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Generalized linear mixed models for mapping multiple
quantitative trait loci

X Che1 and S Xu2

Many biological traits are discretely distributed in phenotype but continuously distributed in genetics because they are
controlled by multiple genes and environmental variants. Due to the quantitative nature of the genetic background, these
multiple genes are called quantitative trait loci (QTL). When the QTL effects are treated as random, they can be estimated in a
single generalized linear mixed model (GLMM), even if the number of QTL may be larger than the sample size. The GLMM in its
original form cannot be applied to QTL mapping for discrete traits if there are missing genotypes. We examined two alternative
missing genotype-handling methods: the expectation method and the overdispersion method. Simulation studies show that the
two methods are efficient for multiple QTL mapping (MQM) under the GLMM framework. The overdispersion method showed
slight advantages over the expectation method in terms of smaller mean-squared errors of the estimated QTL effects. The two
methods of GLMM were applied to MQM for the female fertility trait of wheat. Multiple QTL were detected to control the
variation of the number of seeded spikelets.
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INTRODUCTION

Linear mixed model (LMM) methodology is a powerful technology to
analyze models containing both the fixed and random effects. The
model was first proposed to estimate genetic parameters for unba-
lanced data (Henderson, 1950). This technique has been used to map
genes controlling the variation of quantitative traits (Xu and Yi, 2000;
Boer et al, 2007). The LMM methodology cannot be directly applied
to traits with discrete distributions. Wedderburn (1974) proposed a
linear predictor and a link function to handle discrete traits. The linear
predictor is simply a linear model combining information from
the independent variables. The link function is used to describe the
relationship between the linear predictor and the expectation of
the response variable. This approach eventually leads to a special
area of statistics called the generalized linear model (GLM)
(McCullagh and Nelder, 1989).
Xu and Hu (2010) recently developed a GLM approach to interval

mapping (IM) for traits with discrete distribution. The purpose of that
study was to investigate the efficiencies of two different methods for
handling missing genotypes: (1) the heterogeneous residual variance
method and (2) the mixture model method. In the first method
(heterogeneous residual variance method), we replaced the missing
genotypes of quantitative trait loci (QTL) by the conditional expecta-
tions of the genotype indicator variables and then took into account
the heterogeneous residual variances of different genotypes due to
heterogeneous information contents. In the second method (the
mixture model method), we fully utilized the conditional distributions
of the missing genotypes. Theoretically, the mixture model approach
should be optimal. In practice, the heterogeneous residual variance
method is more efficient because it is robust to departure from the
assumed normal distribution of the residuals. On the contrary, the

mixture model is very sensitive to the departure of an assumed
distribution and the choice of the initial values of the parameters.
These missing-genotype-handling methods have not been applied to
multiple QTL mapping (MQM).
When the number of QTL included in a model reaches a certain

level, for example, the number of QTL is larger than the sample size,
the model is oversaturated. In this case, some kind of penalty is
required to shrink the superfluous QTL down to zero. The penalty is
accomplished by treating each QTL effect, say QTL k, as a random
effect with a N(0, sk2) distribution. When the linear predictor contains
both fixed and random effects, the model is then called the generalized
LMM (GLMM) (Breslow and Clayton, 1993; McCulloch and
Neuhaus, 2005). Special algorithms have been developed to estimate
variance components and predict the random effects, for example, the
pseudo likelihood algorithm (Wolfinger and O’Connell, 1993). How-
ever, existing GLMM have not fully considered the missing genotype
problem.
In this study, we extended the GLM for IM of QTL (Xu and Hu,

2010) to GLMM for MQM. The difference between IM and MQM is
that IM uses a model that contains only one QTL effect at a time (the
entire genome analysis requires multiple analyses of many single-effect
models), whereas MQM estimates all QTL simultaneously in a single
model. Although Xu and Hu (2010) developed two methods for GLM
analysis, we only examined the heterogeneous residual variance
method. The mixture model did not offer any advantages over the
heterogeneous residual variance method (Xu and Hu, 2010), and thus
will not be examined here in this study. In addition, we evaluated a
simple method called the expectation method, in which the missing
genotypes of QTL are simply replaced by the conditional expectation
of the genotype indicator variables. The heterogeneous residual
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variance method called by Xu and Hu (2010) is now rephrased as the
overdispersion method. We believe that overdispersion is a more
appropriate term in the context of GLMM.

METHODS
Generalized linear mixed model
We use a binomial trait as an example to demonstrate the new methodology,

although the method can be applied to other discrete traits. Let yj be

the number of events and tj be the number of trials for individual j from a

population of n individuals. Let E(yj/tj)¼mj be the expectation of the

binomial trait. Define Zj¼F�1(mj) as a linear predictor with the probit link

function. The linear predictor is a function of marker genotypes, as described

below,

Zj ¼ b+
Xm
k¼1

Zjkgk ð1Þ

where b is the intercept, gk is the effect for marker k, Zjk is an independent

variable determined by the genotype of marker k of individual j and m is the

total number of markers included in the model. In a later section, markers are

replaced by pseudo markers. Each marker is then considered as a putative QTL.

Therefore, we may callm the number of putative QTL. Details about Zjk will be

described later.

When m is large, say m4n, the model is oversaturated and solutions of the

parameters will not be unique. To overcome this problem, a penalty should be

placed on the QTL effects. Ridge regression (Hoerl and Kennard, 1970) is often

used as a penalized regression analysis. It corresponds to the L2 penalty (Zou,

2006; Friedman et al, 2010), in which gk is treated as a random effect and

further described by a N(0, sk2) distribution. Once gk is treated as a random

effect, it becomes a random variable and thus does not reduce the degree of

freedom of the residual. In addition, the zero mean distribution serves as a

‘prior’ belief of no effect from the Bayesian point of view. These are the very

reasons why a mixed model can handle a very large number of regression

coefficients once the coefficients are treated as random effects. The intercept b
is treated as a fixed effect (no distribution is assigned) because we do not want

to penalize a model based on the size of the intercept. The linear predictor

includes both the fixed effect (b) and the random effects (g), and thus is called

the mixed model. The least absolute shrinkage and selection operator (Lasso)

method developed by Tibshirani (1996) is another penalized regression

analysis, called the L1 penalty. We will not pursue the Lasso approach because

it is beyond the scope of the GLMM.

Let us denote all QTL effects by an m�1 vector g ¼ gkf g;8k ¼ 1; � � � ; m
and denote the multivariate normal density of g by p(g|G)¼N(g|0,G) where

G ¼ diag s2k
� �

is a diagonal matrix for the variance components. This special

notation for probability density p(g|G)¼N(g|0,G) is adopted from Gelman

et al. (2004). It represents both the distribution and the density, that is,

Nðgj0;GÞ ¼ 1

ð2pÞ
m
2 jGj

1
2

exp � 1

2
gTG�1g

� �
ð2Þ

Conditional on Zj¼b+Zjg, the binomial distribution for yj is

pðyjjZjÞ ¼ const� FðZjÞ
h iyj

1� FðZjÞ
h itj�yj

ð3Þ

When g are treated as random effects, they are no longer considered as

parameters in the GLMM, although they remain to be important genetic

parameters in terms of QTL mapping. The parameters are now formed by

y¼{b,G}. Conditional on Z¼b+Zg, we have the joint probability for the

binomial trait of the entire sample

pðyjZÞ ¼
Yn
j¼1

pðyjjZjÞ ð4Þ

The likelihood function for the parameter vector y¼{b,G} is proportional to
the following probability

pðyjb;GÞ ¼
Z

pðyjZÞpðgjGÞdg ð5Þ

where the integration is taken with respect to g. The integral is multivariate and

no explicit expression exists. The log likelihood function for parameter

y¼{b,G} is defined as

Lðb;GÞ ¼ ln pðyjb;GÞ ¼ ln

Z
pðyjZÞpðgjGÞdg

� �
ð6Þ

and thus also does not have an analytical expression. The maximum likelihood

estimate of y¼{b,G} would be obtained by solving q
qy Lðb;GÞ ¼ 0 if L{b,G}

were explicitly expressed. A pseudo likelihood algorithm was developed to solve

for the parameters (Wolfinger and O’Connell, 1993). Laplace approximation

has also been used to replace the integral (Vonesh, 1996). In this study, we

adopted a simple method that does not involve numerical integration. This

method is called the MAP estimation, as described below.

MAP estimation
The word MAP stands for maximum a posteriori (DeGroot, 2004), which is a

terminology related to Bayesian analysis. Our GLMM is a frequentist approach

if we treat {b,G} as parameters. However, if we consider {b,g} as parameters and

treat G as a prior variance matrix for g, the problem becomes a Bayesian

problem and parameter estimation can be achieved under the Bayesian

framework. In a typical Bayesian problem, the parameters in the prior should

be provided by the investigator before the data analysis. It is hard to provide a

prior value for G, and thus we must estimate G from the data. Once G is

estimated from the data, the problem is more like a mixed model problem.

Therefore, the difference between the Bayesian model and the GLMM becomes

blurred. We may consider the MAP algorithm as a simplified approach to

estimating parameters under the GLMM framework (see McGilchrist 1994).

We will first provide the MAP estimation and then show the difference between

the MAP estimates and the ML estimates.

Unlike the ML estimation in which the target function for maximization is

L(b,G), in the MAP estimation, we maximize the log posterior function defined

as

Lðb; g;GÞ ¼ Lðb; gÞ+LðGÞ ð7Þ
where

Lðb; gÞ ¼
Xn
j¼1

yj lnmj+ðtj � yjÞ lnð1� mjÞ
h i

ð8Þ

and

LðGÞ ¼ � 1

2
ln jGj � 1

2
gTG�1g ¼ � 1

2

Xm
k¼1

lnðs2kÞ �
1

2

Xm
k¼1

g2k
s2k

ð9Þ

The MAP estimation for x¼{b,g,G} is obtained by setting q
qx Lðb; g;GÞ ¼ 0

and solving for x. The iteration process is summarized in the following

sequences.

Step (1): Set t¼0 and initialize all parameters xðtÞ ¼ bðtÞ; gðtÞ;GðtÞ
n o

.

Step (2): Update b using

bðt+1Þ ¼ bðtÞ � q2Lðb; gÞ
qbqbT

� ��1
qLðb; gÞ

qb

� �
ð10Þ

Step (3): Update gk for k¼1,y,m using

gðt+1Þk ¼ gðtÞk � q2Lðb; g;GÞ
qgkqgTk

� ��1
qLðb; g;GÞ

qgk

� �
ð11Þ

Step (4): Update sk2 for k¼1,y,m using

s2ðt+1Þk ¼ ðgðt+1Þk Þ2 ð12Þ

Step (5): Repeat Steps (2) to Step (4) until the sequence converges.

Note that Steps (2) and (3) are the first step iteration of the Newton–

Raphson algorithm (Ypma, 1995). The MAP approach for GLMM was first

proposed by McGilchrist (1994). It is a much simplified algorithm that has

avoided multiple integration. The original MAP of McGilchrist (1994) did not
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address the missing value problem, which will be dealt with in the next section

of this study.

Let us now compare the MAP with the EM algorithm. The target function to

be maximized with the EM algorithm is

E Lðb; g;GÞ½ � ¼ E Lðb; gÞ½ �+E LðGÞ½ � ð13Þ
where the expectation is taken with respect to g. The MLE of y¼{b,G} is

obtained by solving

q
qy

E Lðb; g;GÞ½ � ¼ q
qy

E Lðb; gÞ½ �+ q
qy

E LðGÞ½ � ¼ 0 ð14Þ

The corresponding EM steps are modifications of the MAP steps as shown

below. The updating step for b in the EM is

bðt+1Þ ¼ bðtÞ � q2E Lðb; gÞ½ �
qbqbT

� ��1
qE Lðb; gÞ½ �

qb

� �
ð15Þ

which is a maximization (M) step. The updating step for gk 8k ¼ 1; � � � ;m is

gðt+1Þk ¼ gðtÞk � q2E Lðb; g;GÞ½ �
qgkqgTk

� ��1
qE Lðb; g;GÞ½ �

qgk

� �
ð16Þ

This is the expectation (E) step. Another maximization (M) step is to update

sk2 for k¼1,y,m using

s2ðt+1Þk ¼ Eðg2kÞ ¼ E2ðgkÞ+varðgkÞ ¼ g2ðt+1Þk +s2k ð17Þ
where EðgkÞ ¼ gðt+1Þk is the expectation of gk and

s2k ¼ � q2E Lðb; g;GÞ½ �
qgkqgTk

� ��1

ð18Þ

is the variance of gk. The EM algorithm requires calculation of the expectation

of the first- and second-order partial derivations of the target function, which is

by no means a simple task. This is the very reason why McGilchrist (1994)

proposed the MAP for GLMM. Note that the updating step for sk2 is explicit
and obtained by setting q

qs2
k

LðGÞ ¼ 0 for the MAP and q
qs2

k

E LðGÞ½ � ¼ 0 for the

EM algorithm. Therefore, the MAP estimation does not exactly lead to the EM

estimation in the frequentist framework. However, the results are very close and

this is why McGilchrist (1994) developed the MAP estimation for variance

component analysis in the GLMM framework.

LOD (log of odds) score test
The estimated QTL effect (after MAP iteration converges) is denoted by ĝk. We

can now perform statistical tests. The test statistic forH0:gk¼0 may be the t-test,

tk ¼ ĝk=sk ð19Þ

It is called the t-test because it is expressed as the ratio of the estimated effect

to the s.e. However, under the null model, this test statistic may not follow the

t-distribution because of the penalty placed on the estimation. This test statistic

is negative if the estimated QTL effect is negative. The Wald test (Wald, 1943) is

simply the square of the t-test

Wk ¼
ĝ2k
s2k

ð20Þ

which is similar to the likelihood ratio test statistic. The best presentation of the

test statistic is the LOD score defined as

LODk ¼
Wk

2 lnð10Þ ð21Þ

A nice property of the LOD score test is that an empirical critical value of

LOD ¼ 3+ log10ðmÞ ð22Þ
may be used to declare statistical significance at the 0.05 type I error rate (Kidd

and Ott, 1984; Risch, 1991). The numberm occurred in log10(m) is the number

of putative QTL included in the model. The special case ofm¼1 corresponds to

the LOD 3 criterion.

Missing genotypes
In QTL mapping, the genotype indicator variable (Zjk) is missing if the QTL

position does not overlap with a fully informative marker. However, partial

information is available due to linkage disequilibrium. We examined two

methods for handling missing genotypes.

Expectation method. The linkage disequilibrium allows us to infer the condi-

tional distribution of Zjk given information from linked markers. Let A1A1,

A1A2 and A2A2 be the three genotypes of a QTL for an individual in an F2
population. The Z variable is determined by the genotype of locus k,

Zjk ¼
+1
0
�1

for
for
for

A1A1

A1A2

A2A2

8<
: ð23Þ

In the context of GLMM, gk¼ak, where ak is called the additive effect of locus k.

When Zjk is missing, the expectation and variance of it are inferred from the

genotypes of flanking markers (Jiang and Zeng, 1997). Let pj(+1), pj(0) and

pj(�1) be the conditional probabilities of the three genotypes inferred from

neighboring markers using the multipoint method (Jiang and Zeng, 1997). The

expectation and variance of Zjk are (Xu and Hu, 2010)

EðZjkÞ ¼ Ujk ¼ pjð+1Þ � pjð�1Þ ð24Þ
and

varðZjkÞ ¼ Sjk ¼ pjð+1Þ+pjð�1Þ
� 	

� pjð+1Þ � pjð�1Þ
� 	2 ð25Þ

With the expectation method, we simply replace Zjk by Ujk. Therefore, the

linear predictor is defined as

Zj ¼ b+
Xm
k¼1

Ujkgk ð26Þ

Everything else remains the same as the situation with complete genotypic

information.

Overdispersion method. The expectation method only takes advantage of the

first moment of the distribution of Zjk. The second moment information has

been ignored, which will generate a situation called overdispersion. For locus k,

the overdispersion is defined as

ojk ¼ gTk Sjkgk+1 ð27Þ
Incorporating this overdispersion, we redefine the linear predictor as

Zjk ¼
1ffiffiffiffiffi
ojk

p b+Ujkgk+xjk
� �

ð28Þ

where

xjk ¼
Xp
k0 6¼k

Ujk0gk0 ð29Þ

is an offset of the linear predictor contributed by other loci. We now have a

locus-specific mjk ¼ FðZjkÞ to define various log functions for maximization.

RESULTS

Simulation study
Binomial data. We simulated a single large chromosome of 2400-cM
long evenly covered by 241 co-dominance markers (10 cM per marker
interval). The simulated population was an F2 family derived from the
cross of two inbred lines with a sample size n¼500. The genotype
indicator variable for individual j at locus k was defined as Zjk¼{+1,
0, �1} for the three genotypes (A1A1, A1A2, A2A2). Dominance effects
were not simulated and also not included in the model for this
simulation experiment. A total of 20 QTLwere simulated with the true
sizes and locations of the QTL depicted in Figure 1 (the top panel).
Most QTL were placed in the left part of the genome. Some QTL were
far apart from each other, whereas others were clustered in some
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narrow regions. About half of the simulated QTL overlapped with true
markers (known genotypes) and the remaining QTL were located
between markers (having missing genotypes). We first generated a
linear predictor Zj for each individual using the genotypes of the 20
simulated QTL and the true effects of these QTL. The linear predictor
was then converted into the probability of a binomial variable using
mj ¼ FðZjÞ. We then simulated a zero-truncated Poisson variable with
mean 4 as the number of trials for individual j, denoted by tj (the
number of trial must be 4zero). We then simulated the number of
events yj from the corresponding binomial distribution defined by mj
and tj, that is, yjBBinomial (mj,tj). The simulation experiment was
replicated 100 times.
In the simulated data analysis, we added a pseudo marker in every

2.5 cM of the genome, which is equivalent to adding three pseudo
markers per marker interval (10 cM is the length of each interval).
Genotypic probabilities of the pseudo markers were inferred from
information of flanking markers (Jiang and Zeng, 1997). These
probabilities were used to calculate Ujk and Sjk. The total number of
putative loci analyzed was m ¼ 241+3�240 ¼ 241+720 ¼ 961 with
241 true markers and 720 pseudo markers. This m is almost twice the
size of the sample (n¼500). We wrote a SAS/IML program to analyze

the data. The IML code is available from the corresponding author on
request.
The estimated QTL effects from one random sample are presented

in Figure 1 for the two methods (expectation and overdispersion)
along with the true simulated effects. The two methods produced very
similar results, which mimic the true QTL effects closely in terms of
locations and the sizes of the effects. The general observations from
this figure are (1) a large QTL effect may be split into two or more
small effects in the neighborhood of the true QTL and (2) the
estimated effects are generally smaller than the true effects due to
penalty. Without the penalty, however, we cannot estimate all the 961
putative QTL simultaneously. In any real data analysis with a single
sample, the pattern shown in Figure 1 is what an investigator expects
to see.
Figure 2 shows the plot of the average estimated QTL effects (across

100 replicated samples) against the genome location. This time, the
positions and the patterns of the QTL are extremely close to the true
QTL shown in Figure 1 (the top panel). However, the average
estimates of the QTL effects are severely biased downwards (towards
zero). The differences between the two methods were barely noticed
from the visual plots. The simulation experiments allow us to evaluate
the bias and estimation error of each QTL and eventually the mean-
squared error (MSE) for all the QTL. Let �gk be the average estimate of
gk for the 100 replicates and sk

2 be the variance of the estimated gk
across the 100 samples, the MSE for gk is defined as

MSEk ¼ ð�gk � gkÞ2+s2k ð30Þ
The sum of MSE’s for all QTL is

MSE ¼
Xm
k¼1

ð�gk � gkÞ2+
Xm
k¼1

s2k ¼ Bias+Error ð31Þ

The MSEs for the two methods (expectation and overdispersion) are
shown in Table 1. The overdispersion method has a slightly larger bias
but with a smaller error compared with the expectation method.

Figure 1 True QTL effects (top panel) and their estimated values for the

simulated binomial trait (BINOMIAL) using the expectation method (panel in

the middle) and the overdispersion method (bottom panel). The estimate

QTL effects are drawn from a single simulated sample. The positions of 20

simulated QTL are indicated by the inward ticks on the horizontal axis.

Figure 2 Estimated QTL effects for the simulated binomial trait (BINOMIAL)

using the expectation method (panel in the middle) and the overdispersion

method (bottom panel). The estimated QTL effects are the averages of 100

replicated samples.

Generalized linear mixed model
X Che and S Xu

44

Heredity



Overall, the overdispersion method has a smaller MSE than the
expectation method. The bias defined here from the replicated
simulation experiments may be overstated for the following reasons:
(1) with the high density of the putative QTL in the model, a true QTL
is often detected by a nearby marker close to the true QTL. The exact
locations vary from one sample to another, but all in the neighbor-
hood of the true QTL. When an average is taken across the samples,
the effect of the true location is diluted by those samples in which the
estimated QTL is a few cM away from the true QTL. For example, if a
true QTL is estimated in the true location (A) from one sample and it
is estimated in a position 2.5 cM away from the true location (B) in
the second sample, the average effect of the two samples is then halved
for the true location. This problem will be corrected in any real data
analysis because a QTL detected in experiment A (denoted by QTLA)
will be treated as the same QTL detected in experiment B (denoted by
QTLB) as long as QTLA and QTLB are not too far away from each
other. Therefore, the smaller estimation error of the overdispersion
method is perhaps more important than the large bias.

Binary data. The experimental design is exactly the same as that of
the binomial experiment. The only difference in the simulation is that
the trial was a fixed number of one for every individual in the binary
data simulation experiment. The estimated QTL effects from one
random sample are presented in Figure 3 for the two methods
(expectation and overdispersion) along with the true simulated effects.
Again, the two methods produced very similar results. However, they
differ from the true QTL effects more than what we observed for the
binomial trait analysis. Some QTL with small effects have been missed
here, for example, the last simulated QTL in the genome. This
indicates lower efficiency of QTL mapping for binary trait analysis
than for binomial trait analysis.
Figure 4 shows the plot of the average estimated QTL effects (across

100 replicated samples) against the genome location. Again, the
positions and the patterns of the QTL are close to the true QTL
shown in Figure 3 (the top panel). The MSE¢s for the two methods
(expectation and overdispersion) are shown in Table 1. The over-
dispersion method has a much larger bias but with much smaller error
compared with the expectation method. Overall, the overdispersion
method has a smaller MSE than the expectation method. The
advantages of the overdispersion method are well supported in the
simulation experiments.

Mapping wheat fertility QTL
The experiment was conducted by Dou et al (2009). The mapping
population contained 243 F2 individuals derived from the cross
of two inbred lines. The trait of interest is the female fertility measured

as a binomial trait. The event is the number of seeded spikelets per
plant (average 19.13 seeded spikelets) and the trial is the total number
of spikelets per plant (average 25.15 spikelets). A total of 28 markers
were genotyped in this experiment. These markers covered five
chromosomes of the wheat genome with an average marker interval
of 15.5 cM. The five chromosomes are only part of the wheat genome.

Binomial trait. As the marker map is sparse, we inserted one pseudo
marker in every 2 cM, generating a total of 197 loci (28 true markers
and 169 pseudo markers). The pseudo markers have missing geno-
types and the probability distributions of these pseudo markers were
inferred from linked markers using the multipoint methods (Jiang and
Zeng, 1997). The sample size was n¼243 and the size of the model was
m¼197. Both the expectation and overdispersion methods were used
for the binomial data analysis.
For the real data analysis, we need to calculate the LOD score for

each putative locus. The estimated QTL effects for the two methods
are depicted in Figure 5 (the top panel). The LOD score profiles for
the two methods are depicted in Figure 5 (the bottom panel). The two
methods show some similarity and differences. Using the
LOD¼3+log10(197)¼5.2944 as the threshold (Kidd and Ott, 1984),
the expectation method detected 17 QTL, whereas the overdispersion
method detected 15 QTL. Among these detected QTL, eight of them

Table 1 Comparison of the MSE for the two methods in the 100

replicated simulation experiments

Data type Model Biasa Errorb MSEc

Binomial Expectation 6.00 3.52 9.52

Overdispersion 6.01 3.14 9.15

Binary Expected 5.97 8.06 14.03

Overdispersion 6.63 5.04 11.67

Abbreviation: MSE, mean-squared errors.
aBias is defined as the sum of squared differences between the true QTL effects and the
average estimated QTL effects.
bError is defined as the sum of the variances of the estimated effects obtained from all
replicates.
cMSE is the sum of Bias and the Error. Please see equation (31) in the text for details.

Figure 3 True QTL effects (top panel) and their estimated values for the

simulated binary trait (BINARY) using the expectation method (panel in the
middle) and the overdispersion method (bottom panel). The estimated QTL

effects are drawn from a single simulated sample.
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were detected by both methods. The estimated effects along with the
s.e. and the LOD scores obtained from the overdispersion method are
listed in Table 2. Most detected QTL were located on chromosome II,

IV and V. The QTL with the largest effect and LOD score occurred on
the second chromosome at position 28.71 cM (cumulative position of
104.60 cM). This QTL was split into a few smaller ones in the
neighborhood of the major peak by the expectation method. Unlike
the simulation study where the true effects of QTL were known, for
the wheat data, the true QTL were not known. Therefore, we were not

Figure 4 Estimated QTL effects for the simulated binary trait (BINARY)

using the expectation method (panel in the middle) and the overdispersion

method (bottom panel). The estimated QTL effects are the averages of 100

replicated samples.

Figure 5 Binomial trait analysis of the wheat experiment using the expectation method (blue) and the overdispersion method (red). The top panel shows the

estimated QTL effects and the bottom panel shows the LOD scores. Chromosomes are separated by the dotted vertical lines. Positions of true markers are

indicated by the inward ticks on the horizontal axis.

Table 2 QTL detected for the binomial trait of wheat fertility using the

overdispersion method

QTL Chromosome Position (cM) Markera Estimateb StdErrc LOD

1 1 0.00 1 0.2171 0.0266 14.40

2 2 0.00 1 �1.0517 0.0278 308.75

3 2 2.12 1 0.9841 0.0283 260.97

4 2 10.96 1 0.3985 0.0303 37.36

5 2 16.16 0 �0.7670 0.0311 131.24

6 2 28.70 0 1.6423 0.0306 621.89

7 2 38.29 1 �0.1356 0.0272 5.37

8 3 67.32 1 0.1635 0.0273 7.78

9 4 9.20 1 0.5755 0.0293 83.30

10 4 14.92 1 �0.6445 0.0300 99.78

11 5 0.00 1 0.3878 0.0281 41.17

12 5 20.83 0 �0.8852 0.0336 150.14

13 5 39.87 0 0.5121 0.0292 66.67

14 5 63.60 0 �0.6898 0.0321 100.17

15 5 82.68 0 0.6414 0.0301 98.17

Abbreviation: QTL, quantitative trait loci.
aThis column indicates whether the QTL overlaps with a true marker (1) or a pseudo marker (0).
bThis column gives the estimated QTL effect.
cThis column shows the s.e. of the estimated QTL effect.
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able to compare the biases and the MSE of the estimated QTL effects.
We chose an alternative approach for evaluating the two methods, that
is the leave-one-out cross validation (Picard and Cook, 1984). The
cross validation approach only evaluates the predictabilities of the
models. For the purpose of molecular breeding and marker assistant
selection, higher predictability is more preferable. For the purpose of
gene cloning, the biases of QTL effect and location estimates are of
major concern. We used the Pearson correlation coefficient (ryŷ)
between the observed (y) and predicted (ŷ) trait values as a measure-
ment of the predictability. The Pearson correlation coefficients for the
expectation and overdispersion methods were 0.5166 and 0.5290,
respectively. The overdispersion method showed a slight advantage
over the expectation method. We also examined the prediction errors
defined by

PE ¼ 1

n

Xn
j¼1

ðyj � ŷjÞ2 ð32Þ

for the two methods. The results of PEs were 0.100563 and 0.098658,
respectively, for the expectation and the overdispersion methods. The
PE comparison is consistent with the Pearson correlation comparison.
We concluded that incorporation of overdispersion does show the
expected benefit (increase in predictability) in QTL mapping over
the simple expectation method.

Binary trait. Among the 243 plants, 39 of them did not have seeds at
all. The frequency distribution of the number of seeded spikelets is
shown in Figure 6. It appears that the zero category was inflated. The
binomial data analysis did not differentiate QTL responsible for seed
presence and absence. We now defined a binary trait as seed presence/
absence and used the two methods (expectation and overdispersion)
to analyze the binary trait. The estimated QTL effect profiles are
shown in the top panel of Figure 7 and the LOD score profiles are
depicted in the bottom panel of the same figure. The two methods
appeared to generate much the same result. Using the LOD 5.29
criterion, we only detected a single QTL at position 28.71 cM of
chromosome II (cumulative position 104.60 cM). This QTL is the
same one as that detected for the binomial trait (the largest QTL for
the binomial trait) detected by the overdispersion method. Our
conclusion was that, except for this particular QTL, the multiple
QTL detected for the binomial trait reported early were all responsible
for the variation of the number of seeded spikelets, not the seed
presence/absence trait. The leave-one-out cross validation analysis did
not show much difference for the two methods. The Pearson correla-
tion coefficients between the observed and predicted trait values were
0.4715 and 0.4729, respectively, for the expectation and overdispersion

methods. The corresponding PE¢s were 0.104914 and 0.104721,
respectively. Both criteria indicate that the overdispersion method is
better than the expectation method.

DISCUSSION

The overdispersion method for handling missing genotypes was
proposed by Xu and Hu (2010) for IM under the GLM framework.
We examined this method and an additional one (expectation
method) under the GLMM framework for mapping multiple QTL.
The GLMM and GLM are different and thus the extension is not a
trivial task. The overdispersion method consistently showed advan-
tages over the expectation method in both the simulated data and real
data analyses and in both the binomial and binary trait analyses. Based
on the visual plots of the estimated QTL effects, the advantages
appeared to be marginal. Then why should we bother to develop
such a method, given the observed marginal advantage? First, the
overdispersion method does not require much more computational
load than the expectation method. The computational times of the
two methods are pretty much the same when we used the numerical
differentiation packages to evaluate the first and second partial
derivatives. Therefore, we should take any opportunity to extract
maximum information from the data; even a slight advantage is worth
the effort. Secondly, the simulation experiments are always limited. It
is hard to simulate all possible scenarios so that the advantages of the
overdispersion method are fully exposed. In some situations, the
advantage may be obvious and we may simply fail to identify those
situations. Thirdly, the two methods for the wheat data analysis of the
binomial trait already demonstrated some interesting differences that
are worth of discussion. The largest QTL detected by the overdisper-
sion method was split into several smaller QTL by the expectation
method. The cross validation analysis showed that the overdispersion
method gave a better prediction, implying that the single large QTL
may most likely represent the truth. The binary data analysis of the
wheat experiment showed that the same locus also had a large effect
on the binary trait. This time both methods showed a single large
QTL. This observation further supports the single large QTL hypoth-
esis. Without the overdispersion method, we would not have such a
confidence of this single large QTL.
The advantage of the overdispersion method will diminish as the

marker density increases. In the situation where the entire genome is
sequenced, the two methods would converge to the same result
because genotypes of all markers will be observed. However, full
genome sequences for most species are not expected to happen
soon. In addition, missing genotypes may still exist due to human
and technical errors in experiments. Therefore, the missing genotype
handling methods remain useful in the foreseeable future.
The GLMM is sufficiently general so that it can handle traits with

any distributions as long as the likelihood function is programmable.
The normal distribution for the QTL effects may be substituted by
other distributions. Explicit expressions of the derivatives are not
required to implement the Newton–Raphson updates. Recently, Yi
and Banerjee (2009) developed a hierarchical GLM for mapping
discrete trait QTL. They used the pseudo likelihood approach to
approximate the observed log likelihood function. The authors used
an EM algorithm to estimate the QTL effects but they treated {b,g} as
parameters and G as missing values. In addition, Yi and Banerjee
(2009) only considered marker analysis with missing marker geno-
types replaced by the conditional expectation, which is equivalent to
the expectation method of this study. However, they only considered
missing marker genotypes in the sense that majority of the individuals
are genotyped. The missing genotypes in their study were solely

Figure 6 Frequency distribution of the number of seeded spikelets of the F2
wheat population. Among the 243 plants, 39 of them had no seeds (zero

category).
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caused by technical or human errors. They did not insert pseudo
marker in every few centiMorgan to saturate the genome.
Responding to a reviewer’s suggestion, we analyzed both the

binomial and binary traits of the wheat experiment using the LMM
by ignoring the discrete nature of the traits. The correct model should
be the GLMM, but we used the LMM as an ad hoc model to analyze
the discrete traits. The results are depicted in Supplementary Figure S1
for the binomial trait and Supplementary Figure S2 for the binary
trait. Supplementary Figure S1 shows the estimated QTL effects and
LOD scores of the LMM analysis for the binomial trait. Only one large
QTLwas detected using this ad hocmodel. Comparing Supplementary
Figure S1 here with Figure 5 of the main text, we can see that many
small- to median-sized QTL detected by the GLMM were missed.
Results of leave-one-out cross validation are shown in Supplementary
Table S1. The Pearson correlation coefficients between the observed
and predicted trait values were dropped from 0.517 (expectation) and
0.529 (overdispersion) to 0.495 (expectation) and 0.497 (overdisper-
sion). This means that the median-sized QTL detected by GLMM do
contribute to the binomial trait variation, and ignoring the discrete
nature of the trait has decreased the predictability of the model. The
binary trait comparison between GLMM and LMM favors even more
for the GLMM (see Supplementary Figure S2 and Table S2 of the
Supplementary material).
GLM or GLMM represents an important area of statistics. It was

particularly designed to deal with discrete traits or other traits
deviating from a normal distribution. In statistics, people rarely
argue the suitability GLMM given that LMM is already available for
normally distributed traits. In case–control studies for human diseases,
logistical regression (belongs to GLM) is often used to detect disease

QTL (Hunter et al, 2007) because case (designated by 1) and control
(designated by 0) consist of the two binary states of the disease
outcome. People rarely analyze the 0-1 binary trait using the simple
regression analysis by ignoring the discrete nature of the trait. The
situation is different for QTL mapping in plants and animals. Every
time a new method is developed for discrete traits, the investigator
must face challenges from peers about how much improvement can be
achieved if the discrete nature of the trait is ignored. These challenges
repeatedly occurred and may largely credit (or blame) to the works by
Visscher et al (1996) and Rebai (1997) who showed marginal
improvement of GLM over LM for binary trait QTL mapping when
the binary trait is treated as if it were continuous. Rao and Xu’s (1998)
conclusion about the ad hoc treatment of categorical trait analysis was
slightly different. They found that if a categorical trait is analyzed
using simple linear models, the power and accuracy of QTL parameter
estimation can be reduced substantially if the categorical nature of the
trait is ignored. Although from practical point of view, it is true that
the loss of power and accuracy may be marginal when discrete traits
are treated as continuous ones, the GLM or GLMM is built based on a
rigorous statistical foundation and thus its suitability should not be
argued. Especially, in the era of high power computing, one should
not use a suboptimal algorithm on knowing the availability of the
optimal algorithm. On the other hand, if an investigator presents
result of a binary trait analysis using simple method by treating the
binary phenotype as a continuous trait, then the investigator will often
face criticism from the peers for not using the correct model, given the
availability of GLM or GLMM. For the benefit of these investigators,
the new GLMM approach provides a useful tool for correctly analyz-
ing their data to avoid rejection of their fine works.

Figure 7 Binary trait (seed presence/absence) analysis using the expectation method (blue) and the overdispersion method (red). The top panel shows the

estimated QTL effects and the bottom panel shows the LOD scores. Chromosomes are separated by the dotted vertical lines. Positions of true markers are

indicated by the inward ticks on the horizontal axis.
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DATA ARCHIVING

Simulated data, the test dataset from Dou et al. (2009) and SAS
scripts for analyzing these datasets have been deposited at Dryad:
doi:10.5061/dryad.mn159hq6.
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