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Increased inbreeding and strong kinship structure
in Taxus baccata estimated from both AFLP
and SSR data

IJ Chybicki, A Oleksa and J Burczyk
Department of Genetics, Institute of Experimental Biology, Kazimierz Wielki University, Bydgoszcz, Poland

Habitat fragmentation can have severe genetic conse-
quences for trees, such as increased inbreeding and
decreased effective population size. In effect, local popula-
tions suffer from reduction of genetic variation, and thus loss
of adaptive capacity, which consequently increases their
risk of extinction. In Europe, Taxus baccata is among a
number of tree species experiencing strong habitat fragmen-
tation. However, there is little empirical data on the
population genetic consequences of fragmentation for this
species. This study aimed to characterize local genetic
structure in two natural remnants of English yew in
Poland based on both amplified fragment length polymor-
phism (AFLP) and microsatellite (SSR) markers. We
introduced a Bayesian approach that estimates the average
inbreeding coefficient using AFLP (dominant) markers.
Results showed that, in spite of high dispersal potential
(bird-mediated seed dispersal and wind-mediated pollen

dispersal), English yew populations show strong kinship
structure, with a spatial extent of 50–100m, depending
on the population. The estimated inbreeding levels
ranged from 0.016 to 0.063, depending on the population
and marker used. Several patterns were evident: (1) AFLP
markers showed stronger kinship structure than SSRs;
(2) AFLP markers provided higher inbreeding estimates
than SSRs; and (3) kinship structure and inbreeding
were more pronounced in denser populations regardless
of the marker used. Our results suggest that, because
both kinship structure and (bi-parental) inbreeding exist
in populations of English yew, gene dispersal can be
fairly limited in this species. Furthermore, at a local scale,
gene dispersal intensity can be more limited in a dense
population.
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Introduction

Habitat availability is one of the most crucial factors
shaping the natural distribution of plants. Across most of
Europe, the strongest influences on contemporary plant
distributions are historical and current human land-use.
Exploitation of natural resources often causes habitat
fragmentation, limiting species distribution and increas-
ing the risk of extinction. The lack of spatial continuity in
populations can have severe consequences, such as
increased inbreeding (Ledig, 1992) and reduced effective
population size (Gilpin, 1991). In effect, local populations
experience loss of genetic variation, and may suffer from
the reduction of both viability (Frankham, 2003) and
adaptive capacity (Young et al., 1996; Willi et al., 2006).

The risk of negative consequences owing to habitat
fragmentation depends particularly on dispersal cap-
abilities (Thomas, 2000). Dispersal allows the coloniza-
tion of new habitats and population spread, but,
through gene flow, it also assures connectivity at a
meta-population level (Travis and Dytham, 1998). In
fragmented populations, gene flow within and among

populations helps to maintain sufficiently large effective
population sizes to preserve the genetic variation
necessary for adaptive potential (Willi et al., 2006).
Therefore, plants characterized by a more extensive
dispersal are also expected to be less susceptible to
habitat fragmentation.
Another important factor contributing to the risk of

extinction is the mating system, which determines the
inbreeding and kinship levels (Frankham, 1995). In
species experiencing inbreeding depression, time to
extinction can be markedly decreased (Brook et al.,
2002). Although it is often argued that the extinction
process in small endangered populations is strongly
influenced by demographic or environmental factors,
which act long before genetic factors become significant
(Caro and Laurenson, 1994), Bijlsma et al. (2000) showed
that the impact of environmental stress can become acute
at higher inbreeding levels. Hence inbreeding and
environmental stresses are not independent but can
interact.
In Europe, Taxus baccata is among a number of tree

species experiencing strong habitat fragmentation. Pos-
sible reasons include climate change and long-term
human impact, such as overexploitation of yew timber
in the past and more recent forest management biased
towards maximization of wood production. Such frag-
mentation is likely to have increased the risk of negative
consequences such as genetic drift and inbreeding.
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Moreover, low rates of natural regeneration have
been observed in remnant populations (Hulme, 1996;
Mysterud and Østbye, 2004; Myking et al., 2009), leading
to a continuous decline in population numbers (Thomas
and Polwart, 2003).

Most population genetic studies on English yew have
focused on among-population genetic variation. They
have shown a strong genetic structure at a meta-
population level (Hilfiker et al., 2004; Myking et al., 2009;
Zarek, 2009; Dubreuil et al., 2010). Interestingly, whereas
populations at the centre of the natural range show rather
high genetic diversity (Lewandowski et al., 1995; Hertel
and Kohlstock, 1996), recent analyses have shown that
genetic diversity decreases in the more peripheral areas
(Myking et al., 2009; González-Martı́nez et al., 2010). Using
allozymes low genetic diversity was found in Taxus
brevifolia (El-Kassaby and Yanchuk, 1994), Taxus canadensis
(Senneville et al., 2001) and especially in the Asian species
Taxus cuspidata (Chung et al., 1999; Lee et al., 2000).
Therefore, as compared with other yew species, T. baccata
has relatively high genetic diversity, which appears
comparable to that in other gymnosperms (Hamrick
et al., 1992). However, because of scant information on
genetic variation and the high ecological diversity of
English yew habitats (Thomas and Polwart, 2003), the
latter conclusion should be treated with caution.

The English yew produces fleshy-fruited seeds, which
can be dispersed either by birds or by gravity (Garcia
et al., 2000; Garcı́a and Obeso, 2003). Besides enhancing
the dispersal distance, dispersal by birds can also
facilitate the germination of seeds, as seed dormancy is
broken more easily if seeds have passed through the
digestive tract of birds (Suszka, 1985). Nonetheless,
ecological studies have shown that a majority of seeds
fall beneath the mother tree (Garcı́a and Obeso, 2003),
although they may occasionally disperse 50–70m away
from trees (Bartkowiak, 1970). Thus, within a site, seed
dispersal in English yew may be relatively restricted.
Knowledge of pollen dispersal in yew is scarce. Its pollen
velocity (0.023m s�1; Dyakowska, 1959) is comparable
with that of birch or pine species (Levin and Kerster,
1974), showing great potential for dispersal. However,
strong genetic differentiation among yew populations
suggests that gene exchange is rather limited (Hilfiker
et al., 2004; Myking et al., 2009; Zarek, 2009; Dubreuil
et al., 2010). A possible explanation could be low pollen
concentration in the atmosphere because of the scattered
distribution of yew populations in a landscape. In
addition, English yew is typically an understory forest
species (Thomas and Polwart, 2003), and its low height
may limit pollen dispersal within and among popula-
tions. For example, results from pollen trapping suggest
that in dense yew populations, pollen dispersal might be
quite limited, with a majority of pollen grains falling
on nearby male trees (Noryśkiewicz, 2006). If seed-
and pollen-mediated gene flow is limited, this would
enhance the isolation-by-distance process, increasing the
spatial genetic structure (SGS) and (bi-parental) inbreed-
ing in a population.

In this study we investigated whether isolation-by-
distance occurs within highly isolated populations of
English yew. For this purpose, two of the largest lowland
populations in Poland were sampled intensively. Using
both AFLP and SSR markers, we investigated the spatial
extent of SGS among individuals. Additionally, we

investigated the inbreeding levels within populations,
and for this purpose we developed a novel Bayesian
approach in order to make within-population inbreeding
inference based on dominant markers such as AFLPs.
The results will be important for designing efficient
conservation programs for English yew.

Materials and methods

Study sites and field work
The study was conducted at two sites, both forest nature
reserves established for the protection of remnant
populations of English yew (T. baccata L.) (Figure 1).
The sites are both highly isolated yew patches but
represent very different habitats. The first population is
located near Czarne in northern Poland. The current yew
population comprises 439 adult trees scattered over
26.4 ha. It is characterized by relatively low density, with
about 17 per individuals per hectare. The population age
is estimated to be 250 years, with the oldest trees about
300 years old. Palynological data showed that yew
colonized this location during the sub-boreal period
(5000–2500 year BP) (Prusinkiewicz and Biały, 1976). The
second population, Wierzchlas, is the largest remnant
yew forest in Poland. The forested area covers about
18.5 ha. Although the oldest individuals are 500 years
old, palynological records showed that yew has been a
stable component of local forests since the sub-boreal
period (5000–2500 year BP) (Noryśkiewicz, 2006). This
population differs from that of Czarne in its high density,
reaching about 200 individuals per hectare. As a result,
light availability at the forest floor is poor, limiting the
occurrence of understory plants. For this and other
(browsing, low groundwater level) reasons, yew does not
regenerate naturally, although seeds germinate in high
abundance every year (seedlings survive 2 years only).
Since 1910 the number of living trees has decreased
from 5533 to 2856 (excluding 397 standing dead trees),
according to reserve documentation. Therefore, despite
its large size, the Wierzchlas is a declining population.

In Spring 2008, a study plot was established at each
site, within which all mature trees were mapped using
the GPS mapping system Pathfinder ProXT (Trimble,
Sunnyvale, CA, USA) (Figure 1). Needles were collected
from all mapped trees, immediately transported to the
laboratory and stored at �80 1C until analysis. In total,
216 and 293 individuals were sampled in Czarne and
Wierzchlas, respectively.

Laboratory methods
Genomic DNA was extracted by following the CTAB
protocol (Doyle and Doyle, 1990), after grinding frozen
tissue with a Mixer Mill (MM301; Retsch, Haan,
Germany). The extracted DNA was diluted to obtain
100 ngml�1 and 10 ngml�1 solutions, which were used in
AFLP and SSR analyses, respectively.

AFLP analysis: The AFLP analysis followed the
original protocol by Vos et al. (1995), with some
modifications introduced for analysis of large genomes
(Shepherd et al., 2003). Restriction–ligation reactions
were performed in a total volume of 10 ml. A single
reaction contained 500 ng of genomic DNA, 5U of EcoRI
(Fermentas, Burlington, Ontario, Canada) and 5U of
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Tru1I (MseI iso-schizomer) (Fermentas), 1.5U of T4 DNA
ligase (Fermentas), 1� T4 DNA ligase buffer (Fermentas),
0.05% bovine serum albumin, 50mM NaCl, 0.5 pmolml�1

E-Adaptor and 5pmolml�1 M-Adaptor. The reactions
were performed at room temperature overnight and
then diluted 5� with H2O in order to obtain PCR
matrices (pre-matrix DNA) for pre-selective amplification.

Pre-selective amplifications were performed in 10ml
total volume. A pre-selective PCR mixture contained 2 ml
of pre-matrix DNA, 1� Qiagen Master Mix (Qiagen Taq
PCR Master Mix kit), 0.5mM E-primer (EþAC) and
0.5mM M-primer (MþCC). Amplification was performed
by using the following programme: 72 1C for 2min; 20
cycles of 94 1C for 20 s, 56 1C for 30 s and 72 1C for 2min;
and finally 60 1C for 30min. A product of pre-selective
PCR was diluted 20 times in order to obtain a PCR matrix
for selective amplification (sel-matrix DNA).

Selective amplifications were performed in 10ml total
volumes, consisting of 3ml of sel-matrix DNA, 1�
Qiagen Master Mix, 0.5mM FAM-labelled E-primer
(EþACG) and 0.5mM M-primer (MþCCNN). Three M-
primers, namely CCCT, CCGC and CCGT, were success-
fully tested and used in complete genotyping. PCRs were
performed by using the following programme: 94 1C for
2min; 10 cycles of 94 1C for 20 s, 66 1C (�1 1C per cycle)
for 30 s and 72 1C for 2min; and 20 cycles of 94 1C for 30 s,
56 1C for 30 s and 60 1C for 30min. Both pre-selective and
selective amplifications were performed using the
PTC200 thermal cycler (Bio-Rad, Hercules, CA, USA).

The products of selective amplifications were sized by
using the automated capillary sequencer ABI PRISM
3130XL (Applied Biosystems, Foster City, CA, USA)
and the softwares GENESCAN 3.7 and Genotyper 3.7
provided by the manufacturer.

SSR analysis: All eight SSR markers published for
T. baccata (Dubreuil et al., 2008) were tested. However, a
preliminary analysis showed that only five (Tax26, Tax31,
Tax36, Tax92, TS09) gave clearly interpretable mono-locus
patterns. Therefore, to increase the genetic power, we
designed five additional primers based on the sequences
deposited in GenBank by Dubreuil et al. (2008) and
named Tax33, Tax47, Tax70, Tax362 and Tax922 (GenBank
accession numbers: EF012577, EF012579, EF012575,
EF012576, EF012574 and EF012572, respectively). Of
these new primers, only Tax362 gave promising ampli-
fication results (using the primers F: TTGGGTAATT
GGTAATGGAAAT and R: AACTTGGTATCGTGTTG
CATTTT) and was used as the additional SSR locus in
this study.
Finally, six nuclear microsatellite markers were used

for genotyping according to the following protocol: The
total volume of the PCR mixture was 10 ml, which
contained 20ng of template DNA, 1� Qiagen PCR
buffer (Qiagen PCR Core kit), 200 nM of each dNTP,
0.25U of Taq polymerase (Qiagen PCR Core kit),
0.5mgml�1 bovine serum albumin, 20 ng of DNA and
0.35–0.5mM forward and reverse primers, depending on
the locus. PCRs were performed based on the following
programme: 94 1C for 5min; 10 cycles of 94 1C for 30 s,
65 1C (�1 1C per cycle) for 40 s and 72 1C for 40 s; and 25
cycles of 94 1C for 30 s, 55 1C for 30 s and 72 1C for 40 s.
The final extension step at 72 1C was performed for
7min. The PCRs were performed by using PTC200
thermal cycler (Bio-Rad). The PCR products were sized
by using the capillary sequencer ABI PRISM 3130XL
(Applied Biosystems). The genotypes were scored by
using the GENESCAN 3.7 software provided by Applied
Biosystems.

Figure 1 Map of the location of the study populations, together with a within-plot distribution of sampled individuals: C, Czarne; W,
Wierzchlas. For Wierzchlas, the dot shading reflects the probability of individual membership of one of two estimated sub-populations,
according to a Bayesian clustering method applied to AFLP markers.
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Statistical methods
Genetic variation: For SSR markers the following
parameters were calculated per locus: number of alleles
(A), effective number of alleles (Ae), and expected
(He) and observed (Ho) heterozygosity. In order to test
for deviation from Hardy-Weinberg proportions, the
Markov chain Monte Carlo (MCMC) version of the
exact test was used. The null allele frequencies at SSR
loci were estimated under the assumption of Hardy–
Weinberg equilibrium by using the maximum likelihood
approach. All computations were performed by using
GENEPOP software (Rousset, 2008).

The AFLP markers were analysed under the assump-
tion of a complete dominance (binary data) as pedigree
data were not available (to test for the co-dominance/
dominance of typed PCR products). Hence, only pheno-
type frequencies were known precisely and allele
frequencies were estimated (together with the inbreeding
coefficient) by using a Bayesian method, which is
introduced in the next section.

Inbreeding coefficient: Dubreuil et al. (2008, 2010)
suggested that the SSR markers used include null
alleles; therefore, the inbreeding coefficient cannot be
computed directly from heterozygote deficiency. Hence,
the inbreeding coefficient was estimated by using the
Bayesian method proposed by Vogl et al. (2002). As
shown recently, the method provides robust estimates for
multi-locus SSR data even in the presence of null alleles
(Chybicki and Burczyk, 2009). Estimation was conducted
by using the INEst software (Chybicki and Burczyk,
2009).

In this paper we apply Vogl’s approach for completely
dominant markers (AFLP, RAPD, iSSR etc.). In order to
describe the estimation procedure, the inbreeding
coefficient F is defined as the probability that two
alleles randomly chosen from a population are identical
by descent (ibd). A random sample of N individuals
from a population may be treated as a realized sample
of independent Fi, such that each Fi is the probability
that two alleles at a random locus of the i-th individual
are ibd. Note that Fi can be referred to as an
individual inbreeding coefficient. Typically, Fi shows
dispersal around a population average F; therefore,
to reflect this, we assume that Fi follows a beta-
distribution

Fi � betaða; bÞ ð1Þ

The meaning of a and b parameters can be better
understood by noting that the expected value of Fi, that
is, a population average inbreeding coefficient F, is
equal to a/(aþ b), with a variance equal to ab/
[(aþ b)2(aþbþ 1)]. A beta-distribution is chosen because
it is dedicated to variables defined on the interval (0,1).
Also it is quite flexible because the distribution may take
the shape from concave through flat (when a¼b¼ 1) to
convex. Finally, it serves as a conjugate prior for a
binomial distribution, which itself is used to model
proportions.

Ideally, the estimate of individual inbreeding coeffi-
cient would be Fi¼Xi/L, where Xi is a number of loci
having alleles ibd (out of L in total) in a genotype of the
i-th individual. Assuming independence among loci,
Xi follows a binomial distribution. In this way we obtain

a two-stage model,

XijFi � binomialðFi; LÞ:

Fi � betaða; bÞ;
that enables us to write, that

PrðXija; bÞ ¼
L
Xi

� �

� Gðaþ bÞGðaþ XiÞGðbþ L � XiÞ
Gðaþ bþ LÞGðaÞGðbÞ ð2Þ

that is, Xi follows a beta-binomial distribution. Given a
known Xi, equation (2) would allow the estimation of a
population average F (through estimation of a and b).

In the case of dominant markers, although the only
observed data are binary phenotypes (neither individual
proportions of alleles ibd nor genotypes are known), Fi

can be inferred using a classic inbreeding model, given
observed phenotypes (Appendix). A basis of this
inference is the conditional probability that the i-th
individual at the l-th locus has a dominant (Pil¼ 1) or
recessive (Pil¼ 0) phenotype that can be written as

PrðPiljFi; plÞ ¼
Fipl þð1�FiÞp2l þð1�FiÞ2plð1�plÞ; ifPil ¼ 1

Fið1� plÞ þ ð1� FiÞð1� plÞ2; ifPil ¼ 0

�

ð3Þ
where pl is a dominant allele frequency at the l-th locus in an
ancestral population. Based on equation (3) the likelihood
function of the phenotypic data can be formulated as

LðfPilgjfFig; fplgÞ ¼
YN

i

YL

l

PrðPiljFi; plÞ: ð4Þ

In our model allele frequencies are unknown parameters to
be estimated from the data. For this purpose, motivated by
the findings of Wright (1931), we assume that allele
frequencies in an ancestral population follow the beta-
distribution

pl � betaðap; bpÞ; ð5Þ
with hyper-priors ap and bp determining the shape of a
probability distribution. We assume that ap and bp are
shared across loci. As shown by Foll et al. (2008), making
hyper-priors estimable parameters significantly improves
the overall estimation procedure. Following Vogl et al.
(2002), for this purpose we introduce additional variables Dl

and Rl, which store a number of ancestral copies of
dominant and recessive alleles (respectively) at the l-th
locus. Dl and Rl are complementary variables following a
binomial distribution. Therefore, we only specify that Dl

follows:

Dljpl � binomialðpl; Dl þ RlÞ: ð6Þ

Although Dl and Rl are not known directly from the data,
they can be inferred in a similar way as Xi using [3], given Fi

and pl. Now, because of [5] we can write that

PrðDljap; bpÞ ¼
Dl þ Rl

Di

� �
Gðap þ bpÞGðap þ DlÞGðbp þ RlÞ
Gðap þ bp þ Dl þ RlÞGðapÞGðbpÞ

PrðRljap; bpÞ ¼
Dl þ Rl

Ri

� �
Gðap þ bpÞGðap þ DlÞGðbp þ RlÞ
Gðap þ bp þ Dl þ RlÞGðapÞGðbpÞ

ð7Þ
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The latter equations can be used to estimate ap and bp. The
details of the inference of Xi, Dl and Rl are shown in the
Appendix. Here we only describe a general estimation
algorithm. The estimation procedure relies on the cyclical
updating of the parameters, making proposals with (where
possible) conditional distributions (Gibbs proposals) or
symmetric distributions (Metropolis proposals) (known as
Metropolis-Gibbs algorithm; Hoff, 2009). Given a set of
parameter values at the s-th iteration {F1(s), F2(s), y, FN

(s), p1(s),
p2(s), y, pL

(s), a(s), b(s), al
(s), bl

(s)}, new parameter values are
generated as follows:

1. Infer each Xi (i¼ {1, y, N}), Dl and Rl (l¼ {1, y, L})
based on equation (3), given a set of current parameter
values and data.

2. For each i¼ {1, y, N} update Fi: sample
Fi
(sþ 1)Bbeta(Xiþ a, L�Xiþ b)

3. For each l¼ {1, y, L} update pl: sample pl
(sþ 1)B

beta(Dlþ ap, Rlþ ap)
4. Update a:

4.1. Propose a*Ba symmetric uniform distribution
centred on a(s)

4.2. Set a(sþ 1)¼ a* with probability R ¼ PN
i¼1

PrðXija�; bðsÞÞ=PN
i¼1 PrðXijaðsÞ; bðsÞÞ and a(sþ 1)¼ a(s)

with a probability (1�R).
5. Update b:

5.1. Propose b*Ba symmetric uniform distribution
centred on b(s)

5.2. Set b(sþ 1)¼b* with probability R ¼ PN
i¼1

PrðXijaðsþ1Þ; b�Þ=PN
i¼1 PrðXijaðsþ1Þ; bðsÞÞand b(sþ 1)¼

b(s) with a probability (1�R).
6. Update ap:

6.1. Propose ap*Ba symmetric uniform distribution
centred on ap

(s)

6.2. Set ap
(sþ 1)¼ ap* with probability R ¼ PL

l¼1
PrðDija�p; bðsÞp Þ=PL

l¼1 PrðDljaðsÞp ; bðsÞp Þ and ap
(sþ 1)¼

ap
(s) with a probability (1�R)./li>

7. Update bp:

7.1. Propose bp*Ba symmetric uniform distribution
centred on bp

(s)

7.2. Set bp
(sþ 1)¼bp* with probability R ¼ PL

l¼1
PrðDijaðsþ1Þ

p ; b�pÞ=PL
l¼1 PrðDljaðsþ1Þ

p ; bðsÞp Þ and bp
(sþ 1)

¼bp
(s) with a probability (1�R).

The posterior marginal distributions for parameters of
interest can be approximated with a large number of
cycles. Then, the means and credible intervals can be
extracted. The assumption of F to be beta-distributed
implies that possible values of F obtained based on the
full model fall always within the range (0,1). Hence, the
full model cannot be used to test a null hypothesis
(F¼ 0). However, a null hypothesis can be verified
through comparison of a null model (F as constants
equal 0) and the full model (F as estimable parameters)
using the Deviance Information Criterion (DIC) (Spie-
gelhalter et al., 2002) based on the likelihood function
defined in equation (4).

The number of cycles (comprising Steps 1–7) applied
in the analysis of the two yew populations was 60 000.
However, as the Gibbs sampler requires initial guesses in
order to avoid a dependence of final estimates on these
initial values, we burnt-in the first 10 000 updates.
Because our inference is based on prior distributions,
which are not known, each analysis was repeated five
times, each time starting from different initial values of

parameters representing a prior distribution having the
same mean (F¼ 0.5) but differing in variance and shape
(a¼ b¼ {0.1, 0.5, 1, 2.5, 5}). The analyses were performed
using the ad hoc computer program I4Awritten in Object
Pascal/Delphi by IJC (freely available on at http://
www.genetyka.ukw.edu.pl/index_pliki/software.htm).
In order to investigate the statistical properties of the

method, a limited simulation study was conducted. In
particular, we were interested in how sampling effort
influences the accuracy and the precision of the estimator.
Additionally, we compared the behaviour of the Bayesian
estimator (hereafter ‘FB’) by the existing approach, the
frequency-matching algorithm, introduced by Dasmahapa-
tra et al. (2007) (hereafter ‘FFM’). A detailed description of the
FFM estimator is beyond the scope of this paper, therefore
only a brief description follows. FFM relies on the assump-
tion that at least 50% of the sampled individuals are outbred
(F¼ 0). The algorithm starts by finding the best-fitting
individual inbreeding levels by comparing the observed
data with a series of simulated phenotypic data differing in
compositions of inbred individuals. Then, using the best-
matching mean F, allele frequencies are adjusted. Finally,
FFM attempts to find the best fit of the observed phenotypes
to the simulated data given adjusted frequencies.
Because the two estimators rely on specific assump-

tions about the distribution of F (beta-distribution for FB

and 50% non-inbred individuals for FFM), our simula-
tions were conducted such that neither one would be
more favoured than the other. For this reason we chose
the mixed mating model, in which reproduction occurs
either through self-fertilization (with probability s) or
random out-crossing (with probability 1�s). Then, the
expected average inbreeding becomes F¼ s/(2�s). The
simulation algorithm was as follows: (1) draw a self-
fertilization rate (s) from a uniform distribution (0, 0.5)
(the range implies FA(0, 0.33)); (2) randomly generate
allele frequencies at L loci; (3) attribute to each of the
L loci of the T individuals a given genotype as a function
of allele frequencies; (4) draw an individual (i); (5)
generate a random number from a [0,1] uniform
distribution (x); (6) if x4s, draw a second individual
(j), otherwise take j¼ i; (7) for each locus take one allele at
random from the i-th and the j-th individual’s genotype
and combine them to form the genotype of a progeny; (8)
go to Step-4 T times to obtain T individuals representing
the next generation (to neglect the effect of random
genetic drift, here T¼ 10 000); (9) repeat Steps 3–8 for the
desired number of generations (here 30); (10) draw a
sample of N individuals from the last generation and
convert their genotypes so that all heterozygotes appear
as dominant phenotypes.
Once phenotypes were generated they were stored as

input files for estimating the inbreeding coefficient using
two different applications: the FAFLPcalc Excel macro
implementing the method of Dasmahapatra et al. (2007)
(available at http://www.ucl.ac.uk/taxome/kanchon/
#publications) and I4A, a stand-alone Windows pro-
gramme implementing the Bayesian approach intro-
duced in this paper. In the case of I4A we used the
prior values of beta-distributions equal to a¼ b¼
ap¼ bp¼ 1.0 (corresponding to an ‘uninformative’ flat
distribution) and 60 000 repetitions, including a 10 000-
step burn-in. In the case of FAFLPcalc, we slightly
modified the original estimation procedure for the two
reasons given below. First, the original algorithm
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searches for the optimal mean F-value in discrete steps
(þ 0.05), thus it does not allow the exploration of a
continuous range of the parameter. Second, because
FAFLPcalc is based on random simulations, the results
show stochastic variation for successive runs so that the
algorithm may occasionally find sub-optimal estimates.
Therefore, in order to allow a continuous distribution of
the average F-value, as well as to control for stochastic
variation of the estimator, we repeated the estimation for
a single data set 50 times and scored the average F-value
over these repetitions as the best-matching value of the
FFM estimator.

We considered three scenarios, differing in the amount
of genetic data, as follows: (a) 50 individuals genotyped
at 100 dominant bi-allelic markers; (b) 50 individuals
genotyped at 200 markers and (c) 100 individuals
genotyped at 100 markers. In this way we were able to
test the impact of sample size or number of markers on
the precision and accuracy of the estimators. Because a
single analysis is time consuming and joint analyses
based on the two separate software tools cannot be
automated easily, only 50 repetitions per scenario were
conducted. For each scenario the bias and the root mean
square error were estimated.

Spatial genetic structure: The SGS was assessed by using
a multi-locus kinship coefficient. The analyses were
performed separately for AFLP and SSR markers using
the SPAGeDi ver. 1.3 software (Hardy and Vekemans,
2002). In the case of SSRs, kinship was estimated according
to Nason’s formula (Loiselle et al., 1995), whereas for AFLP
markers a kinship coefficient was estimated according to
Hardy (2003). Because the latter needs an inbreeding
coefficient to be provided, we used the averaged values
estimated for each population (Table 2). Correlograms
were obtained by averaging kinship coefficients within 10
distance classes, each containing an even number of pairs.
In order to illustrate the intensity of the SGS, therefore, we
estimated Sp¼�b1/(1�f(1)) (Vekemans and Hardy, 2004),
where b1 is the slope of a log-linear regression between
observed kinship and a distance between individuals, and
f (1) is the average kinship for the first distance class. All
standard errors were estimated by jackknife procedure
over loci. Additionally, to test for the presence of subtle
genetic structures within a population we applied a
Bayesian clustering method (Guillot et al., 2005)
implemented in GENELAND ver. 3.2.4 (Guillot et al.,
2008). The method was chosen because it uses geo-
referenced genotypes as prior information in the
estimation procedure. Also, unlike similar methods it
treats a number of sub-populations (K) as an estimable
parameter. The estimation procedure was based on the
spatial D-model (assuming independency of allele
frequencies among sub-populations). In the case of SSR
data, owing to the high frequency of null alleles (see
section Results) the Null Allele model was used. Estimates
were obtained after 100 000 iterations (saving every 100th).
Estimation was repeated five times for each data set.

Results

Genetic variation
AFLP markers: While scoring AFLP phenotypes,
special care was taken in order to include only those
loci that showed a stable migration pattern and peak

intensity across samples. Thus, using three combinations
of primers we scored 126 marker loci in total (MþCCCT,
50 loci; MþCCGC, 31 loci and MþCCGT, 45 loci).
Nonetheless, in a single population the number of
polymorphic loci, that is, showing more than five and
less than n�5 dominant phenotypes (n: number of
individuals in a population), was 114 and 115 in
Czarne and Wierzchlas, respectively. On average, the
frequency of a dominant phenotype was equal to 0.416
and 0.447 in the respective populations. Thus, AFLP
polymorphism was comparable in the study
populations, although a slightly lower polymorphism
was detected in Czarne, probably because of the smaller
sample and the criterion of polymorphism used.

SSR markers: The level of polymorphism in the SSR
markers was high. The number of alleles per locus
ranged from 12 to 35 alleles (Table 1). Interestingly, the
locus designed specifically for this study (Tax362)
appeared to be the least polymorphic, with only 17
detected alleles (fragment lengths ranged from 85 to
119 bp). In spite of the high average numbers of alleles
(23.0 and 18.2 in Czarne and Wierzchlas, respectively),
the effective numbers of alleles were relatively low,
ranging from 3.5 to 9.9. This was because of the presence
of many rare alleles, with some of them identified as
single copy per population. On average, a substantial
deficiency of heterozygotes was detected in both
populations, as compared with Hardy-Weinberg
expectations. The heterozygote deficiency was because
of the presence of null alleles (Figure 2) and within-
population inbreeding, as shown in the next section.

Inbreeding and null alleles
For a given population and a given marker type we ran
five independent analyses using the Bayesian approach,
each starting from different initial values of the prior
beta-distribution (see Materials and methods). Although
these initial prior distributions differ much in shape

Table 1 Genetic structure parameters for Czarne and Wierzchlas
based on SSR analysis

Locus A Ae Ho He HW test

Czarne
Tax31 18 6.4 0.843 0.846 0.026
Tax36 35 9.8 0.810 0.901 o0.001
Tax362 15 7.9 0.585 0.876 o0.001
Tax92 30 9.8 0.716 0.901 o0.001
Tax26 22 7.8 0.512 0.874 o0.001
TS09 18 5.7 0.643 0.826 o0.001
Mean 23.0 7.59 0.685 0.870

Wierzchlas
Tax31 15 3.5 0.720 0.720 0.304
Tax36 22 9.9 0.417 0.901 o0.001
Tax362 12 3.8 0.694 0.740 0.214
Tax92 23 5.5 0.635 0.820 o0.001
Tax26 16 6.3 0.359 0.843 o0.001
TS09 21 4.9 0.551 0.797 o0.001
Mean 18.2 5.04 0.563 0.803 o0.001

Abbreviation: HW, Hardy-Weinberg.
A, number of alleles; Ae, effective number of alleles; He, expected
heterozygosity; Ho, observed heterozygosity; HW test, P-value of
the test for Hardy-Weinberg equilibrium.
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(from concave to convex curves), the analyses conducted
for a given population and marker type always con-
verged to almost the same posterior distributions of the
inbreeding coefficient (Table 2). High stability of the
model can also be deduced from the behaviour of the
likelihood function across different priors, for example,
similar average and standard error values of LogL. The
analyses showed that the inbreeding coefficient is on
average higher in Wierzchlas than in Czarne. However,
the difference was more pronounced for the SSR (0.016
and 0.037 for Czarne and Wierzchlas, respectively) than
for AFLP markers (0.048 and 0.063 for Czarne and
Wierzchlas, respectively). Nonetheless, populations did
not differ statistically in F, as can be deduced from wide
credibility intervals (Table 2). When averaged for two
classes of markers, the inbreeding coefficient equalled
0.032 and 0.050 for Czarne and Wierzchlas, respectively.

Comparison of the DIC values for the full model (F40)
and the null model (F¼ 0) allows to conclude that
inbreeding was significant in all cases except the SSR
data in Czarne.
The Bayesian approach used in this paper allowed the

simultaneous estimation of inbreeding coefficients and
allele frequencies in AFLP and SSR loci, including also
null alleles. The most interesting results were those
regarding null alleles in SSRs, because, as shown in the
previous section, in both populations we detected a high
deficiency of heterozygotes. Estimates based on the
Gibbs sampler confirmed that there was a high frequency
of null alleles in the study populations (Figure 2). On
average, the highest proportion of null alleles was
estimated for locus Tax26. On the other hand, consis-
tently the lowest frequency of null alleles was found for
Tax31, which in both populations was not significantly
different from 0. Interestingly, the locus designed in this
study, Tax362, showed a non-significant frequency of null
alleles in Wierzchlas, whereas a relatively high frequency
in Czarne. The null allele frequencies estimated when
accounting for inbreeding were consistently lower as
compared with EM (expectation-maximization) esti-
mates based on the model assuming Hardy-Weinberg
equilibrium (Figure 2).

In silico behaviour of the inbreeding estimator based

on AFLP
Simulations showed that the Bayesian approach FB

provides a consistent estimator of the average inbreeding
coefficient so that an increasing amount of data results in
both increased accuracy and precision. The study
showed that FB generally behaves better when compared
with FFM among all scenarios considered (Table 3),
showing consistently lower root mean-square error.
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Figure 2 The frequencies of null alleles at SSR loci in the study
populations (Czarne and Wierzchlas). The clear bars indicate
estimates under assumption of Hardy–Weinberg equilibrium
(GENEPOP estimates), whereas the dashed bars indicate estimates
that account for the within-population inbreeding (in this case both
null allele frequencies and inbreeding coefficient were estimated
simultaneously by a Bayesian method; INEst estimates). The
whiskers indicate 95% credibility intervals.

Table 2 Average inbreeding coefficient (F) estimates based on AFLP and SSR markers for the study populations

AFLP SSR

F CI DIC F CI DIC

Czarne
Full model (F40)
a, b
0.1 0.050 (0.003, 0.141) 20 893.7 0.018 (0.001, 0.057) 10 212.0
0.5 0.050 (0.006, 0.006) 20 889.7 0.015 (0.001, 0.049) 10 209.7
1 0.041 (0.006, 0.096) 20 898.9 0.015 (0.001, 0.050) 10 210.0
2.5 0.046 (0.006, 0.120) 20 890.5 0.015 (0.001, 0.050) 10 210.4
5 0.053 (0.011, 0.116) 20 881.3 0.016 (0.001, 0.052) 10 210.4
Mean 0.048 0.016

Null model (F¼ 0) — — 20 929.2 10 203.5

Wierzchlas
Full model (F40)
a, b
0.1 0.065 (0.035, 0.102) 27 047.8 0.039 (0.003, 0.093) 10 614.3
0.5 0.063 (0.036, 0.099) 27 047.0 0.035 (0.002, 0.085) 10 614.7
1 0.057 (0.028, 0.091) 27 048.9 0.037 (0.002, 0.088) 10 617.6
2.5 0.062 (0.033, 0.098) 27 046.6 0.037 (0.003, 0.087) 10 615.1
5 0.065 (0.034, 0.102) 27 048.2 0.036 (0.003, 0.086) 10 615.9
Mean 0.063 0.037

Null model (F¼ 0) — — 27 266.1 10 635.4

Abbreviation: CI, confidence (credibility) interval.
a, b, values of the a and b parameters of the prior beta-distribution used to infer F; 95% CI, 95% credibility interval around F; DIC, Deviance
Information Criterion measuring the overall fit of a model to data (the smaller the DIC, the better the fit). DIC values for the null model (F¼ 0)
are also presented.
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Importantly, FB provided almost unbiased estimates,
whereas FFM tended to slightly underestimate the
average inbreeding coefficient. Simulations also showed
that increasing the number of individuals resulted in
greater accuracy and precision than increasing the
number of loci. However, the last conclusion applies
mainly to the Bayesian method (FB). Finally, we did not
observe any clear relationship between the bias or root
mean-square error and the expected inbreeding coeffi-
cient for the two methods (Figure 3), which indicated
that the estimators are fairly robust across a wide range
of possible inbreeding levels.

Spatial genetic structure
Regardless of the marker type used, both populations
showed a strong SGS. All descriptive measures of SGS
were significantly different from 0 (Table 4). The nearest
neighbours showed the highest kinship, which then
decreased with distance (Figure 4). Both AFLP and SSR
markers showed that, in Wierzchlas, clustering of related
individuals was more intensive than in Czarne. How-

ever, the slope parameters (b1) for Wierzchlas were not
significantly greater than those for Czarne (Table 4).
Interestingly, in both populations AFLP markers showed
more intensive structuring than SSRs. All three para-
meters illustrating SGS, that is, kinship among nearest
neighbours (fij(1)), slope of log-linear regression (b1) and
the SGS intensity measure (Sp) were significantly higher
for AFLP than for SSR markers (Table 4).

Generally, the application of the GENELAND software
showed that Czarne behaves as a single genetic unit (the
most likely K¼ 1), regardless of the markers used. On the
other hand, a more complex pattern was estimated for
Wierzchlas. When analysed with SSRs, Wierzchlas
showed no genetic substructure (K¼ 1). However, for
AFLP markers, GENELAND showed that the sample
consisted of two sub-populations forming two spatial
clusters (Figure 1). A total of 151 and 130 individuals
were assigned to the first and the second genetic cluster
with a probability exceeding 80%; thus only 12 indivi-
duals (4%) showed ambiguous membership.

Discussion

Inbreeding and SGS
One of the objectives of this study was to determine the
inbreeding levels in remnant English yew populations.
Knowledge of inbreeding patterns in English yew is
scarce (Lewandowski et al., 1995; Myking et al., 2009; see
also Dubreuil et al., 2010). For example, Lewandowski
et al. (1995), studying a sample of 41 trees from
Wierzchlas using isozymes, detected no inbreeding at
the adult stage. However, the FIS estimated based on the
embryos of 400 seeds collected from those trees was
equal to 0.049. Myking et al. (2009) suggested that
inbreeding may vary significantly among populations.
Possible factors contributing to this variation may
include establishment history (number of colonizing
individuals), size, density and the isolation level of a
population. Recently, Dubreuil et al. (2010) studied the
genetic structure of English yew populations in Spain
using SSR markers. They noted significant deficiency of
heterozygotes, which could not be attributed solely to
inbreeding, as the SSRs used in that study were strongly
affected by null alleles (Dubreuil et al., 2008).

In this paper we estimated the levels of inbreeding in
the two yew populations using SSR and AFLP markers,
and a Bayesian approach that takes full advantage of the
power of multi-locus data. The main benefit of this

Table 3 The bias and RMSE of the two estimators of the average
inbreeding coefficient for simulated AFLP data

N L FFM FB

50 100 Bias �0.030 �0.010
RMSE 0.055 0.041

50 200 Bias �0.019 �0.003
RMSE 0.048 0.035

100 100 Bias �0.021 0.000
RMSE 0.044 0.028

Abbreviation: RMSE, root mean square error.
N, sample size; L, number of loci; FFM, the frequency-matching
estimator (Dasmahapatra et al., 2007); FB, the Bayesian estimator
(developed in this study). The results are based on 50 repetitions for
each scenario.
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Figure 3 Results of the simulation study for the scenario N¼ 100,
L¼ 100 (see Materials and methods). The asterisks indicate the
frequency-matching algorithm and the open squares indicate the
Bayesian method introduced in this paper.

Table 4 Summary statistics of the SGS estimated for the two study
populations

fij(1) b1 Sp

Czarne
AFLP 0.020 (0.003) �0.012 (0.001) 0.012 (0.002)
SSR 0.010 (0.002) �0.006 (0.001) 0.006 (0.001)

Wierzchlas
AFLP 0.022 (0.005) �0.019 (0.006) 0.019 (0.004)
SSR 0.007 (0.003) �0.009 (0.003) 0.009 (0.003)

Abbreviation: SGS, spatial genetic structure.
fij(1), the average kinship in the first distance interval; b1, slope of the
log-linear regression between distance and kinship; Sp, descriptive
measure of SGS intensity. The standard errors are in parentheses.
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method was that it provided simultaneous (and un-
biased; see Chybicki and Burczyk, 2009) estimates of the
average inbreeding coefficient and allele frequencies,
including null alleles. Generally, our estimates of
inbreeding coefficients were similar to those found in
the literature (Lewandowski et al., 1995; Myking et al.,
2009), reaching up to 0.063 in Wierzchlas. Thus, although
the estimated null allele frequencies at SSR loci were
high in both populations, the deficiency of heterozygotes
observed in the Wierzchlas population was because of
both the presence of null alleles and inbreeding. Similar,
but tentative, conclusions were reached by Dubreuil et al.
(2010) about Spanish populations.

Elevated inbreeding levels have been found in other
Taxus species. For example, in the North American
species Taxus brevifolia, El-Kassaby and Yanchuk (1994)
observed high FIS values, with the extreme mean reach-
ing 0.472. Similar observations were also reported for
T. cuspidata (FIS¼ 0.229; Chung et al., 1999). These studies,
along with the results available for T. baccata, suggest that
in spite of predominant dioecy, yew is not prevented
fully from inbreeding.

One possible explanation for inbreeding is mating
between relatives, which could take place in highly
isolated populations, given that pollen flow is spatially
restricted and populations show a kinship structure
(Vekemans and Hardy, 2004). In the case of yew, the SGS
has been studied only at an among-population scale
(Hilfiker et al., 2004; Myking et al., 2009; González-
Martı́nez et al., 2010). Therefore, although yew shows
clear structuring at a regional scale, knowledge of
within-population SGS has still been lacking. Only
recently Dubreuil et al. (2010) suggested a strong
tendency towards clustering of genetically similar
individuals within populations. Our results fully support
their conclusion, showing that a significant SGS can
extend up to 50 and 100m in Wierzchlas and Czarne,
respectively (Figure 4).

Interestingly, AFLP markers showed stronger patterns
of genetic structure than the SSR markers. This observa-
tion was common in both populations and concerned
both inbreeding estimates and SGS. In particular, the
spatial structuring parameters estimated for AFLPs were
significantly greater than those for SSRs (Table 4), a
phenomenon that has occasionally been noted in the
literature (Jump and Peñuelas, 2007). AFLPs also
provided higher, although not significantly higher,
estimates of F as compared with SSR-based estimates.
Reasons for the differences in genetic structure char-

acteristics between AFLP and SSRs are multiple. AFLP
markers are widely known for a high risk of homoplasy
(that is, lack of homology of co-migrating fragments),
which is not attributed to SSRs. Other possible explana-
tions are differing genome coverage rates or differences
in mutation rates between the two types of markers.
Also, AFLP fragments show a tendency towards co-
variation, which can increase estimates of SGS and
inbreeding, owing to violation of the assumption on
linkage equilibrium.
Bayesian clustering based on AFLP data showed that

Wierzchlas is probably a mixture of two discrete genetic
units, whereas SSR markers showed no structuring. This
could explain a linear rather than a log-linear relation-
ship between kinship and distance observed for AFLP
markers in Wierzchlas (Figure 4) (Born et al., 2008).
Nonetheless, the lack of concordance between AFLPs
and SSRs points to some ambiguity in the pattern, which
cannot be resolved using the available data. Possible
reasons include the differing discriminating power of the
two marker types (for example, high proportions of null
alleles in SSRs lower discrimination power), or different
responses to environmental selection (AFLPs are more
likely to be linked to loci under selection owing to
random coverage of a genome; Gaudeul et al., 2004). The
distribution of clusters does not overlap with any evident
ecological factor, apart from distance from a nearby lake
(Mukrz). However, given the fine spatial scale, the
impact of the lake cannot solely explain the observed
pattern. Another possible reason could be the history of
colonization and/or exploitation of the population in the
past. Palynological data suggest that the presence of yew
in Wierzchlas has changed in time because of variable
human activity (interchanged periods of more and less
intensive exploitation) (Noryśkiewicz, 2006). Thus, the
presence of two sub-populations in Wierzchlas could be
the result of independent colonization events.
Inbreeding and SGS were more evident in Wierzchlas

than in Czarne. Although the observed differences were
not significant, they might be related to differences in
density between the sites. Population density has often
been recognized as a crucial factor of genetic structure
(El-Kassaby and Jaquish, 1996; Angelone et al., 2007).
Density influences mating patterns within populations
primarily by determining the distances between mates
(Tomita et al., 2008). As a result, with all other factors
being equal (for example, a level of flowering synchrony,
variance in reproductive success), the effective dispersal
of genes is negatively related to density (the lower the
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density, the larger the dispersal distance) (El-Kassaby
and Jaquish, 1996). Thus, in the presence of kinship
structure, increased density may enhance bi-parental
inbreeding within a population (Zhao et al., 2009). On the
other hand, as Wright’s neighbourhood size Nb is
proportional to (effective) the density of a population
(Wright, 1946), one can expect a decrease in the rate of
local genetic drift together with an increase in density.
Thus, density may theoretically influence the spatial
genetic structuring (as measured by Sp index) and
inbreeding levels in opposite directions (Vekemans and
Hardy, 2004). This was not the case in our study,
although the populations differed in density about 10-
fold. One possible explanation could be lack of a drift–
dispersal equilibrium (Hardy et al., 2006). However, we
cannot exclude additional forces that may interfere with
gene dispersal during the development of a genetic
structure, such as non-random mating or selection. The
latter seems a likely additional force especially in the
case of the AFLP data, as noted earlier.

Methodological considerations
AFLP markers are widely used in population genetics,
because their use does not require costly initial steps, that
is, a genome-specific marker design (like in case of SSRs).
Although estimation of inbreeding levels is the aim of
many genetic studies (especially in endangered species),
AFLP markers are typically considered to be poorly
informative about inbreeding owing to low polymorph-
ism (bi-allelic system) and complete dominance (Hol-
singer et al., 2002). In this paper we introduced a
Bayesian method for inference of the within-population
inbreeding coefficient that takes full advantage of multi-
locus phenotypes derived from dominant markers.
Although an exhaustive study of the statistical behaviour
of the method is difficult because the algorithm is a time-
consuming approach, we put some effort into studying
simulated data sets to uncover the most important
features of the estimation procedure. Generally, 50
individuals typed at X100 dominant loci allowed a
quite good approximation of a true average inbreeding
coefficient. However, accurate estimates of individual
inbreeding coefficients require a much larger sampling
effort (towards increasing a number of loci). In order to
increase the precision of the estimate of the average
inbreeding level, increasing the number of individuals
seems to be more efficient than increasing the number of
loci. This is probably because of the fact that sampling
more individuals reduces the stochasticity of the average
inbreeding coefficient as estimated based on individual
inbreeding levels (Fi). On the other hand, increasing the
number of loci will increase the accuracy of individual
inbreeding estimates (Fi). However, even highly accurate
Fi estimates may poorly reflect the population average if
the number of individuals is small. Our method (FB)
provides somewhat better estimates of the average
inbreeding as compared with the method proposed by
Dasmahapatra et al. (2007) (FFM). The two methods differ
fundamentally, because, whereas the FB estimator is well
founded in the Bayesian statistical methodology, FFM is
rather a heuristic approach, in which the Method-of-
Moments estimator is adjusted based on the specific
assumptions. A clear advantage of the Bayesian ap-
proach is that, unlike FFM, the FB estimate is accompa-

nied by posterior confidence (credibility) intervals,
allowing insight into the precision of an estimate.
Nonetheless, more extensive study should be made of
the general statistical properties of each method.

Another important estimation problem (not consid-
ered in the simulation study), which unfortunately
cannot be minimized by increasing sampling effort, is
distribution (variance) of the actual within-population
inbreeding coefficient. We expect that the methods work
reasonably well if the actual inbreeding coefficient shows
high variance (that is, individuals differ a lot in their
inbreeding levels Fi). This is because low inbreeding
variance leads to invariable realizations of inbreeding at
the individual level. At the extreme, if all the Fi values in
our model (see for example, equation (1)) were the same
across all individuals, they would behave as a single
parameter F. Such an F would be near-impossible to
estimate, because it could take any value easily counter-
balanced by specific allele frequencies to give the same
likelihood. The same property makes the simultaneous
maximum likelihood inference of F and allele frequen-
cies based on dominant markers impossible (Holsinger
et al., 2002). However, as long as some variation in Fi is
expected (for example, owing to mixed mating system),
the algorithm proposed in this study provides robust
estimates of within-population inbreeding.

Recently, Foll et al. (2008) raised the problem of
ascertainment bias in AFLP markers, which can intro-
duce severe bias to FIS estimates. The ascertainment bias
arises from violation of assumptions about allele fre-
quencies in AFLP markers. Although our simulation
study did not show such behaviour in the FB estimator,
additional study should be undertaken to assess this
problem. However, even if FB also suffers from ascertain-
ment bias, the estimator can be modified according to the
ABC solution provided by Foll et al. (2008). Ascertain-
ment bias could be another reason for the discrepancy
between estimates for SSRs and AFLP mentioned earlier.

Finally, the statistical properties of the FB estimator are
generally independent of the actual inbreeding level
(Figure 3), unless actual F is near its extrema (0 or 1). This
behaviour is expected because of the assumed prior
distribution of F (beta), which is bounded within (0,1)
interval. This makes it impossible to get results for F
outside the interval, leading to biased estimates at the
extrema. The problem could be potentially resolved
using a less constrained proposal distribution for F (for
example, Ayres and Balding, 1998).

Final remarks
In Poland there are about 250 natural populations of
English yew (Iszkuło and Boratyński, 2005). However,
the majority are rather small (ca. 25 individuals) and
highly isolated one from another. In this study, we
showed that a significant kinship structure and inbreed-
ing can be present in large yew populations. These
effects are presumably even more pronounced in small
patches leading, together with genetic drift, to reduction
of genetic variation. The loss of genetic variation often
drives the loss of adaptive potential in a population
(Willi et al., 2006). Additionally, genetic relatedness
among adults can cause inbreeding depression in their
progeny (Hirao, 2010). From this perspective, in situ
conservation of remnant yew populations needs ex-
tended studies to assess the real risk arising from a SGS.
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Appendix

Here we describe the algorithm used to infer the hidden
variables Xi, Dl and Rl introduced in the Materials and
methods section. For the i-th individual Xi¼Sl xil, where
an indicator xil¼ 1 if, at the l-th locus, two alleles are
identical by descent and 0 otherwise. Using equation (3)
(under Materials and methods), one may see that xil

follows a Bernoulli distribution with the probability that
xil¼ 1 being

Prðxil ¼ 1jFi; plÞ

¼ PilFi

Fi þ ð1� FiÞpl þ ð1� FiÞ2ð1� plÞ

þ ð1� PilÞFi

Fi þ ð1� FiÞð1� plÞ
ðA1Þ

Similarly, for the l-th locus Dl¼Si dil and Rl¼Si ril, where
the indicator variables dil and ril store a number of copies
of ancestral alleles at the i-th individual’s genotype. The
two indicators are inferred jointly based on equation (3).
If the i-th individual has a dominant phenotype at the
l-th locus (that is, Pil¼ 1), {dil, ril} would take one of three
possible combinations of values (dil, ril)¼ {(1,0),(2,0),(1,1)}
the with respective probabilities as follows:

Prðdil ¼ 1; ril ¼ 0jFi; plÞ ¼
Fi

Fi þ ð1� FiÞpl þ ð1� FiÞ2ð1� plÞ

Prðdil ¼ 2; ril ¼ 0jFi; plÞ ¼
ð1� FiÞpl

Fi þ ð1� FiÞpl þ ð1� FiÞ2ð1� plÞ

Prðdil ¼ 1; ril ¼ 1jFi; plÞ ¼
ð1� FiÞ2ð1� plÞ

Fi þ ð1� FiÞpl þ ð1� FiÞ2ð1� plÞ
ðA2Þ

If the i-th individual has a recessive phenotype at the l-th
locus, then the indicator variables would take one of two
possible combinations of values (dil, ril)¼ {(0,1),(0,2)},
with the respective probabilities as follows:

Prðdil ¼ 0; ril ¼ 1jFi; plÞ ¼
Fið1� plÞ

Fið1� plÞ þ ð1� FiÞð1� plÞ2

Prðdil ¼ 2; ril ¼ 0jFi; plÞ ¼
ð1� FiÞð1� plÞ2

Fið1� plÞ þ ð1� FiÞð1� plÞ2
:

ðA3Þ

Given known Fi and pl, the indicators xil, dil and ril are
inferred for each individual and each locus as random
samples from the respective distributions [A1], [A2]
or [A3].
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