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Modeling of environmental and genetic interactions
with AMBROSIA, an information-theoretic model
synthesis method
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To develop a model synthesis method for parsimoniously
modeling gene–environmental interactions (GEI) associated
with clinical outcomes and phenotypes. The AMBROSIA
model synthesis approach utilizes the k-way interaction
information (KWII), an information-theoretic metric
capable of identifying variable combinations associated
with GEI. For model synthesis, AMBROSIA considers
relevance of combinations to the phenotype, it precludes
entry of combinations with redundant information, and
penalizes for unjustifiable complexity; each step is KWII
based. The performance and power of AMBROSIA were
evaluated with simulations and Genetic Association Work-
shop 15 (GAW15) data sets of rheumatoid arthritis (RA).

AMBROSIA identified parsimonious models in data sets
containing multiple interactions with linkage disequilibrium
present. For the GAW15 data set containing 9187 single-
nucleotide polymorphisms, the parsimonious AMBROSIA
model identified nine RA-associated combinations with
power 490%. AMBROSIA was compared with multifactor
dimensionality reduction across several diverse models and
had satisfactory power. Software source code is available
from http://www.cse.buffalo.edu/DBGROUP/bioinformatics/
resources.html. AMBROSIA is a promising method for GEI
model synthesis.
Heredity (2011) 107, 320–327; doi:10.1038/hdy.2011.18;
published online 23 March 2011
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Introduction

The potentially ubiquitous roles of environmental
factors, gene–gene interactions (GGI) and gene–environ-
mental interactions (GEI) in pathophysiology could
be contributing factors to the somewhat limited success
of genome-wide association studies of complex diseases
(Weiss and Terwilliger, 2000; Ambrosone et al., 2007;
Goldstein, 2009).

Methodologies for measuring environmental expo-
sures and determining genetic variations have advanced
rapidly. However, analysis tools to evaluate the com-
bined effects of numerous environmental exposures and
multiple genetic variations on disease risk and on clinical
and treatment outcomes are lacking.

Several critical computational problems limit GEI
analysis in clinical pharmacogenetics and human epide-
miology. These include the following: (i) identifying
effective metrics to detect disease risk-associated GEI,
(ii) developing efficient algorithms to tackle the inherent
combinatorial complexity of interaction analysis,
and (iii) implementing modeling strategies to identify
the critical GEI and to systematically extract knowledge.
This manuscript presents on a modeling strategy for GEI

analysis based on a novel and generalizable information-
theoretic framework.

Modeling methods complement GEI identification
approaches by reducing data complexity and enabling
users to assess the key relationships of different genetic
and environmental factor interactions to the disease.
Several factors make GEI modeling difficult. For exam-
ple, the presence of linkage disequilibrium among the
genetic and correlations among the environmental
variables burdens modeling methodologies with redun-
dant information. Many complex diseases exhibit genetic
heterogeneity (GH) with different underlying causes
for the same disease or treatment phenotype present in
the data.

The usefulness of the information-theoretic k-way
interaction information (KWII) metric and the AMBI-
ENCE and CHORUS algorithms for GEI analysis of
discrete phenotypes and quantitative traits has recently
been demonstrated (Chanda et al., 2007, 2008). This paper
focuses on development and critical assessment of
AMBROSIA, an information-theoretic model-synthesis
method for GEI. The methodology differs uniquely from
available approaches in its conceptual framework,
versatility and computational efficiency.

Materials and methods

Definitions and terminology
The terminology, developed by Chanda et al. (2007, 2008)
is concisely recapitulated here.
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GGI and GEI: The methods are applicable to both GEI
and GGI analyses; we will use the term GEI for both.

Model and model synthesis: A model is ‘a parsimo-
nious set of variable combinations capable of explaining
the phenotype’. Model synthesis is the procedure for
identifying a model.

Entropy: The entropy, H(X), of a discrete random variable
X can be computed from the probabilities of p(x) using:

HðXÞ ¼ �
X

x

pðxÞ ln pðxÞ

k-Way interaction information (KWII): The KWII is used
to define interactions (Chanda et al., 2008). For the k-variable
case on the set of predictors n¼ {X1;X2;y;XK} and a pheno-
type variable Y, the KWII can be expressed as an alternating
sum (Han, 1980) over all possible subsets T of {n,Y}:

KWIIðn;YÞ � �
X

T�fn;Yg
ð�1Þ fn;Ygj j� Tj jHðTÞ

The |{n,Y}| and |T| terms in the exponent represent
the size of the combination {n,Y} and the size of the sub-
sets T. The number of predictor variables K¼|{n}| in a
combination is called the order of the combination.

The KWII represents the information that cannot be
obtained without observing all K variables at the same
time (McGill, 1954; Fano, 1961; Jakulin and Bratko, 2004;
Jakulin, 2005). The KWII of a given combination of vari-
ables is a parsimonious, multivariate interaction metric
and does not contain contributions arising from the KWII
of other lower order combinations of these variables.

Interaction: Our operational definition is as follows: ‘a
positive KWII value for a variable combination indicates
the presence of an interaction, negative KWII values
indicate the presence of redundancy, and a KWII value
of zero denotes the absence of k-way interactions’
(Chanda et al., 2008).

AMBIENCE algorithm: AMBIENCE is an information-
theoretic search method for detecting GEI. It uses a compu-
tationally efficient hill-climbing algorithm to identify the
most promising regions in combinatorial space so that the
number of KWII computations is reduced. The inputs to
AMBIENCE are y, the number of combinations retained in
the each search iteration, and t, the number of iterations,
which determines the highest order of variable combination
detected. For details, see Chanda et al. (2008).

The output from AMBIENCE consists of ty combina-
tions and their associated KWII values. The order of
the combinations ranges from 1 through t, and the y
combinations with the highest KWII values within each
order identified by AMBIENCE are provided as a sorted
list. AMBIENCE also provides permutation-derived
p-values as described in the following section.

KWII p-values: The p-value of the KWII of each
combination was determined using 10 000 permutations
of the phenotype (Sucheston et al., 2010). The permutations
for each combination were conducted independently
of the other combinations using a fast algorithm from

Patefield (1981). The permutation procedure provides the
null distribution of the KWII, that is, when the combi-
nation of variables was not associated with the phenotype.
The p-value for the combination was defined as the
proportion of permutations with KWII values that were
greater than or equal to the observed KWII.

AMBROSIA algorithm
The most promising variable combinations identified in
the AMBIENCE output are input for the model synthesis
step, AMBROSIA.

AMBROSIA employs an iterative procedure to effi-
ciently identify the set of variable combinations capable
of explaining the phenotype. It prospectively assesses
measures of the relevancy, redundancy and parsimony
when specific variable combinations are included in the
model. The entire model synthesis method is based on
the KWII, and repeated refitting of each model to the
data is unnecessary. The pseudocode for AMBROSIA is
summarized in Supplementary Figure 1.

The input to AMBROSIA is the set S of promising
variable combinations and their KWII values that were
output from AMBIENCE. The output from AMBROSIA
is the parsimonious set of combinations M that explain
the phenotype, denoted by Y.

The number of parameters P of a model corresponds to
the number of degrees of freedom of M. The Model
information content (MIC) is defined as the sum of the
KWIIs of the combinations C in M:

MICðMÞ ¼
X

C2M
KWIIðCÞ

Initially, M is empty. In step 1, combinations with nega-
tive KWII and combinations with nonsignificant KWII
values as assessed by permutation testing are eliminated
from set S. The significance of the KWII for each
combination was conducted with 10 000 independent
permutations of the phenotype Y.
Step 2: Each AMBROSIA iteration contains three

distinct parts that employ the KWII, that is: 2A) Combi-
nation selection, 2B) Parsimony evaluation and 2C)
Redundancy evaluation.
Step 2A, Combination selection: In the first iteration,

Combination 1, the combination with the highest KWII
identified by AMBIENCE present in S, is initially added
to the model for evaluation. In the subsequent iterations,
the Combination j with highest KWII among the remain-
ing combinations is added to M for evaluation in Step 2B.

Further, a combination remaining in S is added
directly to M if all of its proper phenotype-containing
subsets are already present in M. This is possible because
the number of parameters in the model does not increase
when such a combination is added.
Step 2B, Parsimony evaluation: For parsimony evalua-

tion, we employ a heuristic metric, the corrected MIC
(MICC), motivated by the Akaike Information Criterion
(Hurvich and Tsai, 1995). The MICC rewards goodness of
fit as assessed by the KWII and penalizes for the number
of parameters P in the model.

MICC ¼ 2NDMIC� 2DP

In the MICC definition above, N is the sample size, MIC
is the change in MIC and P is the increase in the number
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of parameters in the model due to the inclusion of a new
combination. The first term is analogous to a log
likelihood, whereas the second term is a penalty for
increased model complexity. The heuristic was based on
two known results. First, the KWII is the Kullback–
Leibler divergence between the joint probability density
and the Kirkwood superposition approximation (Jakulin
and Bratko, 2004), and second, that the Kullback–Leibler
divergence is the expected log likelihood. For combina-
tions containing three variables, the KWII is the Kull-
back–Leibler divergence between the joint probability
density and the model constructed using all pairwise
dependences (Jakulin and Bratko, 2004).

The combination is eliminated from both M and S if
the e�MICC

X Z, where Z is a user-defined threshold.
Step 2C, Redundancy evaluation: Let {Combination i}

represent a combination already in M. The KWII value
defined as, KWII({Combination i}, {Combination j}, Y) was
computed for each combination in M. Combination j was
eliminated from both M and S if the KWII was negative,
because it indicates redundancy with Combination i. This
step effectively eliminates inclusion of new combinations
in strong linkage disequilibrium (LD) with combinations
already in the model. Combination j is retained in M if it is
not eliminated after Step 2C.

Step 2 is repeated until S is empty. The output is the
list of combinations in M. Model size was defined as
the number of combinations in M.

Step 3, Model significance evaluation: The significance of
MIC was assessed with 10 000 independent permutations
of the phenotype.

A demonstration of the AMBROSIA is presented in
results that provide a step-by-step description of the method.

Simulations for evaluating AMBROSIA
Case study 1 and case study 2: The GGI models are
shown in Supplementary Figure 2A. The case-control
design with 2500 cases and 2500 controls was used for
both case studies. Details of the simulation methods are
in supplementary methods. The case-control status
phenotype variable was denoted by Y.

Case study 1 contained 60 single-nucleotide poly-
morphisms (SNPs) in four groups, G1 through G4, with
linkage disequilibrium within each group (Supplemen-
tary Figure 2B). The disease-causing SNPs were SNP 7
and 22.

Case study 2 contained 120 SNPs in eight groups (Supple-
mentary Figure 2C). Case study 2 contained GH with two
pairs of interacting loci, SNP 7 with SNP 22 and SNP 67
with SNP 82, that each increased risk in half of the cases.

The relative risk values used in simulation for Case
studies 1 and 2 were 1.2, 1.5, 1.8, 2.0 and 2.5.

Robustness of AMBROSIA to LD patterns and allele

frequency
The robustness of AMBROSIA in the presence of realistic
LD patterns and variations in allele frequency was assessed
with data from problem 2 of Genetic Analysis Work-
shop 15 (GAW15, http://www.gaworkshop.org/about/
publications.html#gaw15) containing the dense panel
of 2300 SNPs genotyped with the Illumina platform
(Illumina Inc., San Diego, CA, USA) for a 10 kb region of
chromosome 18q in 920 subjects.

The data set was preprocessed to remove samples
with missing data and SNPs not in Hardy–Weinberg

equilibrium (w2 test at a¼ 0.05). A set of 865 tagSNPs
were selected using the method of Carlson et al.
(Carlson et al., 2004), with an LD threshold of R2¼ this
preprocessed 895-subject data set as the GAW15-P2
data set.

We generated a sample of 2500 cases and 2500 controls
by re-sampling with replacement from GAW15-P2 data.
To assess robustness to LD patterns, we identified SNPs
in the data set with MAF of 0.5±0.01. We selected a
random pair of such SNPs, say SNP i and SNP j. For each
individual in the population, the case-control status was
randomly assigned on the basis of penetrance matrix for
interaction model of Case study 1 with the genotypes of
SNP i and SNP j as inputs. The relative risk value was
2.0. This process was repeated for 100 random pairs of
SNPs with MAF of 0.5±0.01.

To assess the robustness of AMBROSIA to allele
frequency variations, we identified SNPs with MAF
values within±0.01 of 0.4, 0.3, 0.2 and 0.1. The
computational strategy described in the previous para-
graph was used.

The AMBIENCE input parameter values for robust-
ness assessments were y¼ 50 and t¼ 2. Robustness was
assessed by comparing power to the results of Case
study 1.

Comparisons with multifactor dimensionality reduction

(MDR)
AMBROSIA was compared head to head against MDR
(http://sourceforge.net/projects/mdr/) (Ritchie et al.,
2001). Two separate sets of comparisons with MDR were
conducted. The first set of comparisons used a model
based on case study 2, with a relative risk of 2.0. For the
second set of comparisons, four two-locus interaction
models, 1-GH, 2-GH, 3-GH and 4-GH, employed in the
original MDR power evaluation paper by Ritchie et al.
were used (Ritchie et al., 2003). The penetrance matrices
for the latter set of models from Ritchie et al. (Ritchie et al.,
2003) are summarized in Table 1.

The detailed methodology for these comparisons is
presented in Supplementary Methods.

Table 1 Penetrance matrices for the comparisons of AMBROSIA
to MDR

Model 1-GH Kp¼ 0.05,
h2¼ 0.013

Model 2-GH Kp¼ 0.025,
h2¼ 0.013

BB Bb bb BB Bb bb

AA 0.0 0.1 0.0 AA 0.0 0.0 0.1
Aa 0.1 0.0 0.1 Aa 0.0 0.05 0.0
aa 0.0 0.1 0.0 aa 0.1 0.0 0.0

Model 3-GH Kp¼ 0.06,
h2¼ 0.007

Model 4-GH Kp¼ 0.025,
h2¼ 0.003

BB Bb bb BB Bb bb

AA 0.08 0.07 0.05 AA 0.07 0.05 0.02
Aa 0.1 0.0 0.1 Aa 0.05 0.09 0.01
aa 0.03 0.1 0.04 aa 0.02 0.01 0.03

Abbreviations: GH, genetic heterogeneity; MDR, multifactor
dimensionality reduction.
The penetrance values are based on the models in Ritchie et al.
(2003). Kp denotes disease prevalence, whereas h2 denotes herita-
bility.
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Analysis of public domain data sets
The data for problem 3 of GAW15 contains 9187 di-allelic
SNPs distributed on the genome to mimic a 10-K SNP
chip. There are 100 replicates modeled after rheumatoid
arthritis (RA) data (Miller et al., 2007). The data were
treated as case-control data and the unphased genotypes
were analyzed.

The interactions in the simulation framework (from
http://genetsim.org/gaw15/answers/) are summarized
in Supplementary Table 2. There are interactions invol-
ving nine loci as follows: C, DR and D on chromosome 6,
A on chromosome 16, B on chromosome 8, E on chromo-
some 18, F on chromosome 11, and G and H on
chromosome 9.

We refer to this data set as the GAW15-P3 data set. We
conducted analyses with RA affection status as the
phenotype and sex, age, smoking status as nongenetic
variables. Age was discretized by binning into five
intervals of equal width.

The AMBIENCE input parameter values were y¼ 50
and t¼ 2. We used all 100 replicates to obtain the power
of AMBROSIA.

Results

Demonstration AMBROSIA run
The pseudocode for AMBROSIA is summarized in
Supplementary Figure 1. Here, we present a step-by-
step demonstration run of AMBROSIA for the GAW15-
P3 data set.

We used the top 10 one-SNP and two-SNP combi-
nations with the highest KWII values identified by
AMBIENCE to build a parsimonious model using
AMBROSIA. The KWII values are summarized in Table 2.

In the first step, we confirmed that all combinations
identified by AMBIENCE were significant using permu-
tation-based approaches with a¼ 0.001. The value of Z
was set to 0.001.

The combination {C6_153, RA} is the first combination
in model M because it has the highest KWII.

The combinations {C6_154, RA} and {C6_152, RA} were
evaluated in order. Because KWII(C6_153, C6_154, RA)
and KWII(C6_153, C6_152, RA) were both negative,
indicating redundancy with M, both failed to enter M.

The combination {Age, RA} passed the complexity test
(MICC¼ 1050 making e–MICCoZ) and redundancy test

(KWII(C6_153, Age, RA)¼ 0.03540) and entered M.
Combination {C6_153, Age, RA} enters M because it
has positive KWII and both its subcombinations are
already in M.

The sequential use of the complexity and the redun-
dancy tests was continued until all the combinations
remaining in S were evaluated. We obtained the final
model M¼ {{C6_153, RA}, {Age, RA}}, {C6_153, Age, RA},
{Sex, RA}, {C11_389, RA}, {C11_389, Age, RA}, {C11_389,
Sex, RA}, {Smoking, RA}, {C6_162, RA}, {C6_162, Age, RA},
{C6_162, Sex, RA}}. On the basis of MIC, the overall
model had a permutation-derived Po0.0001.

An additional AMBROSIA demonstration run for case
study 1 is summarized in supplementary results.

Performance and power of AMBROSIA
Case study 1: This case study contains the simulated
LD patterns shown in Supplementary Figure 2B. The
power of AMBROSIA (Figure 1a) increases sharply with
increasing relative risk. At a relative risk of 1.5, the
power for the {7, Y} and {7, 22, Y} combinations were 91
and 70%, respectively. At a relative risk of 1.8 or greater,
power for both {7, Y} and {7, 22, Y} were 98% or greater.

Table 2 Top 10 one- and two-way combinations for GAW15-P3 data
set based on the KWII values

One-way combinations KWII Two-way combinations KWII

{C6_153, RA} 0.2550 {C6_153, Age, RA} 0.0347
{C6_154, RA} 0.2273 {C6_154, Age, RA} 0.0272
{C6_152, RA} 0.1110 {C6_152, Age, RA} 0.0138
{Age, RA} 0.0950 {C6_155, Age, RA} 0.0092
{Sex, RA} 0.0471 {C6_136, C6_146, RA} 0.0066
{C6_155, RA} 0.0377 {C6_139, C6_150, RA} 0.0050
{C11_389, RA} 0.0134 {C6_162, Age, RA} 0.0038
{Smoking, RA} 0.0117 {C11_389, Age, RA} 0.0033
{C6_162, RA} 0.0105 {C11_389, Sex, RA} 0.0021
{C6_139, RA} 0.0064 {C6_162, Sex, RA} 0.0014

Abbreviations: GAW15, Genetic Association Workshop 15; KWII,
k-way interaction information; RA, rheumatoid arthritis.
The results are sorted by KWII values.

Figure 1 (a) Power for detecting interactions in case study 1 on the
left axis and the FCM (filled squares) for case study 1 on the right
axis. The open circles represent the {7, Y} combination and the open
triangles represent the combination {7, 22, Y}. The results for the {22,
Y} combination were nearly identical to the {7, Y} combination and
are not shown. (b) Power for detecting the {7, Y} and {7, 22, Y}
combinations in case study 2 and the FCM (filled squares) for case
study 2 on the right axis. The results for the {22, Y}, {67, Y} and {82,
Y} combinations were nearly identical to the {7, Y} combination
(open circles) and are not shown; the power for the {67, 82, Y}
combination was nearly identical to the {7, 22, Y} combination (open
triangles) and is also not shown.
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The number of false combinations per model (FCM)
decreased with increasing relative risk (Figure 1a, right
axis). The FCM value at a relative risk of 1.2 was 1.6, but
it decreased to 0.5 at relative risk of 1.5, and the FCM
value was 0.06 for relative risk of 2.0. The model size at a
relative risk of 1.2 was 2.1 and the model size at a relative
risk of 1.5 was 3.0. The results indicate that AMBROSIA
is a promising model-synthesis method.

Case study 2, GH: Case study 2 (Supplementary Figure
2C) contained high levels of short-range LD and also GH
with two pairs of interacting loci, SNP 7 with SNP 22 and
SNP 67 with SNP 82. The AMBROSIA model correctly
contained four interactions involving single SNPs, {7, Y},
{22, Y}, {67, Y} and {82, Y}, and two interactions involving
two SNPs, {7, 22, Y} and {67, 82, Y}. Figure 1b shows the
power and FCM as a function of relative risk for the
interactions in case study 2.

For a relative risk of 2.0, the power of AMBROSIA for
detecting the first-order interactions {7, Y}, {22, Y}, {67, Y}
and {82, Y} were 78, 80, 76 and 78%, respectively
(Figure 1b). The powers of detecting the second-order
interactions {7, 22, Y} and {67, 82, Y} were 43 and 42%,
respectively—the decrease relative to the power of
detecting first-order combinations can be attributed to
GH. The FCM observed was 1.9 and the average model
size was 5.9. Thus, AMBROSIA has appreciable power
and low error rate in the presence of LD as well as GH.

Comparisons with MDR
Comparisons on case study 2: Because it was difficult
to complete MDR analysis with 120 SNPs from case
study 2, we created a smaller data set containing 24 SNPs
that consisted of the central SNP, and one SNP with
R2¼ 0.9 and one SNP with R2¼ 0.8 from each of the eight
groups (Supplementary Figure 2D).

Table 3 shows the power of AMBROSIA compared
with MDR. The presence of {1, Y}, {4, Y}, {13, Y} and
{16, Y} in the AMBROSIA model represents the main
effects of the individual SNPs, whereas the second-order
combinations {1, 4, Y}, and {13, 16, Y} represent the GGI
in Supplementary Figure 2D. AMBROSIA has higher
power than MDR in detecting each of the four first-order
interactions and both second-order interactions.

The power of MDR to detect the two-SNP combina-
tions, {1, 4, Y} and {13, 16, Y} was greater compared to its
power to detect the one-way combinations {1, Y}, {4, Y},
{13, Y} and {16, Y}. The power of MDR to detect the

four-way combination or {1, 4, 13, 16, Y} was 39%. It is
important to note that in the context of the underlying
model, combinations such as {1, 13, Y} or {1, 4, 13, 16, Y}
that contain a mixture of SNPs from interaction 1 and
interaction 2 are false combinations in our simulation
model.

The FCM of AMBROSIA (mean±s.d.¼ 0.95±1.53)
was lower than MDR (mean±s.d.¼ 2.24±0.91) when
fourth-order combinations were considered for MDR
(fourth-order MDR FCM). When combinations up to
second order were considered, the FCM for MDR
(second-order MDR FCM) was 0.63±0.72. AMBROSIA,
however, does not require evaluation of combinations of
order greater than two to model the interacting loci.

This example suggests that AMBROSIA can identify
interacting variables at a lower interaction order consistent
with the underlying simulation framework than MDR.
This is advantageous because the number of combinations
to be searched increases rapidly with interaction order.

Comparisons on models based on the MDR power
paper: The power, frequency of FCM for models 1-GH,
2-GH, 3-GH and 4-GH are summarized in Table 4.
AMBROSIA consistently achieved better power and
lower FCM compared with MDR for each two-SNP
interaction in these models. Further, MDR can only
detect all four loci with improved power when the larger
four-SNP combination {1, 4, 13, 16, Y}, which does not
distinguish the two sets of pairwise interactons, is
considered. Even upon including the larger four-SNP
combination for MDR, the power of AMBROSIA was
equivalent to or better than the power of MDR.

Table 4 summarizes the second-order MDR FCM, which
is associated with lower power, and also the fourth-order
MDR FCM, which enables MDR to identify the larger four-
SNP combination {1, 4, 13, 16, Y}. The FCM of AMBROSIA
compares favorably with the second-order MDR FCM for
models 1-GH and 2-GH; for models 3-GH and 4-GH, the
FCM of AMBROSIA was higher than the second-order
MDR FCM. However, MDR had approximately 8.8 to
15-fold lower power to detect the interacting combinations
than AMBROSIA for models 3-GH and 4-GH when
interactions up to second-order were considered.

Robustness of AMBROSIA to LD patterns and allele

frequency
We evaluated power of AMBROSIA in the context of the
GAW15-P2 data, which contains allele frequencies and
LD patterns representative of real data. The distribution
of LD values of a subset of SNPs from a representative
simulation (Figure 2a) demonstrates that a wide range of
LD values are included; the R2 values in Figure 2a ranged
from 0 to 0.89. Figure 2b is a histogram showing the MAF
distribution, and again a wide range of allele frequencies
were included.

AMBROSIA had a power of 98–100 for allele frequen-
cies of 0.2 or greater (Figure 2c). The proportion of FCM
ranged from 1.6 at MAF¼ 0.1 to 1.2 at MAF¼ 0.5. At
MAF¼ 0.5, the power increased rapidly with increase in
relative risk (Figure 2d). The first-order {i, Y} combina-
tions had power greater than 90% at a relative risk of
1.5 or greater, whereas second-order {i, j, Y} combinations
had power approaching 80%. These analyses high-
light the model-synthesis capabilities and robustness of

Table 3 Comparison of the power of AMBROSIA to MDR for case
study 2

Combinations AMBROSIA MDR

{1, Y} 89 23
{4, Y} 90 17
{1, 4, Y} 55 36
{13, Y} 89 22
{16, Y} 90 18
{13, 16, Y} 57 34
{1, 4, 13, 16, Y} — 39

Abbreviation: MDR, multifactor dimensionality reduction.
The percentage of replicates in which the two methods correctly
identified the combinations involved in the gene–gene interactions
is shown.
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AMBROSIA in the face of the confounding factors such
as LD in real data sets.

AMBROSIA analysis of GAW15-P3 data set
We analyzed RA as the phenotype for the GAW15-P3
data set. The availability of 100 replicates from repeti-
tions of the simulation procedure (Miller et al., 2007)
enabled us to critically assess AMBROSIA performance.

The frequencies of the combinations identified in
AMBROSIA models for the 100 replicates are summar-
ized in Table 5. The average model size across the 100
replicates was 9.54 combinations per model. The combi-
nations {C6_153, Age, RA}, {Sex, RA}, {Age, RA}, {C11_389,
RA}, {Smoking, RA} and {C6_153, RA} occurred in all
100 replicates, whereas the combinations {C6_162, RA},

{C11_389, Age, RA} and {C6_162, Age, RA} occurred in
greater than 90% of replicates. The proportion of
replicates in which the individual combinations were
identified can be interpreted as the power to detect the
combinations when only a single data set is available.

Notably, only a single representative from each locus
spanning multiple SNPs was present in the AMBROSIA
models; for example, locus DR spanned SNPs 152—155,
but only SNP C6_153 was selected. The detection of SNP
C6_162, which represents locus D and has a rare allele
that increases RA risk fivefold, suggests that AMBROSIA
is capable of identifying contributions of alleles with
low allele frequencies. There were single instances of
two combinations {C6_139, Age, RA} and {C6_139, RA}
that contained SNP C6_139, which was not present in
Supplementary Table 1.

Table 4 Comparison of AMBROSIA to MDR for models based on the penetrance matrices in Table 1

Model Power (%)a FCMb

{1, 4, Y} {13, 16, Y} {1,4,13,16,Y} AMBIENCE MDR

AMBROSIA MDR AMBROSIA MDR MDR Second-order Fourth-order

1-GH 100 8 100 8 14 0.0±0.0 0.0±0.0 0.07±0.26
2-GH 100 38 100 39 100 0.0±0.0 0.0±0.0 0.66±0.47
3-GH 97 11 97 10 56 0.07±0.26 0.02±0.14 0.21±0.5
4-GH 90 5 91 6 82 0.21±0.43 0.03±0.17 0.24±0.49

Abbreviations: FCM, false combinations per model; GH, genetic heterogeneity; MDR, multifactor dimensionality reduction.
The penetrance matrix values are based on the models in Ritchie et al. (2003), which systematically evaluated the power of MDR.
aPower was computed for a¼ 0.001.
bCombinations up to either second-order or fourth-order (last column) were considered for MDR as AMBROSIA required only second-order
combinations and MDR required fourth-order combinations to detect {1, 4, 13, 16, Y} with power 480%.

Figure 2 Results from robustness assessment. (a) Distribution of LD values for a representative set of haploptype blocks of a simulation from
the GAW15-P2 data set. Darker shades indicate higher levels of LD (as measured by R2, the actual R2 values are also shown; the palette on the
right provides linear gray scale used) and the lighter shades indicate lower levels of LD. (b) Distribution of minor allele frequencies (bin
width of 0.05) in the data set. (c, d) Dependence of power in the robustness assessment experiment on allele frequency and relative risk,
respectively. In (c) and (d), the open circles represent the {i, Y} combination and the open triangles represent the combination {i, j, Y}. The
results for the {j, Y} combination were nearly identical to the {i, Y} combination and are not shown.
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Computation time and scaling characteristics
The computation time and scaling characteristics depend
on three sequential analysis steps. The first step involves
an algorithm, for example, AMBIENCE, to identify the
most promising combinations for modeling. The second
step involves permutation-based significance assessment
and the third step involves AMBROSIA.

Time complexity of AMBIENCE: Let n denote the
sample size and m denote the number of predictor vari-
ables (excluding the phenotype variable). The runtime
complexity of AMBIENCE is given by O(t� y�
n�m2)þ � y� 2t�m2), where t is the maximum combi-
nation size to explore and y is the number of combina-
tions to retain in each step of the search procedure
(Chanda et al., 2008). In genetic applications, the
range of t-values of interest is small because
of sample size constraints and limits computational
complexity.

Time complexity of permutations: The permutation
procedure, if implemented naively, can be very time
consuming because the KWII of each combination has to
be repeatedly computed. However, the permutation can
be implemented in a very efficient manner for discrete
data because the sufficient statistics for computing the
KWII of a combination are present in the corresponding
contingency table. All permutations correspond to a
change in cell counts of the contingency table subject to
the constraint that the row sums and column sums are
unchanged. Only one scan of the data is necessary for
building the contingency table for each combination
(Patefield, 1981).

The creation of the contingency table T for a combi-
nation C with k variables and b states has O(m� b)
complexity. The KWII(C) computation requires O(m� b
þ 2k� b)¼O(m� b) computations (for m442k) because
entropies of all subsets of k variables are computable by
marginalizing T.

The first KWII computation involves O(m� b) compu-
tations because T is constructed. For each successive
permutation, we randomly vary counts in T using an
efficient algorithm (Patefield, 1981) that requires O(b)
computations and scales linearly with the number of
permutations. For NPERM permutations, the time com-
plexity for the permutation step is NPERM�O(b).

Time Complexity of AMBROSIA: Let a fraction, a, of the
ty combinations from AMBIENCE emerge as significant
after permutation testing. Model building in AMBROSIA
therefore proceeds with c¼ aty combinations.

We consider the worst-case scenario wherein all c
combinations are nonredundant and pass the parsimony
test. In this scenario, O(c2) redundancy check tests and
parsimony tests are necessary. Each parsimony test
consumes a constant time, whereas each redundancy
check is a KWII computation requiring O(m2) computa-
tions. Thus the worst-case computation costs involved in
the AMBROSIA-modeling step is O(c2 m2). Typically,
only a few SNPs and predictor variables are involved in
interactions in the majority of gene–environmental
interaction analyses; as a result, the fraction a of signi-
ficant combinations is the key factor that makes O(c2 m2)
small.

Overall, the runtime costs of AMBIENCE domi-
nate over the time required for permutations and
AMBROSIA. Our experiments indicate that AMBIENCE
requires about 80–90% of the total time incurred.

Discussion

In this paper, we have described AMBROSIA, a model
synthesis method for GEI analysis. Our approach is
distinctive in the information-theoretic method used, its
versatility, generalizability and scalability. In AMBRO-
SIA, we cogently enhance relevancy of included combi-
nations, preclude entry of combinations with redundant
information, and also penalize for unjustifiable complex-
ity in the model. The AMBROSIA model synthesis
paradigm differs substantively from other GEI analysis
methods in numerous respects, including the GEI
identification metrics, the synthesis procedure, and the
model evaluation steps.

MDR is widely used for GEI analysis and was
therefore selected for head-to-head comparisons. MDR
conducts exhaustive search of genotype combination
space, which despite availability of a parallelized
version of MDR, limits computational efficiency. MDR
has limited power in the presence of GH (Ritchie et al.,
2003) because it constructs models from the best one-
way, two-way and three-way combinations. AMBROSIA
does not constrain the number of combinations, combi-
nation order and structure—it evaluates the redundancy
and parsimony of an ordered list of KWII values. MDR is
also limited to analysis of binary phenotypes. AMBRO-
SIA can be deployed for binary, discrete, continuous
and mixed distributions for which KWII calculations
are possible. GMDR is an MDR extension that uses the
general linear model in conjunction with dimensionality
reduction.

Logistic regression and logic regression are examples
of regression-based approaches. In logistic regression,
unaccounted variance is reduced because of the net
result of all terms in the model. Logistic regression
requires explicit model specification, repeated re-fitting

Table 5 Results for GAW15-P3 data set. Each of the 100 replicates in
the GAW15-P3 data set was modeled separately

Combinations Number of replicates with combinations
present in model

C6_153, Age, RA 100
Sex, RA 100
Age, RA 100
C11_389, RA 100
Smoking, RA 100
C6_153, RA 100
C6_162, RA 99
C11_389, Age, RA 96
C6_162, Age, RA 92
C6_162, Sex, RA 29
Age, Smoking, RA 17
C11_389, Sex, RA 7
Sex, Smoking, RA 5
C6_162, C11_389, RA 3
C6_153, Smoking, RA 2
C6_162, Smoking, RA 1
C6_139, Age, RA 1
C6_139, RA 1

Abbreviations: GAW15, Genetic Association Workshop 15; RA,
rheumatoid arthritis.
The first column shows the combinations included in the models
and the number of GAW15-P3 replicates in which the combinations
occurred.
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and is adversely affected by multi-collinearity with SNPs
that are in high LD (Briollais et al., 2007). The KWII, in
contrast, does not contain information regarding lower
order terms, and the AMBROSIA model is assembled
with non-overlapping terms. There is also no iterative re-
fitting of the data. In logic regression, the Boolean
outputs of logic trees constructed with genotypes are
used as predictors in a regression framework (Kooper-
berg and Ruczinski, 2005). In our studies, logic regres-
sion had low power and high type I error; its type I error
was on average two-to-three orders of magnitude greater
than KWII, MDR and logistic regression (unpublished
results).

Here, we have used the output of AMBIENCE as input
for AMBROSIA. This requirement is not stringent, and
AMBROSIA can be compatible with other GEI-identifi-
cation approaches. The KWII for these inputs have to be
computed in AMBROSIA. Although AMBROSIA is
currently implemented to return a single ‘best’ model
as output, it can be modified to provide a ranked
ensemble of alternative models. The alternative models
can be built by utilizing the combinations that are
eliminated at the redundancy step. The alternative
models can be ranked and compared using Akaike (or
Bayesian Information Criterion) weights.

Our results indicate that AMBROSIA is a promising
approach for GEI modeling in pharmacogenetics.
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