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Bayesian adaptive Markov chain Monte Carlo estimation

of genetic parameters

B Mathew!, AM Bauer!, P Koistinen?, TC Reetz!, J Léon' and M]J Sillanpaa®>*

Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and
dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive
Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with
several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance
structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an
effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects
have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was
approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In
addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood)
estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the
posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no
dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.
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INTRODUCTION

Estimations of heritability (proportion of phenotypic variance attri-
butable to genetic factors) and breeding values are of great interest
because they are necessary to plan an efficient breeding program for
the trait of interest. Therefore, considerable effort has been devoted to
develop new statistical methods that estimate the breeding values and
heritability in the linear mixed model context (Lynch and Walsh,
1998). However, when the random effects or variance components
fitted to the model have multiple ‘solutions’ among their parameter
spaces given the observed data, such parameters are said to be
unidentifiable. Even if it is often well justified to include multiple
random effects into the model (for example, Wall et al, 2005), in
practice, identifiability problems due to small data size and the
familial structure of the data complicate the estimation of random
genetic effects and their variances (Misztal, 1997; Waldmann et al.,
2008; Norris et al., 2010). Evolutionary studies of natural populations
can be more prone to this problem because data sets that are used for
mixed model analyses of natural populations are typically much
smaller than those that are used in plant or animal breeding (Kruuk,
2004; O’Hara et al., 2008). In addition, the pedigree information for
natural populations may be inaccurate and/or incomplete.

Bayesian methods can be applied to estimate genetic parameters
(for example, Wang et al., 1993; Blasco, 2001; Sorensen and Gianola,
2002; Hadfield, 2010), and such methods can, unlike REML (residual
maximum likelihood), be helpful in diagnosing identifiability pro-
blems. In the Bayesian approach, one combines what is known about

the parameter (represented as a prior distribution) with the informa-
tion that comes from the data to obtain the posterior distribution. This
probability distribution represents the uncertainty about the parameter
after the data has been taken into account (for example, Blasco, 2001).
In the Bayesian approach, one is not limited to calculating only point
estimates of variance components (as is traditionally done in a REML
analysis) or only their confidence intervals, but one may explore any
aspect of the remaining uncertainty, such as the uncertainty in the
estimation of heritability. The standard computational approach is to
use Markov chain Monte Carlo (MCMC) methods to draw samples
from posterior distributions. The Gibbs sampler and the Metropolis—
Hastings (M—H) algorithm are the two commonly used MCMC
methods. The Gibbs sampler (Casella and George, 1992) uses draws
from the fully conditional posteriors, and is a special case of M-H
sampling (Chib and Greenberg, 1995).

Recently, Bauer et al. (2009) and Waldmann et al. (2008) applied
Gibbs sampling to quantitative genetics research studies in plants, and
the latter article developed a fast hybrid Gibbs sampler that accounted
for additive and dominance variances in the mixed model. In a study
carried out by De Boer and Hoeschele (1993), it was shown that the
presence of inbreeding induces nonzero covariances between additive
and dominance effects. However, Bauer et al. (2006), Oakey et al.
(2006), Bauer and Léon (2008) predicted the breeding values
(assuming no dominance) for self-pollinating crops by accounting
for inbreeding among the lines. When nonzero covariance exists due
to inbreeding, computational procedures for the estimation of the
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variance components are further complicated. In our current study,
we do not consider inbreeding together with dominance.

Since the 1980s, the use of MCMC methods has revolutionized the
Bayesian analysis of complex statistical models (Robert and Casella,
2004). Even today, much focus is given to improving the efficiency
and convergence of MCMC samplers. The efficiency of an MCMC
algorithm critically depends on the transition kernel of the MC
(Hastings, 1970; Roberts and Rosenthal, 2001), but the choice of an
efficient kernel, which produces a rapidly mixing chain, is often
difficult. Therefore, adaptive MCMC algorithms have been proposed
that can use the previous history of the chain to learn the proposal
distribution parameters. These adaptive algorithms are efficient for
exploring the posterior distribution of the model using the data at
hand. Recent developments (Haario et al, 2001; Rosenthal, 2011)
have increased the interest in applying adaptive MCMC methods in
research studies. Although these methods would allow one to keep
adapting the proposal distribution during the whole time the
algorithm runs, we selected the proposal distribution on the basis
of a learning phase, whose output we otherwise omitted from the
posterior analysis. After the learning phase, we fixed the proposal
distribution so that we were able to justify the use of analysis tools
(such as the effective sample size (ESS)) that have been developed for
analyzing the output from non-adaptive MCMC algorithms. As we
stopped adapting after the learning phase, one could argue that our
algorithm was not truly adaptive. However, because we manage to
reduce analytically the number of unknowns down to three, the
benefits of adaptation can be obtained in this simplified manner.
Moreover, our method of selecting the proposal distribution is
strongly motivated by the work on adaptive MCMC methods.

The hybrid Gibbs sampler is a combination of both a single-site
Gibbs sampling algorithm (for example, Sorensen and Gianola, 2002)
and a blocked Gibbs sampling algorithm (Garcia-Cortes and
Sorensen, 1996). The convergence of the single-site Gibbs sampler
can be slow due to posterior dependencies. In our new approach, the
adaptive MCMC runs in two phases. First, in the learning phase, we
ran the MCMC algorithm to obtain an estimate of the posterior
covariance structure for log-transformed variance components. In the
learning phase, we used a hybrid Gibbs sampler to sample random
(additive genetic and dominance) effects. The dependencies among
breeding values and dominance effects slow the convergence of the
MCMC chain. So the effect of breeding values and dominance effects
were marginalized away (integrated out analytically) before comput-
ing the posterior for the second phase, which we call the adapted
phase. In the adapted phase, we utilized the estimated covariance
structure from the learning phase, to generate multivariate correlated
proposals for (log-transformed) variance components in a random
walk M-H algorithm. The acceptance of these proposals was checked
jointly as a single block. Block updates of the variance components
after marginalizing the random effects helped the MC to converge to
its equilibrium distribution reasonably fast.

In this study, we developed a fast adaptive MCMC algorithm for
the estimation of additive and dominance variance in the traditional
infinitesimal model without inbreeding. We compared the efficiency
of the two estimation algorithms (conventional and adaptive MCMC
samplers) with simulated and real data sets. In this assessment, it was
important to ensure that differences in the analysis results were not
due to reasons other than real differences in the sampling efficiencies
between the two algorithms. Weak identifiability of variance compo-
nents would make a fair comparison difficult. To alleviate this
problem, we decided to simulate moderately high heritability.
At the same time, we wanted to keep the number of individuals in
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our sample relatively small to maintain reasonable computation times
in the examples. However, results from these example analyses of data
with high heritability and small sample size arguably correspond to
the results obtained from more realistic data with smaller heritability
and a larger sample size.

MODELS AND METHODS
Model 1
We consider the mixed linear model (Henderson, 1985a,b):

y=XB+Zia+Zd+e, @)

where y is an n x 1 vector of phenotypic observations, f§ is a k x 1 vector of
fixed (environmental) effects, a is a g x 1 vector of random additive genetic
effects, d is a g x 1 vector of random dominance genetic effects and eisa n x 1
vector of error terms, which are independently normally distributed with mean
zero and variance ¢,2. Moreover, X, Z; and Z, are known incidence matrices,
where X associates f§ to the phenotypic observations y. For the simulated data
sets, Z; and Z, associate genetic effects, @ and d, respectively, to the observation
vector y. For the field data, Z; and Z, associate random additive genetic effects
a and G x E (genotype-by-environment interaction) to y. The numerator
relationship matrix A, which describes additive genetic relationships between
lines, can be calculated from pedigree information using well-known methods
(for example, see p 763 in Lynch and Walsh, 1998) or alternatively, its inverse A -1
can be calculated directly (Henderson, 1976; Quaas, 1976). Similarly, the
dominance matrix D, which describes dominance genetic relationships among
lines, can be calculated from pedigree information (for example, see p 768 in
Lynch and Walsh, 1998; Waldmann et al., 2008) or alternatively; its inverse can
be calculated directly (Hoeschele and VanRaden, 1991). We want to emphasize
that for studies of genotype-by-environment interactions, the methodology
presented here works simply by considering the G x E covariance structure in
place of D. For details of the G x E covariance structure, see Bauer et al. (2009).

In the following sections, we present two different hierarchical models; the
former to be used in the learning phase and the latter in the adapted phase of
the estimation algorithm. If all the priors are chosen to be the same, then these
two hierarchical models are identical, except that most parameters have been
integrated out analytically from the latter.

Hierarchical model 1

Let the precision parameters i/, ¥4 and , be the inverses of the variances o,
o/ and 62, respectively. Then using model 1, the phenotypic observation for a
given trait is modeled as a linear combination of explanatory variables. For
given f, a, d and V,, vector y follows a multivariate normal distribution

y | Ba,d b, ~ MVN(XB+Zia+2,d, 1)), )

where 1/, is the residual variance of the model. Let 6 =(f, a, d) be the
unknown location parameters and Y= (Y, ¥4 V. be the precision
parameters. By Bayes theorem, the joint posterior density of unknown
parameters is proportional to

PO,y | y) occp(¥)p(0 | ¥)ply | 0,9), ®)

where p() = p(¥a)p(ba)p(re) and p(0]y) = p(B)p(alra)p(dlsa) are the prior
distributions and p(y|0, ¥) is the likelihood from Equation (2). For the
Bayesian analysis, one must assign a prior distribution for the unknown model
parameters. Therefore, f§ was assigned an improper uniform prior distribution.

p(p) x constant. (4)

Conditionally on the precision parameters, the genetic effects were assigned
multivariate normal prior distributions with a zero mean vector 0 (of size g),

a I l//u ~ MVN(07A/l//a)= d ‘ l//d ~ MVN(()»D/l//d) (5)

Before assigning a prior distribution for the precision parameters, we
standardized the phenotypic observation vector y to use the same prior
for different data sets (which may originally have had very different
phenotypic scales). After the standardization, the precision parameters ¥,
V4 and , were assumed to follow a gamma prior distribution with parameters



k; and Z; and mean k;/Z;,
V; ~ Gammal(k;, 4;), i=a,d,e. (6)

We chose k;=1 and 2;=0.001 (that is, the exponential distribution with
mean 1/;) to obtain flat priors. This choice allows the variance components to
be shrunk to very nearly zero, if this is warranted by the data. This follows
because the prior Equation (6) implies an inverse gamma prior with
parameters (k;, /;) for the variance component 2. The inverse gamma density
increases from a value of zero to its maximum at the mode 4;/(k; + 1) and then
decays slowly. Shrinkage-type priors have been used before, for example, in
variable selection (O’Hara and Sillanpdd, 2009) and in haplotype estimation
(Gasbarra et al., 2011), as well as in the penalized likelihood estimation of
genetic covariance matrices (Meyer and Kirkpatrick, 2010).

Hierarchical model 2

In the adapted phase of the algorithm, we use a model in which all the
unknown location parameters 0 are integrated out from model (1). The joint
posterior density of parameters ¥ is

P | y) occp()ply | ). 7)

To mimic the improper uniform prior Equation (4), the fixed effects § were
assigned a normal prior distribution with a zero mean vector 0 and a large
covariance matrix Baj, where o = 106,

B ~ MVN(0, Bay).

Here, B is the unscaled prior covariance matrix between fixed effects. The
genetic effects @ and d were assigned the multivariate normal priors
Equation (5), and the variance components, the gamma priors Equation (6).
After these choices, it is a simple matter to integrate out the location parameters
from the model (cf. pp 313-314 in Sorensen and Gianola, 2002), namely

y |y ~ MVN(0,%), (8)
where ¥ = XBX'0§ + Z\AZy' ia+ Z,DZ) Wia+ 1.

Estimation in the learning phase

To implement the Gibbs sampler, one needs the fully conditional posterior
distributions of all unknown parameters (0 and ) of hierarchical model 1.
These can be found, for example, from Waldmann et al. (2008). To update 0,
samples can be drawn either element-wise or block-wise from the fully
conditional posterior distribution

01w,y ~ MVN(@0.C™'/y,), 9)
where 0 is the solution to the linear system CO = W'y. Here,
0 0 0
C=WW+V, W=[X,Z,Z], V=[0 A lg, 0 (10)
0 0 Doy,

with o, =Y/, 0= al\Y,. The precision parameters are sampled from their
fully conditional posterior distributions,

Y; | 0,y ~ Gamma(k}, A7),
where  ko=k,+ql2, Jp=lg+(@AT@)2, ki=ki+q2, Ay=Ig
+(dD'd)2, ky=k,+n/2, and 2, =, + 1/2|ly —XB —Z1a —Z,d|]*. During
the learning phase of the algorithm, we use a hybrid Gibbs sampler with a

block update every 50th iteration to sample the random additive and
dominance effects. See the appendix for details of the sampling algorithm.

i=a,d,e

Estimation in the adapted phase

We use the history of the chain during the learning phase to form the proposal
distribution for the parameters of hierarchical model 2. In the second, adapted
phase of the algorithm, we use an M—H algorithm to update the log-variance
components block-wise using putative samples generated from the learned
proposal distribution.

Our M-H algorithm uses random-walk proposals; the proposed parameter
vector is generated by adding to the current parameter vector an increment
from a multivariate normal distribution with a zero mean and covariance
matrix Sp. We base our selection of the proposal covariance matrix on the
theoretical results of Roberts et al. (1997) and Roberts and Rosenthal (2001).
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These authors showed that if the posterior distribution is approximately
multivariate normal with covariance matrix S, then the optimal choice for
the proposal covariance matrix S, is approximately (2.38)%/d S, where d is the
number of unknown parameters in the posterior distribution. To improve our
ability to use this result, our algorithm works on the logarithmic scale, that is,
we use the vector T = (t,, T4 T.) as the new parameter vector, where the 7’s are
the logarithms of the variance components, 7, = log(aiz) = —log(y),i=a,d,e.
This reparameterization eliminates the positivity constraints that are present for
the variance components or their inverses. At the same time, it makes the
posterior distribution resemble a multivariate normal distribution more closely.
As the posterior covariance matrix S of the vector 7 is unknown, we estimate it
with the sample covariance matrix $, which is calculated from the log-
transformed variance components that are simulated during the learning phase.

After the proposed parameter vector 7" has been generated by adding a noise
vector to the current parameter vector 7, the proposed 7" is either accepted or
rejected as the new state of the MC based on the value of the M—H acceptance
ratio r, which is now given by

L PPy [T) (11)
p() py|7)

Here, the likelihood ratio can be evaluated based on Equation (8), after the
log-transformed variance components 7= (T, T4 T,) and T = (T4 T'g T0)
have been transformed to precision parameters, using the formulas

i=e T Yi=e T

For 1, the likelihood is

_ 77.' —n/2 1 ex 7& /vy —1
19 = () o] - 32y

i=a,d,e.

(12)

where X is the covariance matrix of y, conditionally on the current values of
the parameters,

S =XBX'0} + Z\AZ\ /b, + Z:DZy /g + 1/,

For 7', the likelihood p(y|t") is obtained from a similar formula in which £
is replaced by the covariance matrix of y conditional on the proposed values of
the parameters,

5" =XBX'0},+ Z1AZ) /i, + Z.DZy /iy + I/

See the appendix for the details of how the likelihood ratio is calculated.
To evaluate the prior ratio p(t")/p(r) in Equation (11), we must take into
account that we have formulated the prior for the vector of precision
parameters . Using the change-of-variables formula for probability densities,
the prior ratio can be calculated as

p(x) _p(W7) 1T |

p(x)  p()IT]

Here, p() = p(Walkas 2)pWalkas 20)p(Welke Ae) is the product of the three
gamma densities, Equation (6); and similarly, p(i/") is the product of the same
gamma densities evaluated at the proposed precision parameters. Furthermore,
J= —exp(—1,—74—1,) is the Jacobian (determinant) arising from expressing
Y in terms of 7, and J'= —exp(—1, —14 —7,) is the Jacobian from
expressing /" in terms of t". In the actual M—=H algorithm, we first calculate
the logarithm of the M—H ratio r, and then we calculate the logarithm of the
ratio of the absolute Jacobians,

J " « *

|| i || = - (‘ca —Ta+ T, —Ta+7T, 71}).
The sampling algorithm during the adapted phase is as follows. First, we

estimate the posterior covariance matrix S of the log-transformed variance

components from the output of the learning phase and calculate the proposal

covariance matrix as S, = (2.38)*$/d. Then, we iterate the following steps:

(13)

log

(14)

1. Let t be the current values in logarithmic scale. Generate new values t* =
7+ w, where w is simulated from MVN (0, Sp)- Transform 7 and ©° to
precision parameter vectors i and V.

2. Calculate the logarithm of the M—H acceptance ratio log(r) using Equations
(11)-(14).

3. Accept the proposed value 7', if a random number drawn from the uniform
distribution over [0,1] is less than r. If the proposal is accepted, then the
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. * .
proposed parameter vector is taken as the current vector t=1, otherwise,
the current value is retained.

As the breeding values and dominance effects have been integrated out from
the likelihood, this sampling algorithm reduces the problems of the Gibbs
sampler that arise due to posterior dependences between the random effects
and variance components.

The whole adaptive algorithm, consisting of the learning phase and adapted
phase, is described more fully in the appendix. It has been implemented in the
Matlab (2007) environment, where most of our analyses have also been
performed.

Effective sample size
ESS (Geyer, 1992; Waagepetersen et al., 2008) is a popular diagnostic tool for
MCMC methods. ESS determines the approximate number of independent
samples that would provide the same estimation accuracy as the dependent
MCMC samples. The ESS values were calculated with the R package coda
(Plummer et al., 2006).

EXAMPLE ANALYSES

Simulated data

We developed a C program that simulates ‘virtual’ populations for the
variance component estimation. Owing to the identifiability problems
faced during the analysis, we decided to consider two different data
sets, one of which resulted in an unimodal posterior distribution of
dominance variance and the other in a bimodal posterior. To develop
the bimodal data set, we considered a base population of 50 unrelated
lines, wherein each of the 25 females were mated with 25 males, and
each crossing resulted in five offspring (in total, 3175 individuals,
including the base population). For the unimodal data set, we
considered a base population of 40 lines, 20 females and 20 males,
and each crossing resulted in nine offspring (in total 3640 individuals,
including the base population).

Additive genetic relationship matrix A and dominance relationship
matrix D were calculated from the pedigree information as described
in the model section. To simulate a quantitative trait y, we generated
three factors; the additive effect a, the dominance effect d and noise e,
and the vector of phenotypic observations was calculated as their sum,

y=a+d+e.

Here, vectors a, d and e were drawn from MVN(0, Ac?), MVN(0,
Do }) and MVN(0, Io?), respectively. We used the Cholesky decom-
position of the covariance matrices Ac? and Do ; to draw samples
from these distributions. Hence, the random genetic effects a and d
were calculated as a = Pz, and d = Tz;, where z;~MVN(O0, I) and P
and Tare the Cholesky factors PP =A¢? and TT = Do 3. To validate
our estimation methods, we generated the two data sets using a
heritability of 0.31 (g7 =800, 6} =600, 62 =3025). Using the same
set of parameters, we generated 10 simulation replicates of the
unimodal data set (an existing unimodal data set and 9 new
replicates) by sampling new residuals e from MVN(0, Is2), each
time, keeping the original pedigree. However, one realization was
removed and simulated again because it resulted in a bimodal
posterior.

QTLMAS XII workshop data
This is the simulated data set obtained from the QTLMAS XII
workshop web page, http://www.computationalgenetics.se/QTLMAS08/
QTLMAS/DATA html.

The data set was generated following an animal breeding protocol,
consisting of 5865 individuals from seven generations. For the first
four generations (a total of 4665 individuals), both pedigree and
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phenotype information are available, and we considered this subset of
the data for our analysis. The additive genetic relationship matrix A
and dominance relationship matrix D were calculated from the
pedigree information.

Field data

Real data from 82 spring barley (Hordeum vulgare L.) lines originating
from the German North Rhine Westphalia (Bauer et al., 2006, 2009;
Bauer and Léon, 2008) core collection were analyzed. These lines were
cultivated in a randomized complete-block design with three replica-
tions over 3 different years (2001, 2002 and 2003) at the Research
Station ‘Dikopshof” of University of the Bonn, Germany. For the real
data, a few replications were missing, and the missing values were
imputed by the average value of non-missing replications for the
corresponding year. There are a number of alternative ways of dealing
with missing data. However, as the number of missing values was very
low, we expected that method used would not make a significant
difference. Pedigree information was available for all the lines, and the
phenotypic observations of the trait ’thousand kernel mass’ were
measured for all the lines. For the field data, we considered genotype-
by-environment interaction instead of the dominance relationship in
the linear mixed model (1) and accounted for the inbreeding among
lines. Following Bauer et al. (2009), two different covariance
structures were applied to model the genotype-by-environment
interaction. In the first approach, called Bayes_ID, the genotype-by-
environment interaction was assumed to be independently and
identically normally distributed. In the second approach (Bayes_A®),
an extended relationship matrix A®'=A®]I (here ‘®’ is the
Kronecker product of two matrices) was used to model the
genotype-by-environment interaction. Moreover, the fixed year effect
was considered in the X matrix, along with the overall mean for the
analysis. Note that in model (1), the simplifying assumption of
independent errors with the constant variance was again made
(cf. Burgueno et al., 2012; Piepho et al., 2012).

Analyses and results, simulated data

To validate our new algorithm, we analyzed the two simulated data
sets; the unimodal data set with 3640 individuals and the bimodal
data set with 3175 individuals. The estimates for variance components
based on all the individuals of the two simulated data sets and 10
simulation replicates were calculated using our adaptive MCMC
method and the REML method (Tables 1 and 2). The REML
estimates of the variance components were calculated using ASReml
software (Gilmour et al., 2006). True values, given in Table 1, are the
values used in the simulations. The implemented MCMC had a total
chain length of 50000, consisting of a burn-in period of 2000
iterations, a learning phase from iteration number 2000 to 5000,
and finished with the adapted phase from iterations 5000 to 50 000.
Acceptance ratios for the bimodal and unimodal data sets were 28%
and 26%, respectively. The point estimates, mean and median of the
posterior distribution of the variance components were calculated
from the MCMC samples. To calculate the mode of the posterior
distribution, a kernel smoothing approach following Hoti et al. (2002)
was used.

In Table 2, we demonstrate that Bayesian point estimates averaged
over 10 replicates for variance components were always more close to
the true simulated values than the averaged REML estimates. The
same was often true for the extreme values (minimum and
maximum) of the estimates over 10 replicates. This suggests that
the Bayesian adaptive MCMC method can give variance component
estimates that are competitive with the REML estimates.


http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html
http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html

A properly implemented MCMC sampler should be able to cover
all the areas supported by the target distribution, but the existence of
multiple modes makes this difficult (Geyer and Thompson, 1995).
A conventional MCMC algorithm may fail to jump between
the different modes and therefore may visit only a single mode.
Although running the chain for a very long time may remedy this
problem, this is computationally highly demanding. In our approach,
the posterior covariance structure estimated from the learning phase
helps the sampler to move freely between the different modes of the
target distribution. Our MCMC algorithm was able to detect two
different modes in the posterior for dominance and residual variances
in the bimodal data set, whereas REML always returns a single mode
(and the identified mode may depend on its starting values). Table 3
summarizes the rough estimates for two different modes (estimated
using the kernel smoothing approach; see Hoti et al, 2002.) The
posterior mode 1 values of dominance and residual variance are close
to the true simulated values and are somewhat better than the
corresponding REML estimates. The posterior mode 2 values of
dominance and residual variance are poor, and their existence
indicates that there is an identifiability problem. From Figures 1
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and 2, it is clear that the adaptive MCMC algorithm is able to move
between the different modes of the posterior of the bimodal data set.
It can be seen from Figures 1 and 3 that our new adaptive MCMC
algorithm was able to detect different modes in the distribution with a
relatively low number of iterations, whereas the conventional MCMC
method had problems visiting the different modes. To visualize the
different modes in the posterior, a histogram with hexagonal bins was
drawn for the log-transformed dominance and error variance
components (Figure 3) with the aid of the hexbin package of R.

Table 3 The two different modes of the variance components for the
simulated bimodal data set

Mode 1 Mode 2 REML True
05 675.40 2.67 716.00 600
o8 3020.20 3505.2 2882.60 3025

Abbreviation: REML, residual maximum likelihood.
The posterior mode estimates are obtained from the adapted phase of the Markov chain Monte
Carlo analysis. REML estimates and true simulated values are also shown.

Table 1 The estimates of variance components and broad-sense heritabilities for the learning and adapted phases from the MCMC analyses of

the two simulated data sets

Learning phase Adapted phase REML True
Mean Median Mode Mean Median Mode
Bimodal data
o2 672.57 607.73 573.67 721.49 695.87 679.37 752.99 800
ag 545.93 510.21 453.20 493.10 522.30 675.40 716.00 600
02 3107.70 3143.70 3013.70 3132.10 3105.00 3020.20 2882.60 3025
h? 0.28 0.26 0.25 0.27 0.28 0.30 0.33 0.31
Unimodal data
o2 873.36 820.90 879.80 751.20 744.53 779.80 781.28 800
og 619.36 642.23 658.70 591.50 585.77 579.80 571.68 600
62 2845.40 2865.00 2894.70 2965.00 2971.90 2960.90 2928.79 3025
h? 0.34 0.33 0.34 0.33 0.31 0.31 0.31 0.31

Abbreviations: MCMC, Markov chain Monte Carlo; REML, residual maximum likelihood.

REML estimates and true simulated values are also shown. The names ‘unimodal data’ and ‘bimodal data’ are based on the characteristics that these data sets exhibited during the MCMC analysis.

Table 2 Estimated variance components of two Markov chain Monte Carlo algorithms and REML based on 10 simulation replicates

cf 05 cf
Avg Min Max Avg Min Max Avg Min Max

Learning phase

Mean 778.04 659.95 873.01 593.67 512.86 698.77 3031.13 2845.09 3184.00

Median 767.32 627.37 831.31 584.36 503.76 690.93 3057.02 2894.05 3191.20

Mode 728.63 518.87 879.81 568.09 515.13 658.08 3008.63 2737.08 3282.07
Adapted phase

Mean 774.70 732.99 839.36 577.07 545.11 620.89 3065.10 2901.00 3184.05

Median 764.48 718.31 827.60 574.23 529.86 615.08 3069.23 2907.08 3191.20

Mode 779.02 747.16 838.08 580.98 531.31 634.40 3103.76 2928.00 3284.50

REML estimates 731.27 588.17 881.47 555.99 527.02 629.06 3064.94 2928.00 3174.91

True values 800.00 600.00 3025.00

Abbreviation: REML, residual maximum likelihood.

True simulated values are also shown. Average, minimum and maximum values of the posterior (mean, median and mode) and REML estimates are calculated for variance components from the

analyses of 10 simulation replicates.
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Figure 1 The logarithm of the variance components for the bimodal data set

plotted against the MCMC iteration number. The trace plots show 45000
iterations from the adapted phase.

Analyses and results, QTLMAS XII workshop data

We considered a subset of 4665 individuals (the first four generations)
from the QTLMAS XII workshop data for the analysis. The pedigree
information for the first four generations was available, and hence A
and D matrices were calculated from the pedigree. The heritability of
the QTLMAS XII workshop data was around 0.30 with the zero
dominance effect. For further details of the data, see Lund et al. (2009).
Our main motivation in analyzing the QTLMAS data set was to test
how our method behaves in the absence of a dominance effect. The
variance components were estimated using the adaptive MCMC and
the REML methods (Table 4). The implemented MCMC had a total
chain length of 50000 with a burn-in period of 2000 iterations, a
learning phase from iteration number 2000 to 5000, and the adapted
phase from iterations 5000 to 50 000. The acceptance ratio for the data
set was 35%. The point estimates were calculated as before. In our
analysis, we obtained a heritability of approximately 0.30. Hallander
et al. (2010) used a different prior and obtained a heritability point
estimate of 0.34 from a smaller subset of data, using a Bayesian model
containing additive polygenic effects only. They used uniform distribu-
tions as non-informative choice of priors to the standard deviations.

Analyses and results, field data

The trait ’thousand kernel mass’ for 82 spring barley lines from 3
different years with three replications were considered for analysis
with our adaptive MCMC method and the REML method using
ASReml software (by assuming the same covariance structure for the
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Figure 2 The logarithm of the variance components for the unimodal data
set plotted against the MCMC iteration number. The trace plots show
45000 iterations from the adapted phase.

genotype-by-environment interaction as in Bayes_ID). The imple-
mented MCMC method had a total chain length of 50 000, consisting
of a burn-in period of 2000 iterations, a learning phase from iteration
number 2000 to 5000, and finishing with the adapted phase from
iterations 5000 to 50 000. For analysis, each year was considered as a
different location. Therefore, to account for the number of locations,

heritability was calculated using the formula (Hanson, 1963):
h2 — O_ﬁ
o+ (2.i) + (o)

where 62 is the additive genetic variance, O';?xe is the variance due
to genotype-by-environment interactions, ¢ is the error variance, j is
the number of years and k=3 is the number of replications. We also
calculated the point estimates and 95% highest posterior density
intervals for the posterior distribution from the adapted phase of the
algorithm using the Bayes_ID and Bayes_A®' methods (Table 5). Bauer
et al. (2009) considered data from two different years (2002 and 2003)
for the analysis; and in our current study, we considered data from 3
different years (2001, 2002 and 2003). Hence, our analysis provided
higher heritabilities than in Bauer et al. (2009). Both studies showed
that the Bayes_A®' estimates were closer to the REML estimates.
Moreover, results from both studies indicated that it is important
to consider the relationship information between lines in a Bayesian
model when estimating the genotype-by-environment interactions.



Effective sample size

ESS values were calculated for different data sets from both the
learning phase and the adapted phase. ESS is a measure of the mixing
properties of the MCMC chain. High values of ESS imply that the
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Figure 3 Histogram of the log-transformed dominance and error variance
components using hexagonal bins.

Table 4 The estimates of the variance components and broad-sense
heritabilities for the learning and adapted phases from the Markov
chain Monte Carlo analysis of the QTLMAS XII data set

Learning phase Adapted phase REML True

Mean  Median  Mode  Mean  Median  Mode
o2 1.33 1.32 1.10 1.34 1.33 1.31 1.35 1.36
05 0.09 0.10 0.10 0.01 0.00 0.00 0.00 0.00
o2 3.06 3.06 2.84 3.13 3.13 3.15 3.12 3.20
h? 0.46 0.46 0.29 0.30 0.29 0.29 0.30 0.30

Abbreviation: REML, residual maximum likelihood.

REML estimates and true simulated values for the entire pedigree are also shown. The true
value for the additive variance was calculated as the variance of true genomic breeding values
omitting relationships between individuals, and the residual variance was calculated
accordingly to obtain a heritability of approximately 0.30.
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autocorrelation is low and are an indication that the mixing of the
MCMC chain is good.

Adequate mixing of the MCMC sampler over different parts of the
parameter space is essential for the convergence of MCMC algo-
rithms, but conventional MCMC algorithms may suffer from slow
mixing. From the trace plots (Figure 4), for the learning phase and
adapted phase, it seems clear that the adapted MCMC was mixing
well compared with the general hybrid Gibbs sampler (used in the
learning phase). Thus, the adaptation significantly improved the
mixing property of the algorithm, by learning an appropriate
covariance structure for the proposal distribution. This visual
impression is confirmed by Table 6, which summarizes the ESS for
the unimodal, bimodal and QTLMAS data sets. In addition, the ESS
values and the ESS ratios were calculated for the 10 simulation
replicates (see Table 7). The ESS ratios were calculated by dividing the
ESS from the adapted phase by the ESS from the learning phase. The
ESS ratio gives how many more learning phase iterations one needs to
run to obtain the same estimation accuracy as with the adapted phase.
Based on the ESS values, one needs to run the standard MCMC chain
(learning phase) at least six times longer to obtain comparable
estimates as with from the adapted phase MCMC sampler. To
calculate the ESS, an MCMC chain with a length of 3000 from the
learning phase and a chain of the same length from the beginning of
the adapted phase were considered after a burn-in period of 2000
iterations. For the field data, the ESS was calculated using Bayes_ID

75

B5F

1

a
0 1000

L

4000

1 1 L
2000 3000 5000 6000
Figure 4 Trace plot of the log-transformed additive variance component for
the unimodal simulated data set. The first 3000 samples are taken from
the learning phase and the remaining samples are from the adapted phase.

A full color version of this figure is available at the Heredity journal online.

Table 5 The estimates of variance components, heritabilities and the 95% HPD intervals for the field data from the adapted phases of the

algorithm using Bayes_ID and Bayes_A®X covariances

Bayes_ID Bayes_Aext REML

Mean Median Mode 2.5 97.5 Mean Median Mode 2.5 97.5
o2 9.27 9.13 9.08 5.15 13.54 9.10 9.15 9.05 5.20 13.69 9.21
ah2 2.45 2.49 2.60 0.00 4.61 2.98 2.70 2.84 0.00 4.77 3.18
o2 17.67 17.58 17.50 15.33 20.30 17.18 17.23 17.29 15.36 20.25 17.08
h? 0.76 0.76 0.76 0.76 0.76 0.76 0.75

Abbreviation: REML, residual maximum likelihood.
REML estimates are also shown.
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Table 6 ESS for 3000 iterations of the two Markov chain Monte
Carlo algorithms with the unimodal, bimodal, QTLMAS and field data
sets

Learning phase Adapted phase
o2 crdz 5 o2 (Sd2 o
Unimodal data set
ESS 10.36 8.76 29.56 176.71 318.15 191.81
Bimodal data set
ESS 12.82 12.10 11.27 240.56 159.68 176.44
QTLMAS data set
ESS 41.24 3.58 116.98 242.90 93.37 204.64
Learning phase Adapted phase
af 0f xe aé a? oGxe oé
Field data (Bayes_ID)
ESS 178.28 21.35 27.85 125.72 196.51 133.22
Abbreviation: ESS, effective sample size.
Table 7 Efficiencies of two MCMC algorithms based on 10
simulation replicates
Learning phase Adapted phase ESS ratio
Avg Min Max  Avg Min Max Avg Min Max

62 17.96 10.01 22.66
62 17.08 8.09 24.64
02 34.17 20.29 44.88

185.34 162.67
231.32 136.18
231.02 175.47

236.52 10.31 16.25 10.46
318.08 13.54 16.83 12.90
276.06 6.76 8.64 6.15

Abbreviations: ESS, effective sample size; MCMC, Markov chain Monte Carlo.

Average, minimum and maximum values of ESS are calculated for variance components from
the analyses of 10 simulated data sets. Each MCMC analysis was run for 3000 iterations. In
addition, the ESS ratio (adapted phase/learning phase) for the 10 simulation replicates is
also given.

covariances. The ESS values from Tables 6 and 7 clearly support better
mixing properties of variance components in the adapted phase for all
the data sets. Our prior allows the chain to mix well, and at the same
time, it allows a realistic estimate of the dominance variance in the
case of no dominance, because in such a case the prior shrinks the
posterior towards zero.

When the target distribution is multimodal, the conventional
MCMC algorithm may have difficulties moving between modes.
Additionally, the REML method fails to identify different modes of
the distribution. Our new adaptive MCMC algorithm was able to visit
the different modes even after a low number of iterations and
exhibited good mixing properties.

DISCUSSION

One of the main problems associated with Bayesian analysis of mixed
models with several random effects is that the analysis is computa-
tionally demanding. Waldmann et al. (2008) have shown that the
hybrid Gibbs sampler is much faster than the normal blocked Gibbs
sampler for estimating additive and dominance genetic variances in
the traditional infinitesimal model. In our current study, we
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compared the performance of the hybrid Gibbs sampler with an
adaptive MCMC method using simulated pedigree data sets with
non-zero additive and dominance genetic variances but no inbreed-
ing, showing that the new adaptive MCMC algorithm was almost two
times faster than the hybrid Gibbs sampler. To compare the running
times, we compared an adaptive MCMC chain of total length 50 000
(a burn-in period of 2000 iterations, 3000 iterations in the learning
phase and 45 000 iterations in the adapted phase) with a hybrid Gibbs
sampling chain of the same total length (a burn-in period of 2000
iterations and 48000 iterations from the normal hybrid Gibbs
sampling). What is more, the adaptive algorithm has superior mixing
properties, as is shown by the ESS in Tables 6 and 7. The increase in
speed is partly due to the fact that, unlike the algorithm of Waldmann
et al. (2008), our adaptive MCMC method does not sample additive
and dominance genetic values for individuals. In the adaptive MCMC
algorithm (see appendix for details), the determinants and quadratic
forms associated with the covariance matrices at the proposed and
current points are needed to calculate the likelihood ratio. Once the
proposed value is accepted, the determinant and quadratic form at
the current point can be replaced by the determinant and quadratic
form corresponding to the accepted variance components. This makes
the calculation of the likelihood ratio computationally lighter than the
block update of the Gibbs sampler. A MATLAB implementation of
the adaptive method (described in the appendix) is available in the
Supplementary Materials.

During the adapted phase of the algorithm, our sampler generates
values only from the marginal posterior of the variance components.
Even if our method is primarily intended for the estimation of the
genetic variances, it is possible to generate MCMC samples for the
additive and dominance genetic values afterwards, by sampling them
block-wise from their fully conditional posterior distribution con-
ditionally on each of the values of the variance components in the
MCMC sample generated by the adaptive MCMC sampler. In
contrast, in the normal hybrid Gibbs sampler, the genetic values are
sampled conditionally on each of the values of the variance
components. We tested this procedure by calculating the genetic
values for the QTLMAS workshop data with the blocked Gibbs
sampler conditionally on every 10th realization (of three variance
components) out of 45000 samples from the adapted phase. The
linear correlation between the true genetic values (that is, the sum of
the additive and dominance values) and the estimated genetic values
value was around 0.71 for the QTLMAS workshop data. In addition,
the genetic values given by ASReml showed a correlation of
approximately 0.71 with the true genetic values for the same data
set. Our adaptive MCMC genetic values showed a strong correlation
of approximately 0.99 with the genetic values from ASReml,
demonstrating that our posterior mean estimates were close to the
classical point estimates.

De Boer and Hoeschele (1993) showed that the presence of
inbreeding changes the mean and complicates the genetic covariance
structure of a population. Although the mixed model was not
considered here, it can, in principle, account for inbreeding by
including a complex covariance matrix among the additive and
dominance effects. To accomplish this analysis, our method would
require adjustments. However, another type of a model that would suit
our estimation framework well is a Gaussian process model (Crossa
et al., 2010) or an extension of a ridge regression model (Piepho, 2009;
Schulz-Streeck and Piepho, 2010). Then, the dominance relationship
matrix would be replaced by a marker similarity matrix or by the
covariance function that was proportional to the evaluations of a
reproducing kernel evaluated in the marker genotypes.



Identifiability problems can arise, especially when the dominance
relationship matrix D is close to a multiple of the identity matrix.
This occurs when the pedigree is incomplete and/or lacks full sibs or
double cousins. Then, certain features of the phenotypic observations
be attributed to dominance effects can almost as well as to noise. In
such a case the joint marginal posterior of the dominance variance
and the error variance should be bimodal, and then a conventional
MCMC sampler may have difficulties moving between the modes.
Gibbs samplers are especially vulnerable, but M—H sampling schemes
may behave better. Adding more full-sibs to the pedigree file can
improve the multimodality problem to some extent. In our simula-
tion experiments, our adaptive MCMC algorithm was able to explore
the entire parameter space with good mixing properties, and therefore
was able to detect different modes in the posterior distribution.

The proposal covariance matrix (2.38)%/d S from Roberts et al.
(1997) and Roberts and Rosenthal (2001) is optimal in a large-
dimensional context when the posterior is approximately Gaussian
(Roberts and Rosenthal, 2007; Rosenthal, 2011). We also experimen-
ted with other scalings of the posterior covariance matrix, but the
theoretical formula turned out to work well enough in our applica-
tions. This scaling factor (2.38)%/d was also employed in the MCMC
sampler of Fang et al. (2011), who introduced a new method for QTL
mapping. In their sampling scheme, they utilized REML estimates in
the construction of the proposal covariance matrix. If the target
distribution is multimodal, this approach may fail to move between
different modes. In contrast, our new adaptive MCMC method uses
the history of the chain to learn the proposal covariance matrix,
which enables the algorithm to move between different modes. The
success of adaptive MCMC methods generally depends on how well
the proposal covariance structure is learned from the previous history
of the chain. Therefore, it is important to use a sufficient number of
samples in the learning period. The required sample depends first on
the dimensionality and on the other characteristics of the posterior
distribution, and second on the mixing properties of the MCMC
sampler. Therefore, it is impossible to give general prescriptions for it.

In our study, we also tested adaptation in a version of the model
where the random effects were not marginalized away. However, this
formulation suffered from poor mixing and slow convergence because
of posterior dependencies among the random effects and the variance
components (results not shown). The marginalized model (that is,
hierarchical model 2) that we used in our study was able to explore
the entire parameter space with good mixing properties. The ESS of a
parameter is the number of independent samples from the posterior
distribution that our correlated MCMC sample is worth. If the ESSs
are low, then the autocorrelations will be high, and that may be an
indication of poor mixing of the chain. The adaptive scheme was able
to decrease the autocorrelation of the chain to yield much larger ESS.

The choice of the prior is one of the important steps in any
Bayesian analysis. Generally, the influence of the prior distribution on
the posterior is related to the sample size of the data. We carried out a
sensitivity analysis using different priors, and most priors seemed to
lead to non-zero estimates of dominance variance for the QTLMAS
data (results not shown). However, the gamma prior for the precision
parameters (k;=1 and 4;=0.001) was able to provide good mixing,
while still resulting in a realistic estimate of dominance variance in the
case of no dominance. This follows because the prior can then shrink
the posterior towards zero.
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APPENDIX

Calculation of the likelihood ratio

Calculating the determinants of high-dimensional matrices is challen-
ging, because numerical problems increase as the dimension increases.
To calculate the likelihood ratio p(yys")/p(y|i¥) in Equation (12), we
needed to compute the determinants of the covariance matrices of y
conditionally on the proposed and current point. We scaled these
matrices to mitigate numerical problems. Scaling is based on the
identity det(sX) = s"det(X) (valid whenever s is a scalar and X is an
n x n matrix) and the identity (s£) ~! =X ~!/s (valid whenever s is a
scalar and X is an invertible matrix). We set s=1/i),, s' = 1/, as the
scaling factors for the current (X) and proposed (X°) values,
respectively. Let /" = (Y, Wi, Y/".) be the proposed values of (inverses
of) variance components and Y = ({/,,, Y 4, ¥.) be their current values.
We calculate the logarithm of the likelihood ratio as

piy 1Y)

2o (log(det(X*/s"))

log =— g(log(s*) — log(s)) — %

— (log(detX/s))) — % ¥ (E/s) "y
50/ y)
(15)

Here, we calculate the determinants and quadratic forms using
Cholesky decomposition. If M=2X/s is an #n x n positively definite
symmetric matrix, then its Cholesky decomposition is M = LL’, where
L is the lower triangular Cholesky factor. The determinant is
calculated as log(det(M)) = 2X log(L; ;) where L; ; is the ith diagonal
element of L. The quadratic form y/(X/s) “ly=yM~ly is calculated
using the identity ¥ M ~ly= (L ~y)'(L ~ly), where L~y is calculated
by solving z from the equation Lz=y.

Effective sample size (ESS)

ESS (Geyer, 1992; Waagepetersen et al., 2008) is the approximate
number of independent samples that would deliver the same
estimation accuracy as our dependent MCMC samples. ESS is based
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on the central limit theorem for MC. Let xg, x1, ... be the MC and
consider a scalar valued function h defined on the state space. If the
MC satisfies a central limit theorem for this function, then as the
sample size increases

1 n
Vn ZZ h(x;) — Ezh(x) -, N(0, 1y, varzh(x)), (16)
i=0
where 7 is the stationary density of the MC, E;h(x) is the expected
value of h(x) under 7, var;h(x) is the variance of h(x) under n and 7},
is the integrated autocorrelation time for estimating E;h(x) for the
given MC, defined as

=142 Z corry (h(x;), h(xit«)),

i=0

(17)

Here corr, is the correlation between the values when the chain is
started from the stationary distribution (xy~ 7). However, if yg, y1, ...,
¥, are ii.d samples from the stationary distribution 7, then by the
central limit theorem for i.i.d. sequences

1 n

V[ =S h(yi) — Eeh(x) | -5 N(0, vargh(x)), (18)
n
i=0

Comparing Equations (16) and (18) gives ESS=mn/t; as the ESS,
when we estimate the expectation E h(x) using the arithmetic mean
of a large number of values h(x;), ..., h(x,) based on the history of the

MC. There are different methods available for estimating j, and ESS,
but we simply used the R package coda.

Adaptive MCMC algorithm

To learn an efficient proposal distribution, a reasonable number of
MCMC samples is required. In the following, steps 2 and 3 describe
the details of the learning phase, and steps 4 and 5 those of the
adapted phase. Blocked Gibbs sampler (step 3) that uses block
updates of parameters in 0 has good mixing properties compared
with the single-site Gibbs sampler (step 2). However, then one needs
to solve very large linear systems (step 3d) which makes this


http://CRAN.R-project.org/doc/Rnews/
http://www.nature.com/hdy

computationally challenging. The hybrid Gibbs sampler, which uses
block updates every 50th iteration, is much faster than plain blocked
Gibbs sampling, and it has better mixing properties than the single-
site Gibbs sampler. The use of block updates for variance components
in the adaptive MCMC method helps the chain to converge reason-
ably fast to its equilibrium distribution.
The algorithm of the adaptive MCMC is as follows:
1. Initialize ,, Y4 and ), with some reasonable positive values. Set
ky=k,+q/2, ky=kq+q/2, and k, =k, + n/2.

2. Single-site Gibbs sampling:

(a) Sample 0; from N(O, 1/(C;, @), where 0= (Wy—C; _0_)/
C,; ;. Here, 0_; is 0 without its ith component, C; _; is the ith
row of C without its ith component and finally, C; ; is the ith
diagonal element of C.

(b) Calculate A, =A,+ (aTA'a)/2, )4y =4+ (dTD~1d)/2 and
Lo = o+ 112||y-XB-Z1a-Zod| .

(c) Sample the precision parameters v; from Gamma(kj, 2;") for
i=a, d, e

(d) Calculate o, =y ,/\,, 00g= a4y, and update the coefficient
matrix C using Equation (10).

3. Block Gibbs sampling (every 50th iteration):

(a) Generate a” from MVN(0, A/yy,) and d* from MVN(0, D/r,).

(b) Generate z* from MVN(Za" + Z,d', II},).

(c) Calculate W (y —z2").

(d) Calculate 0 as [0/, a”, d"] + C~'W/ (y —z'), where 0 is the
zero vector of the size of the fixed effects vector f.

(e) Calculate 1, = A, + (aTA"'a)/2, 1" =24+ (d"D~'d)/2 and
Ao =lot+ 112|ly —XB —Zya —Zod|]-

(f) Sample the precision parameters y; from Gamma(k;', 2;"),
fori=a, d, e.

Adaptive MCMC sampler for genetic parameters
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(g) Calculate o, =,/ Ve, ag=1 4y, and update the coefficient
matrix C using Equation (10).

4. Setting up the adapted MCMC (after the learning period):

(a) Transform the samples from the learning period into
logarithmic scale with the formula ;= —log(y;), for i=a,
d, e.

(b) Calculate the sample covariance matrix $ from the trans-
formed variables t;. Calculate the proposal covariance matrix
Sp= (2.38)%/d S, where d=3. Initialize the current state t
from the last state visited during the learning phase.

5. The iterations during the adapted phase:

(a) Generate proposed values 7 from the Gaussian distribution
MVN(z, Sp). Calculate the y values and " values corre-
sponding to the current and the proposed vectors.

(b) Calculate the logarithm of the M—H acceptance ratio r from
Equation (11) by calculating the logarithm of the prior ratio
p(t")/p(t), where we take into account the Jacobian ratio
from Equation (14), and the logarithm of the likelihood
ratio from Equation (15).

(c) Draw u from the uniform distribution over [0,1] and
accept the proposed value 1, if u<r. If the proposal is
accepted, then we assign 7 =1, otherwise the current value
is retained.

In a random-walk M-H algorithm, such as we used in the
adapted phase, the acceptance rate (the ratio between the number
of times the proposed value is accepted and the total number of
iterations after the learning period) should be between 10 and 50%,
but the optimal rate is around 23% (see Roberts and Rosenthal, 2001;
Rosenthal, 2011).
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