females and males (correlation coefficient: 0.863, P < 0.0001; Figure 4), suggesting that a large number of deficiencies had consistent effects on the developmental periods in females and males.


Effects of deficiencies on the locomotor activity rhythms

Of the 32 deficiencies with effects on developmental periods, 18 deficiencies had a significant effect on the free-running periods (Figure 5). The overall correlation between the effects of deficiencies on the developmental and free-running periods was not significant (correlation coefficient: 0.093, P > 0.05; Figure 6).

DISCUSSION

In our study, we observed a significant response to artificial selection for longer developmental periods, and this selection resulted in increased free-running periods in the selected lines, indicating a genetic correlation between the developmental period and circadian rhythm in *D. melanogaster*. We also found that 18 genomic deficiencies affected the developmental periods and circadian rhythms, suggesting that multiple genetic factors contribute to the genetic correlation between them.

A significant response to artificial selection for longer developmental periods and lack of response to selection for shorter developmental periods were observed in our study. This pattern of response to disruptive selection on the developmental period was similar to that observed by Zwaan et al. (1995) in D. melanogaster and by Miyatake (1995) in B. cucurbitae. The asymmetric response to disruptive selection might be attributable to a scarcity of natural genetic variations that shorten the developmental period. In Drosophila species, at least, natural selection seems to favour a shorter developmental period because most endoparasitic wasps attack the larval stage or feed externally on the pupae (Wertheim et al., 2005), and a shorter developmental period might reduce the risk of such parasitism. In addition, most *Drosophila* species utilize patchy and ephemeral resources such as mushrooms or fallen fruits (Takahashi et al., 2005; Mitsui et al., 2006), so rapidly completing their pre-adult development before the degradation of resource patches might be advantageous. Furthermore, for a species such as D. melanogaster whose small overwintering population increases in the absence of population pressure every spring, reduction in developmental period leads to the higher intrinsic rate of increase of the population (Lewontin, 1965). This demographic fitness effects is stronger in developmental period than in other life-history traits such as

Figure 4 Correlation between the effects of deficiencies on the developmental periods in female and male flies.

fecundity and longevity (Lewontin, 1965). If these selective advantages lead to a higher selection pressure that favours a shorter developmental period, natural genetic variations for a shorter developmental period will be more deficient than those for a longer developmental period. Selective advantage of shorter developmental period is not necessarily true for other organisms such as a comma butterfly *Polygonia c-album*, whose seasonal variation in developmental period is well known (Nylin, 1988, 1992). Under a variable environment, plasticity in a life-history trait such as developmental period can be adaptive (Nylin and Gotthard, 1998).

The pattern of genetic correlation between the developmental periods and circadian rhythms found in our selection experiments (a longer developmental period corresponded to a longer freerunning period) was consistent with the pattern found in previous studies on *D. melanogaster* and *B. cucurbitae* (Kyriacou *et al.*, 1990; Shimizu *et al.*, 1997). Other than these fly species, a genetic correlation between the developmental period and circadian rhythm has only been examined in a seed beetle *Callosobruchus chinensis*; however, no significant genetic correlation was observed (Harano and Miyatake, 2011). Although the genetic architecture underlying this genetic correlation remains unclear, and it might be different among species, the pattern of genetic correlation might be broadly conserved across Dipteran insects. Further studies are needed to evaluate whether this genetic correlation is a widespread phenomenon in broader taxonomic groups.

In the deficiency screening for genomic regions with effects on the developmental periods, we found a large number of genomic deficiencies that had effects on the developmental periods in females and males. As the genomic deficiencies examined in our study were experimentally generated, the significant effect of these genomic regions does not necessarily mean that they contribute to natural genetic variations in the developmental periods in *D. melanogaster*. However, it does suggest that a large number of quantitative trait loci in the *D. melanogaster* genome are potentially involved in the developmental period. The effect size distributions of the deficiencies deviated positively from zero in females and males, indicating that a larger number of deficiencies prolonged the developmental period. The positively biased effect of deficiencies might support the hypothesis that flies have evolved to develop faster, which partially

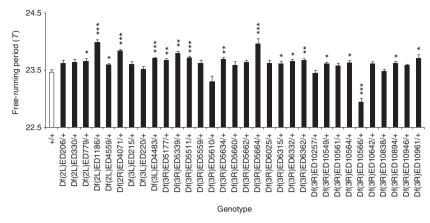
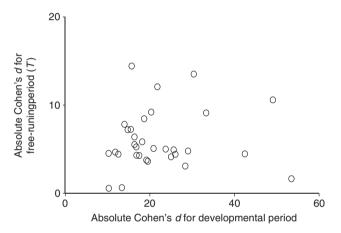



Figure 5 Free-running periods of the control homozygotes (+/+) and deficiency heterozygotes (Df/+). Error bars represent s.e's. Asterisks represent statistically significant differences between the +/+ and each Df/+ genotype: *P<0.05, **P<0.01, ***P<0.001.

Figure 6 The overall correlation between the effects of deficiencies on the developmental and free-running periods.

explains the asymmetric response to disruptive selection in the current and previous studies (Miyatake, 1995; Zwaan et al., 1995).

Although the speed of circadian clocks is known to correlate with developmental period (Paranjpe et al., 2005), how the deficiencies affected developmental period in this study is unclear. In fact, the deleterious effect of the deficiencies on pre-adult survival was shown in Takahashi et al. (2011b), and it might also impair normal developmental processes and slow down the pre-adult development. Such deleterious effect of deficiencies may obscure the general correlation of the deficiencies' effects on developmental period and circadian rhythm because the indirect fitness effect of the deficiencies on pre-adult period is not necessarily expected to affect circadian rhythm at adult stage. In our study, the correlation between deficiency effects on the developmental and free-running periods was not significant, indicating no general genetic correlation between them. However, we found 18 genomic deficiencies with significant effects on both the developmental and free-running periods that might mediate the genetic correlation between them. The general lack of correlation between developmental and free-running periods indicates that there are many genomic regions with little pleiotropic effects. On the contrary, only a limited number of the genomic regions showed such pleiotropic effects. This suggests that these genomic regions have the potential to mediate the genetic correlation between the developmental period and circadian rhythm that was found in the selection experiment in our

study. As these deficiencies encompass 33.9 genes on an average, it remains unclear whether a single gene within these deficiencies had a pleiotropic effect that affected the developmental and free-running periods. MacDonald and Rosbash (2001) performed a microarray analysis to study global circadian gene expression in D. melanogaster and found 134 cycling genes under constant dark conditions. Ueda et al. (2002) also performed a microarray analysis using different strains of D. melanogaster from the ones used by MacDonald and Rosbash (2001) to profile gene expression patterns and found 455 periodically expressed genes under constant dark conditions. Among the 18 deficiencies that had effects on both the developmental and free-running periods, three of the deficiencies encompassed eight genes that were found to be expressed periodically by McDonald and Rosbash (2001), whereas 12 deficiencies encompassed 27 genes that were found to be expressed periodically by Ueda et al., 2002 (Table 1). In our study, whether a change in the expression level of these genes affected the free-running periods of the Df/+ flies was not clear, but they are primary candidate genes with potential effects on the freerunning period. Six of the 18 deficiencies encompassed no periodically expressed genes that were found in the two expression profiling studies (Table 1). As these deficiencies encompassed a relatively small number of genes (4.3 on average), a further detailed examination of individual candidate genes might lead to the discovery of novel clock genes. In addition, future examination of the individual candidate genes using RNAi or mutation approaches might elucidate how the genetic correlation between the developmental period and circadian rhythm was mediated in these deficiencies.

In our study, we performed disruptive selection on the developmental periods of *D. melanogaster* and found a genetic correlation between the developmental periods and circadian rhythms. We also identified 18 genomic deficiencies with effects on the developmental periods and circadian rhythms, and postulated that these genomic regions might potentially mediate the genetic correlation between them. The novel findings reported in our study might lead to a better understanding of how this correlation is regulated genetically in broader taxonomic groups.

DATA ARCHIVING

There were no data to deposit.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Table 1 Deficiencies with significant effects on both developmental period and circadian rhythm, and cycling genes found in expression profling studies (McDonald and Rosbash, 2001; Ueda et al., 2002) encompassed in each deficiency

Chromosome	Deficiency	No. of genes deleted	McDonald and Rosbash, 2001	Ueda <i>et al.</i> , 2002
2L	Df(2L)ED779	16		CG9934, CG16978
	Df(2L)ED1186	61		CG10283, CG10383
	Df(2L)ED4559	66		CG3523, CG3605
2R	Df(2R)ED4071	103		Eps-15, Tina-1, CG3511, CG3608
3L	Df(3L)ED4483	39	CG10616, CG10657	sowah, CG10418, CG10638
3R	Df(3R)ED5177	7		
	Df(3R)ED5339	22		CG8861
	Df(3R)ED5511	47	Ugt35b, Ugt86Da	Tctp, Ugt35b
	Df(3R)ED5634	40	CG9631, CG9649, CG31326, CG33109	Cyp6d5, CG9649
	Df(3R)ED5664	53		Art3, smp-30, Spn88Eb, CG12241
	Df(3R)ED6315	2		
	Df(3R)ED6332	4		
	Df(3R)ED6362	6		
	Df(3R)ED10549	2		
	Df(3R)ED10564	29		Art3, Spn88Eb, CG12241
	Df(3R)ED10566	29		Art3, Spn88Eb, CG12241
	Df(3R)ED10894	80		Lsd-1, mbc, Rpn9, CG10208, CG10214
	Df(3R)ED10961	5		

ACKNOWLEDGEMENTS

This work was financially supported by Special Coordination Funds for Promoting Sciences and Technology of The Ministry of Education, Sport, Culture, Science and Technology of Japan, and a Grant-in-Aid for Scientific Research (KAKENHI 23770087) to KHT, and a Grant-in-Aid for Scientific Research (KAKENHI 23570027) to TM.

- Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J Roy Stat Soc Ser B* **57**: 289–300.
- Chiu JC, Ko HW, Edery I (2011). NEMO/NLK phosphorylates PERIOD to initiate a timedelay phosphorylation circuit that sets circadian clock speed. Cell 145: 357–370.
- Goda T, Mirowska K, Currie J, Kim MH, Rao NV, Bonilla G et al. (2011). Adult circadian behavior in *Drosophila* requires developmental expression of cycle, but not period. *PLoS Genet* 7: e1002167.
- Grima B, Chelot E, Xia R, Rouyer F (2004). Morning and evening peaks of activity rely on different clock neurons of the *Drosophila* brain. *Nature* 431: 869–873.
- Harano T, Miyatake T (2011). Independence of genetic variation between circadian rhythm and development time in the seed beetle, *Callosobruchus chinensis*. *J Insect Physiol* **57**: 415–420.
- Kumar S, Kumar D, Paranjpe DA, R AC, Sharma VK (2007). Selection on the timing of adult emergence results in altered circadian clocks in fruit flies *Drosophila melanoga*ster. J Exp Biol 210: 906–918.
- Kyriacou CP, Oldroyd M, Wood J, Sharp M, Hill M (1990). Clock mutations alter developmental timing in Drosophila. Heredity 64: 395–401.
- Lewontin RC (1965). Selection for colonizing ability. In: Baker HG, Stebbins GL (eds) *The Genetics of Colonizing Species*. Academic Press: New York, pp 79–94.
- Mazzoni EO, Desplan C, Blau J (2005). Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. *Neuron* 45: 293–300.
- McDonald MJ, Rosbash M (2001). Microarray analysis and organization of circadian gene expression in *Drosophila*. Cell 107: 567–578.
- Mitsui H, Takahashi KH, Kimura MT (2006). Spatial distributions and clutch sizes of *Droso-phila* species ovipositing on cherry fruits of different stages. *Popul Ecol* **48**: 233–237. Miyatake T (1995). Two-way artificial selection for developmental period in *Bactrocera cucurbitae* (Diptera: Tephritidae). *Ann Entomol Soc Am* **88**: 848–855.
- Miyatake T (2002). Pleiotropic effect, clock genes, and reproductive isolation. *Popul Ecol* **44**: 201–207.
- Miyatake T, Matsumoto A, Matsuyama T, Ueda HR, Toyosato T, Tanimura T (2002). The period gene and allochronic reproductive isolation in *Bactrocera cucurbitae*. Proc R Soc Lond, Ser B: Biol Sci **269**: 2467–2472.

- Nylin S (1988). Host plant specialization and seasonality in a polyphagous butterfly, Polygonia C-Album (Nymphalidae). Oikos 53: 381–386.
- Nylin S (1992). Seasonal plasticity in life history traits: growth and development in Polygonia c-album (Lepidoptera: Nymphalidae). Biol J Linn Soc 47: 301–323.
- Nylin S, Gotthard K (1998). Plasticity in life-history traits. *Annu Rev Entomol* **43**: 63–83. Panda S, Hogenesch JB, Kay SA (2002). Circadian rhythms from flies to human. *Nature* **417**: 329–335.
- Paranjpe DA, Anitha D, Chandrashekaran MK, Joshi A, Sharma VK (2005). Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in *Drosophila melanogaster. BMC Dev Biol* **5**: 5.
- Paranjpe DA, Anitha D, Sharma VK, Joshi A (2004). Circadian clocks and life-history related traits: is pupation height affected by circadian organization in Drosophila melanogaster? J Genet 83: 73–77.
- Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G et al. (2007). The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177: 615–629.
- Ryder E, Fiona B, Michael A, Rosa B-L, Darin C, Jenny D *et al.* (2004). The DrosDel collection: a set of *P*-element insertions for generating custom chromosomal aberrations in *Drosophila melanogaster. Genetics* **167**: 797–813.
- Shimizu T, Miyatake T, Watari Y, Arai T (1997). A gene pleiotropically controlling developmental and circadian periods in the melon fly, *Bactrocera cucurbitae* (Diptera:Tephritidae). *Heredity* 79: 600–605.
- Takahashi KH, Okada Y, Teramura K (2011a). Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of *Drosophila melanogaster. J Hered* 102: 448–457.
- Takahashi KH, Okada Y, Teramura K, Tsujino M (2011b). Deficiency mapping of the genomic regions associated with effects on developmental stability in *Drosophila* melanogaster. Evolution 65: 3565–3577.
- Takahashi KH, Tuno N, Kagaya T (2005). The relative importance of spatial aggregation and resource partitioning on the coexistence of mycophagous insects. *Oikos* 109: 125–134.
- Tsujino M, Takahashi KH (2012). Natural genetic variation in fluctuating asymmetry of wing shape in *Drosophila melanogaster. Ecol Res* 27: 133–143.
- Ueda HR, Matsumoto A, Kawamura M, Iino M, Tanimura T, Hashimoto S (2002). Genomewide transcriptional orchestration of circadian rhythms in *Drosophila*. J Biol Chem 277: 14048–14052.
- Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD *et al.* (2005). Genome-wide gene expression in response to parasitoid attack in *Drosophila. Genome Biol* **6**: R94.
- Zwaan B, Bijlsma R, Hoekstra RF (1995). Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49: 635–648.

Appendix 1 Deficiencies used for the screening, and their location, size, and mean developmental period and FDR from

Chromosome Deletion ID Region Deletion size Developmental period (bp) Male Female 2L 35B2-35D1 21B3-21B7 843185 125158 13.797 (0.104) 13.537 (0.760) 14.736 (0.002) 14.683 (0.001) Df(2L)FD3 Df(2L)ED21 Df(21)FD40 21D1-21D2 9980 13.037 (0.015) 13.139 (0.092) Df(2L)ED49 1A1-100E1 13.712 (0.054) 19888 Df(21)FD87 21E2-21E2 284732 14 006 (0 034) 13 894 (0 278) 21E2-21E2 21E2-21E3 21E2-22A1 21F1-22A1 22B1-22D4 Df(2L)ED94 468874 14.482 (0.000) 14.264 (0.002) 13.495 (0.000) 14.204 (0.002) 13.495 (0.977) 14.396 (0.019) 12.945 (0.021) 14.000 (0.467) 13.444 (0.631) 13.812 (0.130) Df(2L)FD105 567674 301394 494297 Df(2L)ED108 Df(2L)ED122 Df(2L)ED123 Df(2L)ED124 22B8-22D4 22D3-22D4 236161 23445 13.396 (0.711) 13.266 (0.086) 13.529 (0.832) 13.814 (0.106) 22B2-22D4 23A3-23A3 484626 13.582 (0.620) 12.804 (0.000) Df(2L)FD125 13 201 (0 221) Df(2L)ED132 106 260190 13.015 (0.035) Df(2L)ED136 22F4-23A3 13.227 (0.034) 12.283 (0.000) 13 299 (0 422) 23B8-23C5 23B8-23C5 181892 13.389 (0.674) 13.329 (0.656) Df(2L)ED216 Df(2L)ED234 23C4-24A2 24A2-24A4 632936 15.142 (0.299) 13.607 (0.209) 15.290 (0.111) 13.777 (0.321) Df(2L)FD243 24683 Df(2L)ED247 Df(2L)ED250 24A2-24C3 24F4-25A7 138959 344209 13.791 (0.127) 13.874 (0.226) 13.920 (0.027) 13.505 (0.874) Df(2L)ED256 Df(2L)ED270 25B1-25B10 25F2-25F5 108097 141567 13.853 (0.312) 13.001 (0.012) 13.484 (0.943) 13.029 (0.022) 13.165 (0.049) 13.172 (0.031) Df(2L)FD279 25F2-26A1 248827 13 436 (0 955) Df(2L)ED280 25F5-26A1 105526 13.385 (0.758) Df(2L)FD284 25F2-26A3 285333 13 050 (0 004) 13 273 (0 398) 25F5-26A3 25F5-26B2 142032 179079 12.890 (0.004) 13.273 (0.398) 12.890 (0.001) 12.979 (0.020) 13.801 (0.015) 14.300 (0.008) Df(2L)ED285 Df(2L)ED292 Df(2L)ED299 26B1-26B2 26A3-26B2 2194 55750 12.556 (0.060) 12.893 (0.213) 14.834 (0.005) 14.680 (0.007) Df(2L)ED330 26B2-26B2 25F2-26B2 13.012 (0.141) 14.246 (0.032) Df(2L)ED331 18588 Df(2L)ED334 341038 14.813 (0.095) Df(2L)ED343 26R2-26R5 82250 13.396 (0.256) 13 095 (0 046) Df(2L)ED347 25F5–26B5 280456 13.465 (0.923) 13.613 (0.604) 26B2-26B5 Df(2L)FD353 83109 13 258 (0 291) 13 115 (0 234) Df(2L)ED354 26B1-26B5 102961 13.889 (0.571) 13.875 (0.151) 72246 Df(2L)ED369 26C3-26D1 12.853 (0.000) 13.018 (0.055) 26C3-26D1 26B2-26D1 73530 430254 13.798 (0.005) 13.416 (0.873) 12.900 (0.078) 13.575 (0.691) Df(2L)ED371 Df(2L)ED373 26B10–26D1 26B2–26D7 26B1–26D7 27D1–27D4 12.469 (0.000) 12.860 (0.043) 14.746 (0.000) 13.676 (0.572) Df(2L)FD374 232319 465648 Df(2L)ED384 13.214 (0.285) 15.261 (0.000) 13.973 (0.095) Df(2L)ED385 485500 Df(2L)ED438 52278 Df(2L)FD440 27D3-27E1 74563 13.582 (0.772) 13.416 (0.893) 13.582 (0.772) 13.416 (0.893) 13.681 (0.224) 13.483 (0.905) 13.246 (0.072) 13.306 (0.422) 14.267 (0.010) 14.330 (0.006) 13.003 (0.001) 13.154 (0.184) Df(2L)ED463 Df(2L)ED478 661 139196 27F7-28B1 Df(2L)ED494 27F4-28B1 28C4-28C4 153371 9590 Df(2L)ED496 Df(2L)ED501 Df(2L)ED502 27F7-28C4 28C1-28C4 376256 122088 13.658 (0.225) 12.914 (0.013) 13.644 (0.347) 12.623 (0.003) Df(2L)ED508 Df(2L)ED517 28B1-28C4 27F7-28D2 13.159 (0.198) 13.502 (0.993) 13.783 (0.377) 13.845 (0.127) 223552 447744 13.766 (0.174) 13.082 (0.089) 13.735 (0.474) Df(2L)ED548 28E1-28E9 91467 14 090 (0 007) 28F1-29A2 28F1-29A3 95377 103066 13.437 (0.943) 14.180 (0.142) Df(2L)ED578 13.694 (0.529) 13.052 (0.007) 13.916 (0.080) 13.083 (0.091) Df(2L)ED611 29B4-29C3 36967 296560 29C1-29E4 Df(2L)ED623 29B4-29E4 29C3-29E4 317273 278827 13.913 (0.097) 13.602 (0.351) 13.028 (0.003) 12.923 (0.009) Df(2L)ED629 Df(2L)ED630 Df(2L)ED632 Df(2L)ED647 29E1-29E4 29E1-29F5 156152 414176 12.776 (0.000) 13.752 (0.043) 13.167 (0.095) 13.574 (0.632) 14.150 (0.007) 14.392 (0.012) Df(21)FD659 29F1-30A3 646785 30A4-30B3 226380 13.171 (0.069) 12.912 (0.006) Df(2L)ED673 Df(2L)ED677 30B3-30B12 144271 13.416 (0.486) 13.600 (0.617) 29F5-30B12 30B12-30B12 13.563 (0.753) 13.552 (0.581) 13.644 (0.624) 13.684 (0.604) Df(2L)ED678 623585 Df(2L)FD679 10552 30A4-30B12 30B12-30C1 376664 42145 13.441 (0.606) 13.926 (0.107) 13.622 (0.370) 13.789 (0.110) Df(2L)ED680 Df(2L)ED684 Df(2L)ED690 Df(2L)ED692 30B3-30E4 30B12-30E4 13.176 (0.312) 13.080 (0.334) 14.350 (0.001) 14.558 (0.001) 480705 346986 13.259 (0.078) 13.295 (0.490) 13.554 (0.711) 13.415 (0.836) 12.849 (0.158) 12.904 (0.239) Df(2L)FD695 30C5-30E4 218967 Df(2L)ED697 30C1-30E4 301348 30F1-30F4 Df(21)FD700 20668 14.252 (0.001) 14.436 (0.001) 14.059 (0.005) 14.485 (0.034) 30C5-30F1 249119 Df(2L)ED701 Df(2L)ED729 31B1-31D7 100900 225931 485690 Df(2L)ED746 31F4-32A5 13.774 (0.022) 13.769 (0.170) Df(2L)ED748 31B1-32A5 14.408 (0.000) 14.345 (0.001) Df(2L)ED758 Df(2L)ED760 33C1-33E4 33B8-33E5 367471 426429 13.591 (0.567) 13.925 (0.007) 13.649 (0.406) 13.922 (0.052) 33A2-33E5 33E9-34A1 627604 277041 13.525 (0.007) 13.522 (0.032) 13.596 (0.288) 13.983 (0.190) 13.675 (0.155) 14.165 (0.001) 14.323 (0.009) 14.703 (0.012) Df(2L)ED761 Df(2L)ED769 Df(2L)FD771 33F4-34A1 388303 33E9-34A3 34A3-34A3 429228 683 13.596 (0.689) 13.751 (0.110) 13.538 (0.869) 13.257 (0.293) Df(2L)ED774 965018 540490 33B8-34A3 33E4-34A3 Df(2L)ED775 13.862 (0.036) 14.651 (0.002) 13.758 (0.260) Df(2L)ED776 14.181 (0.009) 490576 619745 13.444 (0.727) 14.050 (0.016) 13.758 (0.079) 14.243 (0.012) Df(2L)ED777 33E7-34A3 33E9-34A7 Df(2L)ED778 34A3-34A7 33E4-34A7 191200 731007 15.034 (0.000) 15.014 (0.001) 13.846 (0.029) 14.300 (0.003) Df(2L)ED779 Df(2L)ED780

Appendix 1 (Continued)

Chromosome	ome Deletion ID Region		Deletion size (bp)	Developmental period			
				Female	Male		
	Df(2L)ED784 Df(2L)ED791 Df(2L)ED793 Df(2L)ED796 Df(2L)ED796 Df(2L)ED929 Df(2L)ED1000 Df(2L)ED1000 Df(2L)ED1050 Df(2L)ED1050 Df(2L)ED1056 Df(2L)ED1052 Df(2L)ED1109 Df(2L)ED1109 Df(2L)ED11153 Df(2L)ED1153 Df(2L)ED1155 Df(2L)ED1155 Df(2L)ED1156 Df(2L)ED1150 Df(2L)ED1202 Df(2L)ED1202 Df(2L)ED1202 Df(2L)ED1202 Df(2L)ED1203 Df(2L)ED1305 Df(2L)ED1305 Df(2L)ED1317 Df(2L)ED1317 Df(2L)ED1382 Df(2L)ED1382 Df(2L)ED1382 Df(2L)ED1451 Df(2L)ED1451 Df(2L)ED1451 Df(2L)ED1453 Df(2L)ED1453 Df(2L)ED14650 Df(2L)ED14650 Df(2L)ED14650 Df(2L)ED17763 Df(2L)ED7763 Df(2L)ED7763 Df(2L)ED7763 Df(2L)ED81886 Df(2L)ED8388 Df(2L)ED8388 Df(2L)ED8388		164/790 106247 502171 658852 788014 787566 360447 383436 465553 581220 115693 671892 206365 155049 334948 460658 305616 483659 357571 15994 524349 398261 24869 357571 24869 357571 15994 524349 398261 24869 574349 398261 24869 574349 398261 24869 574349 398261 24869 574349 398261 24869 574349 398261 24869 574349 398261 24869 57436 575551 4766875 28361 605551 406785 53974 66875 28361 664377 93755 53974 66477 93755 539713 254709 1188 266285 539713 299273 271218 456009 399342 33618 337487 604135	14.388 (0.011) 14.445 (0.024) 14.832 (0.001) 13.490 (0.962) 14.107 (0.962) 14.107 (0.089) 13.524 (0.890) 14.509 (0.002) 14.509 (0.002) 13.649 (0.312) 13.636 (0.604) 13.632 (0.287) 13.649 (0.312) 13.369 (0.604) 14.371 (0.011) 14.270 (0.005) 13.920 (0.043) 14.371 (0.011) 14.270 (0.005) 14.071 (0.134) 13.023 (0.053) 14.700 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.539 (0.000) 15.540 (0.000) 15.570 (0.088) 13.897 (0.267) 14.190 (0.015) 13.600 (0.538) 13.676 (0.281) 14.035 (0.255) 13.606 (0.281) 14.035 (0.055) 13.600 (0.338) 13.897 (0.267) 14.190 (0.001) 13.577 (0.611) 12.979 (0.314) 13.974 (0.009) 13.384 (0.690) 13.374 (0.009) 13.385 (0.650) 14.519 (0.002) 14.049 (0.072) 13.045 (0.057) 13.742 (0.146) 14.350 (0.012) 15.643 (0.000) 14.474 (0.001) 15.5643 (0.000) 14.474 (0.001) 14.350 (0.012) 15.643 (0.000) 14.352 (0.000) 14.477 (0.000) 14.358 (0.526) 13.915 (0.167) 13.295 (0.460) 13.391 (0.046) 13.391 (0.046) 13.393 (0.460) 13.185 (0.010) 14.180 (0.001)	14.476 (0.009) 13.842 (0.124) 13.633 (0.440) 14.243 (0.012) 14.228 (0.040) 13.770 (0.180) 14.547 (0.001) 13.222 (0.227) 14.796 (0.000) 15.559 (0.001) 16.005 (0.000) 14.359 (0.017) 13.700 (0.376) 13.449 (0.835) 14.071 (0.135) 14.074 (0.058) 13.671 (0.456) 13.671 (0.456) 13.820 (0.225) 13.787 (0.294) 14.701 (0.007) 14.938 (0.024) 14.731 (0.024) 14.331 (0.045) 13.825 (0.484) 13.185 (0.315) 13.298 (0.604) 13.185 (0.315) 13.299 (0.092) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.723 (0.002) 14.729 (0.005) 13.498 (0.867) 13.609 (0.578) 14.710 (0.000) 12.925 (0.016) 14.978 (0.000) 14.133 (0.046) 13.574 (0.460) 13.574 (0.460) 13.574 (0.460)		
2R	Df(2L)ED12527 Df(2L)ED13216 Df(2R)ED13216 Df(2R)ED1484 Df(2R)ED1612 Df(2R)ED1612 Df(2R)ED1612 Df(2R)ED1612 Df(2R)ED1613 Df(2R)ED1715 Df(2R)ED1775 Df(2R)ED1775 Df(2R)ED1791 Df(2R)ED1791 Df(2R)ED1791 Df(2R)ED1791 Df(2R)ED1791 Df(2R)ED2076 Df(2R)ED2098 Df(2R)ED2155 Df(2R)ED2193 Df(2R)ED2308		203671 70720 70595 96487 351791 608682 829140 518138 547751 589972 542121 638302 549961 551912 630522 343202 482345 503346 467979 212411 277450 315512 520185 482016	13.694 (0.503) 13.464 (0.766) 12.641 (0.000) 13.136 (0.092) 12.923 (0.143) 13.294 (0.335) 13.074 (0.001) 13.013 (0.014) 13.633 (0.616) 13.943 (0.005) 13.364 (0.460) 14.059 (0.029) 13.504 (0.980) 13.206 (0.467) 13.727 (0.482) 13.121 (0.074) 13.925 (0.338) 13.921 (0.021) 13.517 (0.959) 13.861 (0.256) 13.361 (0.448) 13.747 (0.0751)	13.507 (0.812) 13.443 (0.958) 13.625 (0.507) 12.945 (0.010) 13.103 (0.129) 12.713 (0.130) 13.305 (0.495) 13.799 (0.276) 13.799 (0.276) 13.799 (0.276) 14.367 (0.002) 13.573 (0.655) 14.051 (0.005) 13.445 (0.832) 13.679 (0.258) 13.416 (0.939) 14.060 (0.167) 13.120 (0.073) 13.667 (0.579) 14.149 (0.004) 13.199 (0.110) 14.217 (0.065) 13.469 (0.949) 13.602 (0.484) 13.870 (0.151) 14.057 (0.008)		

Appendix 1 (Continued)

Appendix 1 (Continued)

Chromosome	Deletion ID	Region	Deletion size (bp)	Developme	ental period	Chromosome	Deletion ID	Region	Deletion size (bp)	Developme	ental period
			(50)	Female	Male				(5)	Female	Male
	Df(2R)ED2457 Df(2R)ED2487		129848 261478	14.078 (0.001) 13.026 (0.011)				84D9-84E11 84E6-85A5	602379 675360		12.743 (0.118) 12.903 (0.068)
	Df(2R)ED2748	53D11-53F8	268682	13.251 (0.192)	13.458 (0.988)		Df(3R)ED5230 Df(3R)ED5296	84F6-85C3	806270	13.612 (0.612)	13.797 (0.169)
	Df(2R)ED2751 Df(2R)ED3181	57F10-57F10		13.682 (0.376)	13.510 (0.874) 13.731 (0.169)		Df(3R)ED5327	85C3-85C3 85D1-85D1	22497 2719	13.251 (0.159)	13.247 (0.370) 13.404 (0.821)
	Df(2R)ED3610 Df(2R)ED3683	55C2-56C4	561128 940122	13.139 (0.250)	13.733 (0.490) 13.285 (0.391)		Df(3R)ED5330 Df(3R)ED5331	85A5-85D1 85C3-85D1	560209 195601	13.296 (0.363)	13.967 (0.310) 13.265 (0.523)
	Df(2R)ED3728 Df(2R)ED3791	57B1-57D4	552570	13.507 (0.964)	13.785 (0.266) 13.608 (0.347)		Df(3R)ED5339 Df(3R)ED5416	85D1-85D11 85D16-85E6	125299 335297 417820	14.819 (0.001) 13.279 (0.114)	13.363 (0.744)
	Df(2R)ED3921 Df(2R)ED3923	57F6-57F10	11246 67570		13.030 (0.024) 13.935 (0.018)		Df(3R)ED5428 Df(3R)ED5438	85E1-85F8 85E5-85F8	321934	14.345 (0.001) 13.401 (0.727)	13.946 (0.051) 13.517 (0.779)
	Df(2R)ED3943 Df(2R)ED3952		688723 386674	14.051 (0.139)	14.440 (0.034) 13.196 (0.151)		Df(3R)ED5472	85F16-86B1 85F11-86B1	180223 241312	12.976 (0.113)	13.156 (0.221) 12.757 (0.055)
	Df(2R)ED4061 Df(2R)ED4071	60C8-60D13	270614 540173	13.308 (0.282)	13.517 (0.794) 15.192 (0.000)		Df(3R)ED5474 Df(3R)ED5495 Df(3R)ED5506	85F16-86C7 86C7-86D5	716259 287750	13.103 (0.078)	13.911 (0.296) 13.179 (0.151)
	Df(2R)ED9039 Df(2R)ED9045	48C5-48E4	283867	13.695 (0.256)	13.936 (0.016) 12.625 (0.051)		Df(3R)ED5511 Df(3R)ED5514	86C7-86D9 86C7-86E11	359178 684255	12.267 (0.000)	12.376 (0.000) 15.350 (0.000)
3L	Df(3L)ED201 Df(3L)ED202	91A5-91F1 61C9-61F7	224017 597642	13.677 (0.338)	13.463 (0.973) 13.989 (0.133)		Df(3R)ED5516 Df(3R)ED5518	86D8-86E13 86C7-86E13	385730 734902	13.222 (0.355)	13.422 (0.938) 16.480 (0.000)
	Df(3L)ED207 Df(3L)ED208	61C9-62A6		14.917 (0.000)	14.586 (0.001)		Df(3R)ED5519 Df(3R)ED5554	86E11-86E13		13.442 (0.590)	13.415 (0.815)
	Df(3L)ED210	63C1-63F5 64B9-64C13	804208		14.010 (0.135)		Df(3R)ED5558	87B5-87B11 86F9-87B11	615275	13.967 (0.021)	13.239 (0.420) 13.584 (0.495)
	Df(3L)ED211 Df(3L)ED215	65A9-65B4 69B5-69C4	334624 86745	14.816 (0.000)	12.973 (0.124) 15.106 (0.001)		Df(3R)ED5559 Df(3R)ED5573	86E11-87B11 87B5-87B13	196465	12.413 (0.007)	16.316 (0.000) 12.480 (0.016)
	Df(3L)ED217 Df(3L)ED218	70F4-71E1 71B1-71E1	831026 575028	13.824 (0.066)	13.512 (0.901) 14.073 (0.201)		Df(3R)ED5573 Df(3R)ED5577	87B5-87B13 86F9-87B13	196465 648837	15.059 (0.000)	12.480 (0.016) 15.191 (0.000)
	Df(3L)ED220 Df(3L)ED223	72D4-72F1 73A1-73D5	439052	14.400 (0.006)	16.338 (0.000) 14.075 (0.181)		Df(3R)ED5591 Df(3R)ED5608	87B7-87C7 87C7-87D7	369479 275690	14.633 (0.005)	14.157 (0.012) 15.577 (0.003)
	Df(3L)ED224 Df(3L)ED225	75B1-75C6 75C1-75D4	429316 435192		13.670 (0.495) 13.076 (0.185)		Df(3R)ED5610 Df(3R)ED5612	87B11-87D7 87C7-87F6	551659 925149		14.990 (0.000) 14.908 (0.001)
	Df(3L)ED228 Df(3L)ED230	76A1-76D2 79C2-80A4	701102 699720	13.070 (0.251) 14.182 (0.009)	13.189 (0.637)		Df(3R)ED5613 Df(3R)ED5622	87E3-87F6 87F10-88A4	385385 300090	14.031 (0.003)	14.607 (0.001) 14.339 (0.030)
	Df(3L)ED231 Df(3L)ED4079	80B1-80C1	73704	13.299 (0.448)	13.176 (0.239) 13.082 (0.082)		Df(3R)ED5623 Df(3R)ED5634	87E3-88A4 88A4-88B1	724163		15.043 (0.020)
	Df(3L)ED4177 Df(3L)ED4191	61C1-61E2	715336	13.693 (0.603)	13.784 (0.221) 14.225 (0.151)		Df(3R)ED5642 Df(3R)ED5644	87F10-88C2 88A4-88C9	797952		14.238 (0.001)
	Df(3L)ED4191 Df(3L)ED4196 Df(3L)ED4238	61C7-62A2	839354	13.322 (0.630)	13.183 (0.656)		Df(3R)ED5657 Df(3R)ED5660	88D1-88D7 88D1-88E1	221350	15.628 (0.000)	15.788 (0.000)
	Df(3L)ED4256	61C9-62A4 62A3-62A6	808192 40559	13.158 (0.104)	14.281 (0.109) 13.148 (0.391)		Df(3R)ED5662	88D1-88E2	396848 434545	16.315 (0.000)	16.485 (0.000) 16.406 (0.000)
	Df(3L)ED4284 Df(3L)ED4287	62B4-62B12 62B4-62E5	168110 756319	13.585 (0.600)	13.657 (0.523) 13.356 (0.652)		Df(3R)ED5664 Df(3R)ED5688	88D1-88E3 88E12-88F1	531540 37068	12.838 (0.006)	16.892 (0.000) 12.759 (0.018)
	Df(3L)ED4288 Df(3L)ED4293	63A6-63B7 63C1-63C1	24226	13.607 (0.624)	13.577 (0.643) 13.391 (0.866)		Df(3R)ED5705 Df(3R)ED5780	88E12-89A5 89E11-90C1	502138 625324	13.339 (0.181)	14.733 (0.035) 13.331 (0.437)
	Df(3L)ED4341 Df(3L)ED4342	64A12-64B12		15.781 (0.000) 14.029 (0.001)	14.242 (0.003)		Df(3R)ED5781 Df(3R)ED5785	89E13-90C1 90C2-90D1	562695 225960	13.234 (0.068)	13.074 (0.377) 13.199 (0.377)
	Df(3L)ED4408 Df(3L)ED4414			14.596 (0.001) 13.299 (0.146)			Df(3R)ED5807 Df(3R)ED5815	90C2-91A5 90F4-91B8	681121 491112	13.654 (0.405) 16.000 (0.030)	13.500 (0.875)
	Df(3L)ED4415 Df(3L)ED4416		213016 522145		14.124 (0.169) 12.969 (0.079)		Df(3R)ED5911 Df(3R)ED5938	91C5-91F8 91D4-92A11	422856 735402	14.796 (0.000) 15.433 (0.004)	15.143 (0.001) 15.173 (0.001)
	Df(3L)ED4421 Df(3L)ED4457	66D12-67B3 67E2-68A7	638749 761858		13.409 (0.919) 12.902 (0.088)		Df(3R)ED6025 Df(3R)ED6027	92A11-92E2 92B3-92E2	666791 472646	16.041 (0.000)	16.167 (0.000) 13.011 (0.027)
	Df(3L)ED4470 Df(3L)ED4483		736241 415994	14.399 (0.000)	14.616 (0.004) 15.876 (0.000)		Df(3R)ED6052 Df(3R)ED6058	93D4-93D8 93D4-93F6	68869 423105	12.421 (0.002)	12.520 (0.014) 14.315 (0.005)
	Df(3L)ED4486 Df(3L)ED4502	69C4-69F6 70A3-70C10	518066	14.190 (0.061)			Df(3R)ED6076 Df(3R)ED6079	93E10-94A1 94A1-94A2	409323 91507	15.137 (0.000)	14.307 (0.002) 12.724 (0.003)
	Df(3L)ED4515 Df(3L)ED4528	70C6-70C15 70C15-70D2	97860 39982	13.398 (0.394) 13.417 (0.711)	13.329 (0.604)		Df(3R)ED6085 Df(3R)ED6090	93F14-94B5 94A1-94C1	706744 656195	12.909 (0.220)	13.009 (0.262) 14.784 (0.003)
	Df(3L)ED4534	70C15-70D3 70C15-70D3 70C11-70D3	156653	13.228 (0.294)	13.052 (0.245)		Df(3R)ED6091	94B5-94C4	138626 592519	12.950 (0.024)	12.879 (0.0057) 15.445 (0.000)
	Df(3L)ED4536 Df(3L)ED4543	70C6-70F4	822815	15.457 (0.000)	13.213 (0.318) 15.225 (0.000)		Df(3R)ED6093 Df(3R)ED6096	94A2-94C4 94B5-94E7	634288 359862	15.238 (0.000)	15.042 (0.002)
	Df(3L)ED4606 Df(3L)ED4674		692639 388134	13.679 (0.373)			Df(3R)ED6103 Df(3R)ED6105		37549	15.042 (0.000)	14.465 (0.006) 14.990 (0.000)
	Df(3L)ED4685 Df(3L)ED4710	73D5-74E2 74D1-75B11			15.145 (0.000)		Df(3R)ED6116 Df(3R)ED6119	95C8-95C12	46434 35707	15.143 (0.003)	13.036 (0.152) 15.516 (0.002)
	Df(3L)ED4743 Df(3L)ED4744	75D8-75E1	14368	13.572 (0.437)	13.317 (0.423) 13.713 (0.351)		Df(3R)ED6144 Df(3R)ED6150	95D1-95D11	114310	12.513 (0.003) 12.696 (0.005)	12.839 (0.054)
	Df(3L)ED4782 Df(3L)ED4786	75F7-76A5	194711	13.210 (0.281)	13.524 (0.812) 13.605 (0.490)		Df(3R)ED6155 Df(3R)ED6168	95D1-95F8	328141	14.231 (0.010) 12.396 (0.000)	12.499 (0.012)
	Df(3L)ED4789 Df(3L)ED4799	76A1-76A5 76A1-76B3	124956 311466	13.455 (0.706) 13.130 (0.129)	13.231 (0.180) 13.145 (0.105)		Df(3R)ED6187 Df(3R)ED6220	95D10-96A7 96A7-96C3		15.640 (0.004) 14.415 (0.000)	
	Df(3L)ED4858 Df(3L)ED4957	76D3-77C1	506447	13.685 (0.670)	13.273 (0.624) 14.042 (0.151)		Df(3R)ED6232 Df(3R)ED6235	96F10-97D2	762106	16.057 (0.000) 13.148 (0.092)	16.125 (0.000)
	Df(3L)ED4978 Df(3L)ED5013	78D5-79A2	346878	13.709 (0.229)	14.120 (0.143) 13.795 (0.142)		Df(3R)ED6242 Df(3R)ED6255	97E4-97E11	123525	14.735 (0.000) 15.119 (0.001)	14.669 (0.001)
3R	Df(3L)ED5017 Df(3R)ED2 Df(3R)ED5020	80A4-80C2	162804	15.020 (0.004)	15.512 (0.000) 15.026 (0.002)		Df(3R)FD6265	97E2–98A7 98B6–98B6	467511	12.530 (0.000) 12.711 (0.006)	12.568 (0.014)
3N	Df(3R)ED5020 Df(3R)ED5021	82A3-82B1	108705	13.058 (0.015)	13.056 (0.127)		Df(3R)ED6277 Df(3R)ED6290 Df(3R)ED6310	98C3-98E5	485726	14.406 (0.000)	14.603 (0.001)
	Df(3R)ED5046	82A1-82D3	541858	13.517 (0.949)	12.879 (0.055) 13.402 (0.809)		Df(3R)ED6315	99B10-99C1	17077	14.381 (0.000) 15.210 (0.000)	14.863 (0.003)
	Df(3R)ED5066 Df(3R)ED5071	82A1-82E4	755409	14.519 (0.027)	13.682 (0.280) 14.737 (0.005)		Df(3R)ED6316 Df(3R)ED6332	99E4-99F2	111366	15.444 (0.000) 15.221 (0.000)	14.913 (0.000)
	Df(3R)ED5092 Df(3R)ED5095	82D1-82E8	437200	13.993 (0.004)	15.897 (0.001) 13.657 (0.312)		Df(3R)ED6361	100A5-100B1 100C7-100E3	469313	18.383 (0.000) 15.383 (0.000)	14.575 (0.001)
	Df(3R)ED5100 Df(3R)ED5138	82A1-82E8 82D5-82F8	889812 483811	15.927 (0.000) 13.700 (0.250)	15.953 (0.000) 13.592 (0.607)		Df(3R)ED6362 Df(3R)ED7665	100E1-100E3 84B4-84E11	141893 1003556	14.821 (0.000) 14.300 (0.161)	14.200 (0.337)
	Df(3R)ED5142 Df(3R)ED5147	82B3-82F8 82E8-83A1	811587 280684	14.413 (0.006) 14.583 (0.000)	13.938 (0.035) 14.745 (0.001)		Df(3R)ED10257 Df(3R)ED10549	9 88D6-88D7	81922 17163	15.026 (0.000) 15.191 (0.000)	15.102 (0.002) 15.051 (0.000)
	Df(3R)ED5156 Df(3R)ED5177	82F8-83A4	193919	13.179 (0.011)	13.413 (0.791) 15.166 (0.001)		Df(3R)ED10555 Df(3R)ED10556	5 88C9-88D8	361038	14.177 (0.000) 15.288 (0.000)	14.170 (0.030)
	Df(3R)ED5177 Df(3R)ED5187 Df(3R)ED5196	83B7-83B8	6020	13.840 (0.411)	13.315 (0.604) 14.922 (0.000)		Df(3R)ED10557 Df(3R)ED10561	7 88D6-88E2	230358	15.780 (0.001) 14.868 (0.000)	15.707 (0.000)
	Df(3R)ED5197 Df(3R)ED5220	83B7-83D2	359362	13.095 (0.019)	13.191 (0.127) 13.316 (0.424)		Df(3R)ED10564 Df(3R)ED10566	188D6-88E3	327353	14.923 (0.000) 14.942 (0.000)	15.267 (0.000)
		84C4-84E11			13.098 (0.130)		Df(3R)ED10300			15.219 (0.000)	

Appendix 1 (Continued)

Appendix 1 (Continued)

Chromosome	Deletion ID	Region	Deletion size (bp)	Developmental period		Chromosome	Deletion ID	Region	Deletion size (bp)	size Developmental period	
				Female	Male					Female	Male
	Df(3R)ED10642		171514		14.778 (0.002)		Df(1)ED6989	8F9-9B1 8F9-9B4	383820	13.428 (0.694)	
	Df(3R)ED10811 Df(3R)ED10820		111808 162720		14.993 (0.000) 14.455 (0.043)		Df(1)ED6991 Df(1)ED7005	9B1-9D3	524871 513509	12.155 (0.002) 15.667 (0.007)	_
	Df(3R)ED10820		162185	15.819 (0.000)			Df(1)ED7005	9D3-9D4	82437	14.383 (0.007)	_
	Df(3R)ED10893		217754		14.210 (0.049)		Df(1)ED7010	10B8-10C10	210959	13.265 (0.007)	_
	Df(3R)ED10894		435407		15.194 (0.000)		Df(1)ED7147	10D7-11A1	290417	13.373 (0.610)	_
	Df(3R)ED10892		221386		15.305 (0.000)		Df(1)ED7147	11A1-11B1	560373	13.976 (0.025)	
	Df(3R)ED10946		70912		16.207 (0.000)		Df(1)ED7161	11A1-11B1	743779	14.781 (0.010)	
	Df(3R)ED1095		19770	14.822 (0.000)			Df(1)ED7161	11B15-11E1	386346	14.032 (0.014)	
	Df(3R)ED10966		28417		14.581 (0.001)		Df(1)ED7170	11B15-11E1	524724	13.839 (0.101)	
	Df(3R)ED10900		652492		14.530 (0.002)		Df(1)ED7173	11B15-11F1	621133	14.467 (0.002)	_
	Df(3R)ED1097		41267		15.175 (0.000)		Df(1)ED7217	12A9-12C6	180238	13.205 (0.002)	
	Df(3R)ED13102		279997		15.324 (0.000)		Df(1)ED7229	12E5-12F2	431710	12.961 (0.000)	
	Df(1)ED404	1D2-1E3	200503	13.672 (0.321)	- (0.000)		Df(1)ED7261	12F2-12F5	185603	13.074 (0.376)	
	Df(1)ED404	2C7-2F5	275404	13.634 (0.869)			Df(1)ED7265	12F4-13A5	181838	13.986 (0.144)	
	Df(1)ED411	3A3-3A8	172827	13.592 (0.894)	_		Df(1)ED7289	13A5-13A12	100973	13.941 (0.044)	_
	Df(1)ED418	5C7-5E4	377712	13.837 (0.044)	_		Df(1)ED7294	13B1-13C3	274883	13.860 (0.296)	_
	Df(1)ED429	9D3-9D3	38567		14.302 (0.005)		Df(1)ED7331	13C3-13F1	363268	12.469 (0.044)	_
	Df(1)ED447	17C1-17F1	356796	14.914 (0.000)	_		Df(1)ED7344	13E1-13F17	241694	14.022 (0.022)	_
	Df(1)ED6396	1B5-1B8	30101	14.692 (0.000)	_		Df(1)ED7355	14A8-14B7	186930		13.600 (0.679)
	Df(1)ED6443	1B14-1E1	370684	14.746 (0.000)	_		Df(1)ED7374	15A1-15E3	412445	12.860 (0.071)	—
	Df(1)ED6574	2E1-3A2	203136	13.271 (0.597)	_		Df(1)ED7413	17D1-17F1	206484	13.793 (0.269)	_
	Df(1)ED6579	3A6-3A8	53476	15.794 (0.000)	_		Df(1)ED7441	18A3-18C2	168474	13.211 (0.119)	_
	Df(1)ED6584	3A8-3B1	49222	12.961 (0.008)	_		Df(1)ED7635	19A2-19C1	278714		14.125 (0.045)
	Df(1)ED6630	3B1-3C5	351370	14.868 (0.000)	_		Df(1)ED7664	19F1-19F6	250376	13.396 (0.576)	_
	Df(1)ED6712	3D3-3F1	357080	14.100 (0.078)	_		Df(1)ED11354	61B1-61C1	191859	12.944 (0.094)	_
	Df(1)ED6727	4B6-4D5	585887	14.266 (0.011)	_		Df(1)ED11437	2F6-3A4	518880	13.137 (0.198)	_
	Df(1)ED6802	5A12-5D1	285900	13.346 (0.265)	_		Df(1)ED12405	19C4-19E5	594760	13.802 (0.224)	_
	Df(1)ED6829	5C7-5F3	451119	13.048 (0.117)	_		Df(1)ED12425	19E7-19F3	216238	13.645 (0.473)	_
	Df(1)ED6849	5F3-6D3	452200	13.862 (0.080)	_		Df(1)ED12432	20C1-20C1	97858		13.716 (0.366)
	Df(1)ED6878	6C12-6D8	103655	13.514 (0.964)	_		Df(1)ED13157	18F4-19C1	288549	13.747 (0.114)	14.750 (0.005)
	Df(1)ED6906	7A3-7B2	210722	13.191 (0.181)	_		Df(1)ED13478	16F6-16F7	16605	13.712 (0.219)	
	Df(1)ED6940	36A10-36B1	297221	12.454 (0.001)	_		Df(1)ED14021	20C1-20E1	320915	13.465 (0.803)	_
	Df(1)ED6957	8B6-8C13	243242	13.179 (0.021)	_						