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Prediction of genetic values of quantitative traits
with epistatic effects in plant breeding populations

D Wang1, I Salah El-Basyoni2, P Stephen Baenziger2, J Crossa3, KM Eskridge1 and I Dweikat2

Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as
provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the
context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with
epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage
and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping,
for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to
the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction
accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured
by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant
potential in using non-additive genetic effects for genomic selection in crop breeding practices.
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INTRODUCTION

Epistasis has long been postulated to have a critical role in genetic
regulation of important pathways as well as provide a major source
of variation in the process of speciation (Phillips, 2008). At the
molecular level, the interactions between genes are well documented.
For less diversified plant populations, the importance of epistasis is
still an area of active research. In a number of studies, epistasis has
been shown to contribute a large portion of genetic variance in the
progeny of line crosses (Malmberg and Mauricio, 2005; Malmberg
et al., 2005; Hu et al., 2011). Regarding the potential of utilizing
epistatic effects in genomic selection, evidence from different studies
is notably varied and it may depend on crop species and traits. On
one hand, Blanc et al. (2006) suggested significant marker by
background interactions in maize; Dudley (2008) and Dudley and
Johnson (2009) argued for substantial benefits in using epistatic
effects to improve genetic value prediction in intermated maize
recombinant inbred lines; Hu et al. (2011) gave an example for the
advantages of using epistatic effects in soybean biparental popula-
tions. On the other hand, using nested mapping populations, the
study in Buckler et al. (2009) and Tian et al. (2011) seemed to suggest
very little role for the contribution of epistasis; Lorenzana and
Bernardo (2009) found that including interaction terms in fact
reduced prediction accuracy for the intermated recombinant inbred
line population that they analyzed. More discussion on this topic can
be found in Cooper et al. (2009) and Lorenz et al. (2011). In summary,
the potential advantage of incorporating epistatic effects in the predic-
tion of genetic values for plant breeding requires further investigation.
Results from actual breeding populations are especially needed.

Genomic selection (Meuwissen et al., 2001) using a large number
of markers has been studied by various researchers in plant popula-
tions (Bernardo and Yu, 2007; Piepho, 2009; Jannink et al., 2010;
Crossa et al., 2010 among others). Significant literatures also exist in
animal breeding research (for example, Gonzalez-Recio et al., 2008;
van Raden et al., 2008; de los Campos et al., 2009a; Hayes et al., 2009
and Toosi et al., 2009). In both settings, the large amount of variation
resulted from hundreds or thousands of markers can be controlled by
various shrinkage methods formulated in frequentist or Bayesian
frameworks, which has notable success in multiple crop species (for
example, Lorenzana and Bernardo, 2009 and Crossa et al., 2010). In
principle, epistatic effects can be incorporated just as main marker
effects in these models, but the elevated number of epistatic effects
can still pose serious problems when the number of markers is large.
Some work has been done to directly model two-locus epistatic
effects, mainly in biparental populations (for example, Hu et al.,
2011). A related method for modeling non-additive effects is to use
models based on reproducing kernel Hilbert spaces (RKHS; Gianola
and van Kaam, 2008; de los Campos et al., 2009b). RKHS regression
implicitly maps marker effects into a high dimensional feature space
and consequently utilizes non-additive effects of genetic markers.
Crossa et al. (2010) demonstrated that RKHS regression can be
advantageous for predicting genetic values in some cases. Due to the
manner of model formulation, it is usually not apparent from RKHS
regression which markers and their interactions are important for the
prediction, a knowledge that is important to breeders. Recent develop-
ments in this area also include efforts to apply machine learning
algorithms like neural networks (González-Camacho et al., 2012).
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In the setting of association analysis, Wang et al. (2011) proposed
the adaptive mixed least absolute shrinkage and selection operator
(LASSO) method for identifying quantitative trait loci and epistatic
effects in structured plant populations. In comparison with the
original LASSO (Tibshirani, 1996), adaptive LASSO (Zou, 2006) uses
different weights to modulate the amount of shrinkage applied to
each regression coefficient and thus enhances the performance of
the model. Wang et al. (2011) extended adaptive LASSO to models
that accounts for population structure in breeding populations by
incorporating random effects, which lead to adaptive mixed LASSO.
Moreover, a two-step procedure was devised to handle epistatic effects
with a large number of genetic markers.
In this paper, we further develop the method of Wang et al. (2011)

for genomic selection purpose. Specifically, the criteria for the
inclusion of markers and epistatic effects into the model are relaxed,
leading to larger models that are better suited for prediction tasks
(as opposed to the selection of the correct set of genetic effects).
We applied adaptive mixed LASSO to several traits measured on
280 winter wheat accessions with 41000 Diversity Array Technology
(DArT) markers at 9 locations. These accessions are drawn from the
active breeding population of Nebraska Wheat Breeding Program and
are part of a larger study of association analysis in winter wheat.
The results reported here are directly relevant to current plant
breeding practices. It is shown very consistently for different traits
and locations in this study that incorporating two-locus epistatic
effects substantially improves the prediction accuracy for genetic
values for these accessions. This suggests that utilizing epistatic effects
for plant breeding has significant potential. We shall focus on
the development of adaptive mixed LASSO for genomic selection
and the implication of incorporating epistatic effects. Detailed
discussion of the genetic structure of the Nebraska wheat breeding
population including significant genomic regions will be published
elsewhere.

MATERIALS AND METHODS
Breeding population
The Nebraska Wheat Breeding Program focuses on releasing winter wheat

cultivars with good properties in agronomic performance, winter hardiness,

stem rust (caused by Puccinia graminis Pers.: Pers. f. sp. tritici Eriks & E. Henn.)

resistance and end-use quality. The procedure of generating a wheat cultivar

has been described inBaenziger et al. (2001, 2008). The 280 accessions

considered in this paper are part of a population for an ongoing multi-year

association study in winter wheat. Data regarding various traits for these

accessions were collected in 2010 at up to nine Nebraska locations (see

Baenziger et al., 2011 for a description of these testing sites). Traits considered

in this paper include grain yield (nine locations), grain volume weight (nine

locations), plant height (eight locations) and flowering date (three locations).

Each accession was genotyped with 46000 DArT (Akbari et al., 2006) markers

by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The

genotype for each marker was coded as one or zero, corresponding to the

presence or absence of the feature. Information on markers including genetic

maps can be accessed at the Triticarte website. Triticarte uses several measures

to filter out unreliable markers, including the separation of the two phases

(one or zero) in the data, calling rate and reproducibility. A total of 1083

markers passed these quality control measures and were polymorphic for the

accessions under study, the proportion is typical for genotyping with DArT

markers. We restricted analysis to markers with minor allele frequency of at

least 5% and avoided including multiple highly correlated markers, details are

given in data analysis.

Adaptive mixed LASSO
The mathematical property of adaptive mixed LASSO and its application to

association mapping have been discussed in Wang et al. (2011). Here, we

provide a outline of the method and discuss the modification for the setting of

genomic selection.

For n accessions in a breeding population, let yi, i¼ 1,y, n be the

phenotypic value of the ith accession and xi¼ (xi1,y,xip)
T be the covariate

vector for p genetic effects (marker main effects or epistatic effects) for this

accession. In the following linear mixed effects model,

yi ¼ xTi b
� þ ui þ ei; i¼ 1; . . . ; n;

b* is the p dimensional coefficient vector for fixed effects (markers and

epistatic effects), ui is the random effect of the ith accession and ei is the

independent error term. For simplicity, we assume that there is only one

phenotypic value for each accession, though more complex cases can be

readily accommodated. Alternatively, we can write it in the matrix form,

y¼Xb� þZuþ e. Here, the matrix X is the ‘design’ matrix corresponding to

fixed effects. Matrix Z is the n� n identity matrix in the simple case that we

considered here, but would take other forms for more complex designs.

Following usual assumptions of linear mixed models, we assume that u and e
are independent Gaussian vectors with u � Nð0;s2gKÞ and e � Nð0; s2e IÞ,
where K is the relationship matrix for the accessions, I is the n� n

identity matrix, and s2g and s2e are variance components associated with

accessions and residual errors, respectively. With this formulation, we have

S¼VarðyÞ¼s2gZKZ
T þ s2e I.

Here, we use the relationship matrix, K, to account for the population

structure. The matrix K can be derived using the pedigree information for all

accessions, or it can be estimated with genetic markers. In the latter case, high

precision can be achieved with enough genetic markers. How to derive K

with marker information has been discussed extensively by other authors

(for example, Kang et al., 2008 and Stich et al., 2008). We shall use the

emma package of Kang et al. (2008) for estimating the relationship matrix for

numerical results in this paper.

The adaptive mixed LASSO estimator of the fixed effect b* is obtained as

b̂¼ argmin
b
fðy�XTbÞT �̂� 1ðy�XTbÞþ ln �

p

k¼ 1
wk bkj jg;

where ln is the tuning parameter (depending on the population size n) for

controlling the amount of shrinkage, wk is the weight for the kth genetic effect

such that each effect will receive a different amount of shrinkage and �̂ is a

consistent estimator of S. In practice, it is more convenient to determine

ln indirectly by choosing the number of predictors to be included in the

model. Wang et al. (2011) demonstrated the so-called ‘oracle’ property for

adaptive mixed LASSO, that is, adaptive mixed LASSO selects the correct set

of predictors with probability tending to 1 and at the same time attains the

same asymptotic efficiency for the estimation of non-zero coefficients as

when the correct model is known. It also means that adaptive mixed LASSO

can be used to obtain consistent estimates of genetic values, though the

optimal value for the tuning parameter is usually different from that for

association mapping context considered in Wang et al. (2011). When the

number of markers is large, additional modifications are required to achieve

computational efficiency, which is described below. Our results show that the

attractive properties of adaptive mixed LASSO are maintained with these

modifications.

Computation
As in the original LASSO, choosing the value of the tuning parameter ln is

equivalent to determining how many predictors should be included in the

model. When ln is sufficiently large, no fixed effect will be included in the

model ðb̂¼ 0Þ. As ln is gradually reduced, fixed effects will enter the model

one by one, which provides an ordering for the genetic effects. We utilize this

ordering to add one extra genetic effect at a time into the model and iteratively

estimate b* and variance components. The rationale closely follows that of the

LARS (Least Angle Regression) algorithm in Efron et al. (2004) with the added

complexity of estimating variance components. Specifically, the computational

algorithm is as follows:

(a) Perform the (unadaptive) LASSO fitting using the phenotypic value as the

response variable and all genetic effects (marker main effects and epistatic

effects) and the eigenvectors associated with the largest few eigenvalues
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of K as predictors with the LARS algorithm. Keep the q genetic effects that

enter the LASSO solution first for subsequent analysis and let Xq be the

design matrix corresponding to these q genetic effects. The R package lars

is used to implement the LARS algorithm in this step.

(b) For k¼ 0,y,q�1, repeat the following.

b.1 Use the estimate of the fixed effects from the last iteration (all fixed

effects are set to zero if k¼ 0) as the real values to calculate the estimate

for the variance components by maximum likelihood and obtain the

corresponding estimator �̂ for S.
b.2 Obtain the transformed response and explanatory variables: ~y¼ �̂� 1/2y,

~Xq ¼ �̂� 1/2Xq. Use the LARS algorithm to perform the adaptive LASSO

fitting on ~y and ~Xq to obtain the estimates of the first kþ 1 fixed effects.

b.3 Increase k by 1.

(c) Use cross-validation (CV) or AIC (Akaike information criterion) to

determine how many fixed effects should be included in the model

according to when the optimum is achieved in step (b). Fit the final model

to obtain the estimates of fixed effects as well as variance components by

iteratively fitting adaptive LASSO and maximum likelihood for variance

components.

In step (a), a majority of genetic effects is eliminated so that the remaining

number, q, of genetic effects is smaller than the sample size. The value of

q should be large enough so as not to exclude important effects at this

step but otherwise needs not be precise. For example, q can be chosen as one

half or two-thirds of the sample size. The retained predictors are the q genetic

effects that enter the LASSO solution first. The eigenvectors associated with the

largest few eigenvalues of the relationship matrix are included to capture the

main features of the population structure (Price et al., 2006). However,

these vectors are dropped in subsequent LASSO fitting after step (a) as

the population structure is accounted for with the relationship matrix K. The

approach of prescreening predictors before more detailed variable selection has

been discussed extensively in Fan and Lv (2008). At this point, a crude

estimator (~bk) was obtained by ordinary least squares for each retained marker

and wk ¼ 1/ j~bk j, k¼ 1,y,q was then used as weight in the subsequent steps,

this is similar to the treatment of Zou (2006).

In step (b), we iteratively carry out the fitting of adaptive LASSO with the

LARS algorithm and calculating new estimates of the variance components

using the maximum likelihood method (the implementation is similar to that

of Kang et al. (2008) where the maximum likelihood estimators for s2g and the

ratio s2e /s
2
g are obtained through Newton-Raphson method). In step (b), one

might choose to repeat (b.1) and (b.2) a few times to get a more accurate

estimate, though it does not seem to make any notable difference while adding

to the computational cost.

The major difference between the implementation in this paper and that of

Wang et al. (2011) is regarding the criteria for determining the number of

genetic effects. Wang et al. (2011) focused on identifying relatively large genetic

effects with low type I error rate and recommended the EBIC (extended

Bayesian criterion) method of Chen and Chen (2008). As EBIC is very

stringent, when there are a number of genetic effects that are relatively small

in size but none being large, the algorithm of Wang et al. (2011) tends to

include very few genetic effects in the selected model and results in

prediction performance very similar to models based only on kinship. For

the study here, the primary goal is the accurate prediction of genetic values

and the inclusion criterion for genetic effects need not be as stringent as

that of Wang et al. (2011). The CV criterion and AIC are more suitable since

they tend to select larger models with better prediction performance

(the ranking of the genetic effects is unchanged). In comparison with CV,

AIC is easier to compute; it tends to select more genetic effects in the model,

which leads to a usually modest decrease in CV correlation coefficients.

For results reported in this paper, a 10-fold CV is used. After it is determined

how many predictors should be included in the final model, more iterations

are carried out with the selected predictors to obtain the final estimates as

in step (c).

Modeling epistasis
When the number of markers is large (hence a huge number of epistatic

effects), it is impractical to consider all epistatic effects simultaneously with a

relatively small population size. For this, we adopt two strategies. The first is

that if a group of markers are highly correlated (a common occurrence for

DArT markers), only one marker will be represented in the model. This is

equivalent to using tag single nucleotide polymorphism markers (de Bakker

et al., 2005). Specifically, we use the Hclust method of Rinaldo et al. (2005) and

pick tag markers with correlationo0.7. The second strategy is to only consider

the epistatic effects from markers showing at least a weak signal in main effects.

This approach has been successfully applied in human genome-wide association

studies (Wu et al., 2010). In particular, after tag markers are selected, adaptive

mixed LASSO for the linear mixed model, y¼Xb� þZuþ e, is first fitted with

only the main effects (in the matrix X) to generate an ordering of main effects

according to the sequence that each marker enters the adaptive mixed LASSO

solution (step 1). Step 2 starts with adaptive mixed LASSO fitting with all the

markers that are included in the optimal main-effect-only model and their

pair-wise epistatic effects, and the AIC or CV criterion is computed. Additional

markers (including their main effects and two-locus epistatic effects with other

markers in the model) are then sequential added according to the ordering

generated in step 1 until the model with the minimum AIC or minimum sum

of squared prediction error under CV is identified.

Data analysis
Missing genotypes were imputed with the marginal distribution of marker

genotypes. Only markers with minor allele frequency of at least 0.05 are

retained for analysis. The Hclust package (Rinaldo et al., 2005) was used to

select tag markers from clusters of correlated DArT markers. After the

processing, 488 DArT markers and their two-locus epistatic effects were

retained for the prediction of genetic values. The number of markers retained

in step (a), q, is set to be two-thirds of the sample size. The relationship matrix

K for 280 accessions was calculated using the emma package described in Kang

et al. (2008). Adaptive mixed LASSO was coded with R statistical software

(http://www.r-project.org). The code is available from the corresponding

author and an R package will be released upon completion.

Evaluation of performance
The prediction accuracy was evaluated using the CV correlation coefficient.

Specifically, 10-fold CV was carried out with the accessions being randomly

divided into 10 parts with equal number of accessions. When one part served

as the validation set, the other nine parts formed the training set for model

building. The adaptive mixed LASSO model built using data in the training set

was used to predict the genetic values of accessions in the validation set. The

process was repeated till all 10 parts had served as the validation set. The CV

correlation coefficient was then calculated as the Pearson correlation coefficient

between phenotypic values and the so predicted genetic values. Similar to Xu

(2007) and Wang et al. (2011), the contribution of each genetic effect to the

phenotypic variation (neglecting covariance between genetic effects) is defined

as h2j ¼s2Xj
b�2j /VarðyÞ for the jth genetic effect (main or epistatic) with s2Xj

being the variance of the jth genetic effect. In actual calculation, the estimated

values were substituted for their population equivalents.

RESULT

Adaptive mixed LASSO was used to analyze data regarding four traits,
that is, grain yield (nine locations), grain volume weight (nine
locations), plant height (eight locations) and flowering date (three
locations). The analysis was performed with main marker effects only,
as well as with both main effects and two-locus epistatic effects. The
results are summarized in Tables 1 and 2. One notable finding here is
that the inclusion of epistatic effects has a considerable impact on the
prediction power for all traits and locations. This can be seen very
directly from the result for grain yields. The prediction power using
only main marker effects are generally low, with the CV correlation
coefficient being essentially zero at some locations. An analysis using
Bayesian LASSO gives similar results. But once epistatic effects are
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incorporated, adaptive mixed LASSO achieved CV correlation coeffi-
cients of 0.44–0.65. This means that by including epistatic effects,
marker genotypes can be very useful for breeding purposes when very

little gain can be obtained when using main effects alone. Similar
results were also observed with other traits that we studied.
As seen in Tables 1 and 2, the number of epistatic effects far exceeds

that of marker main effects in the chosen mixed model for various
traits. Consider grain yield as an example, the number of main effects
ranges from 3 to 18 while the number of epistatic effects ranges from
40 to 94 in 9 locations. Also, the total number of markers involved in
the model either as main effects or as part of epistatic effects is
between 37 and 74. So for the majority of markers, the main effect has
been absorbed into epistatic effects and some markers are involved in
multiple epistatic interactions (up to 12 for the grain yield data),
which are similar to observations in Hu et al. (2011) for biparental
populations. The size of genetic effects in the models for locations 1
and 6, representing two distinct environments, is illustrated in
Figure 1. Among nine locations, the total contribution of main
marker effects (calculated as the sum of h2j ) to yield is between 3 and
12% while the total contribution of epistatic effects ranges from 39 to
83%. The largest genetic effects are from epistatic effects for all nine
locations, their contribution to phenotypic variation ranges from 3 to
8%. The general pattern observed for grain yield also holds true for
grain volume weight, plant height and flowering date. The promi-
nence of epistatic effects likely reflect the intricate structure of genetic
networks that modulate complex traits, which can only be discerned
with a large number of markers. On the other hand, one might
consider the total effect of a genetic locus to include all the epistatic
effects for which it is a party in addition to its main effect in the
model.

DISCUSSION

As mentioned in the introduction, it is still not clear how important a
role that epistasis played in determining complex traits in plant
breeding populations. There is, however, evidence that incorporating
non-additive effects could be very beneficial in some populations.
Xu and others considered two populations from experimental crosses
and arrived at strikingly different findings. In the doubled-haploid
barley population studied in Xu and Jia (2007), main marker effects
were overwhelmingly dominant in the empirical Bayes model for
all seven traits that they considered while epistasis was negligible.
In contrast, in a study using soybean recombinant inbred lines
(Hu et al., 2011), all effects included in the selected model were
epistatic effects. Hu et al. (2011) also observed significant improve-
ment in prediction accuracy for models incorporating epistatic effects
relative to purely additive models.
For plant breeding populations, Crossa et al. (2010) compared a

Bayesian LASSO method that considers only additive effects and
RKHS regression that incorporates non-additive effects. In the
analysis of grain yield for historical wheat lines from International
Maize and Wheat Improvement Center (CIMMYT), RKHS regression
out performed Bayesian LASSO for all four environments, thus
pointing to the importance of using non-additive effects, though
the picture is more mixed for the analysis of two maize data sets
considered in the paper. For comparison, we applied adaptive mixed
LASSO to the historical wheat data of Crossa et al. (2010). The
prediction accuracy of adaptive mixed LASSO using both main and
epistatic effects is similar or better than that of RKHS regression (and
better than that of Bayesian LASSO, which is similar to adaptive
mixed LASSO using only main effects) in four environments
(Table 3). This supports the incorporation of non-additive effects to
improve prediction accuracy, which is achieved by explicitly modeling
epistatic effects with our model while RKHS regression uses a more
implicit approach.

Table 1 Prediction of genetic values for grain yield and grain volume

weight

Location Cor-M Cor-M&E M&E

Main Epistatic Total markers

Grain yield

1 0.29 0.62 9 91 62

2 0.22 0.62 8 87 62

3 0.02 0.42 7 93 75

4 0.36 0.61 3 68 56

5 0.31 0.52 7 57 55

6 0.07 0.44 7 40 37

7 0.41 0.65 6 68 42

8 0.18 0.57 18 94 46

9 0.05 0.52 3 94 74

Grain volume weight

1 0.41 0.59 4 83 59

2 0.36 0.63 9 82 59

3 0.47 0.62 2 48 54

4 0.29 0.57 5 57 51

5 0.31 0.62 6 74 65

6 0.40 0.51 7 68 55

7 0.34 0.58 3 102 70

8 0.28 0.52 5 47 51

9 0.44 0.58 7 91 66

Abbreviation: LASSO, least absolute shrinkage and selection operator.
The cross-validation correlation coefficients between predicted genetic values and phenotypic
values of grain yield and grain volume weight are reported for adaptive mixed LASSO when
using main marker effects only (Cor-M) or using both main marker effects and epistatic effects
(Cor-M&E). For adaptive mixed LASSO with main and epistatic effects, the number of main
effects, two-locus epistatic effects, as well as the total number of markers involved in these
effects are also shown for the chosen model.

Table 2 Prediction of plant height and flowering date

Location Cor-M Cor-M&E M&E

Main Epistatic Total markers

Plant height

1 �0.02 0.57 2 96 76

2 0.43 0.52 5 56 60

3 0.25 0.41 2 44 54

4 0.30 0.59 4 77 61

6 0.39 0.66 9 111 57

7 0.36 0.62 3 61 55

8 0.31 0.58 10 87 61

9 0.20 0.58 3 95 73

Flowering date

1 0.39 0.60 8 88 53

2 0.41 0.60 25 93 52

3 0.50 0.65 8 111 73

Abbreviation: LASSO, least absolute shrinkage and selection operator.
The cross-validation correlation coefficients between predicted genetic values and phenotypic
values of plant height and flowering date are reported for adaptive mixed LASSO when using
main marker effects only (Cor-M) or using both main marker effects and epistatic effects
(Cor-M&E). For adaptive mixed LASSO with main and epistatic effects, the number of main
effects, two-locus epistatic effects, as well as the total number of markers involved in these
effects are also shown for the chosen model.
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To corroborate these findings with another species, we also used
adaptive mixed LASSO to analyze a CIMMYT data set regarding gray
leaf spot caused by the fungus Cerospora zeae-maydis on 278 maize
lines evaluated in Pereira (Colombia, all 278 lines) and San Pedro
Lagunillas (Mexico, 261 lines) with genotype information on 46 374
markers. The results are similar to those for wheat data. The CV
coefficient is improved from 0.502 (main effects only) to 0.855 (main
and epistatic effects) for the Mexico site and from 0.556 to 0.885 for
the Columbia site. Thus, the improvement achieved by considering

epistatic effects is not limited to the Nebraska wheat breeding
population, though the benefit may still vary with crop species and
breeding programs.
Adaptive LASSO was proposed to improve the performance of the

original LASSO by applying different degrees of penalty on regression
coefficients (Zou, 2006). Wang et al. (2011) extended the same
approach to mixed models in the setting of plant association mapping
in the form of adaptive mixed LASSO. Wang et al. (2011) and others
have discussed the importance of incorporating population structure
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Figure 1 The size of genetic effects (main marker effects or two-locus epistatic effects) included in the adaptive mixed LASSO model for grain yield, grain

volume weight, plant height and flowering date at locations 1 and 6 (flowering date was not measured at location 6). In each panel, only markers with

contributions to either main effects or epistatic effects in the chosen model are plotted.
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for association studies. For prediction purpose, the advantage of
incorporating population structure (in the form of the K matrix) lies
in that it utilizes the information regarding similarities between lines
(kinship) when making prediction in addition to using marker
genotypes. Especially when marker coverage over some genomic
regions is sparse, as in the examples considered here, kinship can
provide valuable information not reflected in marker genotypes.
In this paper, we show that adaptive mixed LASSO can also be

applied in the context of genomic selection. In separate analysis
considering main effects only, adaptive mixed LASSO out performs
the original LASSO using all main effects, suggesting the prescreening
step retains most or all useful markers. The advantage of the proposed
method is especially prominent when epistatic effects are to be
considered. The main change comparing with Wang et al. (2011) is to
use more relaxed criteria in determining the number of genetic effects
to be incorporated in the model. Similar to other shrinkage-based
methods, the majority of genetic effects are small. But as an LASSO-
based approach, adaptive mixed LASSO still results in sparse models.
In the data analyzed here, main and epistatic effects from several
dozens of markers are retained out of hundreds of markers and tens
of thousands of epistatic effects. This could be a beneficial feature as
breeders are often interested in knowing important genetic regions
contributing to the model even when gene mapping is not the
primary goal. In comparison, RKHS regression does not result in an
explicit list of markers though it also improves the prediction
accuracy by incorporating non-additive effects. An advantage of
RKHS regression is that it simultaneously takes into account higher
order epistatic effects for all markers, which could be useful when
there exists higher order epistatic interactions of importance. As the
exact genetic structure of a trait is usually unknown, there may be
cases where a non-sparse model, using a much larger number of
markers, would be preferable. This might be clarified thorough
further research. Though we only focused on two-locus epistatic
effects in our analysis, incorporating epistatic effects of more than two
loci poses no significant difficulty to adaptive mixed LASSO in the
theoretical aspect. More research is planned to ascertain its perfor-
mance in applications.
Adaptive mixed LASSO can be further extended in other directions.

Since the proposed approach is indifferent to the source underlying
the regression coefficients, at least in principle, gene-by-environment
interactions and more complex designs can be readily incorporated
with suitable modification of computation algorithms. These will be
discussed in future publications.
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