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Identifying and reducing AFLP genotyping error: an example
of tradeoffs when comparing population structure
in broadcast spawning versus brooding oysters

H Zhang and MP Hare

Phylogeographic inferences about gene flow are strengthened through comparison of co-distributed taxa, but also depend on
adequate genomic sampling. Amplified fragment length polymorphisms (AFLPs) provide a rapid and inexpensive source of
multilocus allele frequency data for making genomically robust inferences. Every AFLP study initially generates markers with a
range of locus-specific genotyping error rates and applies criteria to select a subset for analysis. However, there has been very
little empirical evaluation of the best tradeoff between culling all but the lowest-error loci to minimize overall genotyping error
versus the potential for increasing population genetic signal by retaining more loci. Here, we used AFLPs to compare population
structure in co-distributed broadcast spawning (Crassostrea virginica) and brooding (Ostrea equestris) oyster species. Using
existing methods for almost entirely automated marker selection and scoring, genotyping error tradeoffs were evaluated by
comparing results across a nested series of data sets with mean mismatch errors of 0, 1, 2, 3, 4 and 44%. Artifactual
population structure was diagnosed in high-error data sets and we assessed the low-error point at which expected population
substructure signal was lost. In both species, we identified substructure patterns deemed to be inaccurate at average mismatch
error rates p2 and 44%. In the species comparison, the optimum data sets showed higher gene flow for the brooding oyster
with more oceanic salinity tolerances. AFLP tradeoffs may differ among studies, but our results suggest that important signal
may be lost in the pursuit of ‘acceptable’ error levels and our procedures provide a general method for empirically exploring
these tradeoffs.
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INTRODUCTION

In non-model organisms with few genomic resources, amplified
fragment length polymorphisms (AFLPs) provide an efficient means
to assay a much more genomically representative sample of poly-
morphic loci (100s) compared with microsatellites (10s). AFLP
markers are efficient because a pair of PCR reactions can be used to
simultaneously amplify fragments from multiple chromosomal loci
(Vos et al., 1995). Electrophoresis of the resulting amplicons generates
a fragment profile or ‘fingerprint’ from which a subset of bands (loci)
are deemed reproducible, that is, relatively free from genotyping error.
The more genomically representative sample of markers obtainable
with AFLPs comes at a price; however: AFLPs are dominant marker
data (presence/absence of amplified fragments) with lower informa-
tion content per locus than in codominant genotypes. Furthermore,
coalescent methods of analysis are currently inapplicable with AFLP
data for lack of a suitable mutation model.
The control of genotyping error, the primary focus of this study, is a

ubiquitous and typically opaque aspect of published AFLP analyses
with potentially strong effects on AFLP utility. Genotyping error is
detected as a mismatch between the multilocus fingerprints in
replicate genotypes from an individual (Meudt and Clarke, 2007).
Some sources of genotyping error, such as co-migrating fragments
from two or more loci (homoplasy), are well characterized and largely

avoidable by scoring only fragments of longer length (Vekemans et al.,
2002). Other molecular sources of error relate to the sensitivities of
PCR to DNA quality and quantity, or artifacts from fragment
visualization. These technical considerations partially determine
AFLP data quality (Bonin et al., 2004). It is often difficult to identify
that a technical problem has occurred without comparing replicate
AFLP fingerprints, underscoring the importance of using good mole-
cular technique. Even with technically pristine data, genotyping error
rate is influenced by the criteria applied at three crucial analytical
steps: (1) deliniating the fragment length size boundaries for discrete
markers within fingerprints (marker bins, interpreted as different
loci), (2) selecting a subset of marker bins to analyze data from
(ignoring other fragments deemed uninformative or too prone to
scoring error), and (3) scoring fragments as present or absent within
analyzed bins so that false positives (from background noise)
and low-signal false negatives are minimized. These steps and their
influences on genotyping error apply to manual and automated
scoring of gels or electropherograms, but the criteria tend to be
more subjective and the steps less discrete with manual procedures.
These multiple factors affecting error suggest that in most applica-
tions, AFLP genotyping error can be minimized but rarely eliminated
without severely limiting the number of loci and information content
in the resulting data.
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It is undeniable that in principle, genotyping error should be
minimized. In practice, however, after technical error sources have
been minimized as much as possible, control on overall error is often
exerted primarily by ignoring fragment bins deemed to be error prone.
There is some risk that perceived or real publication pressures will
constrain authors to analyze only low-error data sets, without even
evaluating whether additional signal was available for a given geno-
typing effort by including more loci in the analyzed data. Thus, there
are likely to be pragmatic tradeoffs between the increased signal of
population structure obtained by including more loci (despite higher
average genotyping error) versus more error-free data sets with fewer
loci and potentially less power to detect population structure. These
tradeoffs have barely been explored or quantified with respect to
analyzing population structure. Our goal here is to explore methods
for evaluating this tradeoff.
Defining binset boundaries, and particularly optimizing those

boundaries is the initial analytic step most frequently done manually,
and arguably the step that most limits transferability of AFLPs across
labs. The manual binsetting approach most commonly employed
entails visual comparison of all sample chromatographs in an overlay
or pile-up fashion. Even if initial bin boundaries are determined by a
parameterized automated procedure such as available in GeneMapper
(Applied Biosystems, Foster City, CA, USA), optimization of bin
boundaries is then subjective, laborious, and becomes dramatically
more laborious if large numbers of samples are genotyped, especially
for species with large genomes (thereby producing relatively dense
fragment traces). We are aware of only two programs that apply an
optimization criterion to initial binset creation: Peakmatcher (DeHaan
et al., 2002) minimizes differences between replicated samples while
applying multiple criteria to choose among many overlapping bin
candidates. RawGeno (Arrigo et al., 2009) evaluates fingerprints from
all samples, starts with one massive bin and repeatedly applies rules for
subdividing and retaining bins such that bin widths are minimized (not
to exceed a defined value) and intervals between bins are maximized.
Here, with the expectation that AFLP analysis steps two and three can
‘clean up’ a binset containing many error-prone bins (that is, we need
not ‘trust’ the optimization, but simply use it as a starting point), one of
the goals of this study was to apply automated binset optimization in
anticipation of analyzing larger data sets in the future.
Recently, two methods were published for reducing AFLP genotyp-

ing error at the marker selection and fragment calling stages (steps 2
and 3 above) by minimizing false positives and negatives. Herrmann
et al. (2010) established locus elimination criteria and peak height (that
is, signal amplitude) fragment calling thresholds for each locus
independently based on the peak height distribution across all samples.
Whitlock et al. (2008) used the mean of each peak height distribution
per locus to eliminate low-signal loci and evaluate genotyping error
rates resulting from a range of absolute or relative peak height fragment
calling thresholds. Both methods use replicate genotypes to guide the
optimization in terms of minimizing genotyping error, while max-
imizing the number of loci retained. In our experience using these
methods, it is rarely clear which thresholds are more desirable, those
giving lower average error and smaller data sets or those yielding
higher error and larger data sets, but they make it possible to explore
trade-offs using objective and repeatable criteria. Two studies that have
used these tools to compare population genetic informativeness of low
and high stringency data sets found that the latter, with fewer scored
loci, seemed to provide slightly more explanatory power with respect
to population structure (Herrmann et al., 2010; Crawford et al., 2011).
In an important review on tracking and assessing genotyping errors

for any marker type, Bonin et al. (2004) generalized that the potential

consequences of error for inferences is inversely proportional to the
scale of inference; potentially severe bias can result when the unit of
analysis is individuals within a pedigree or individual loci within a
population (for example, genome scan outliers, pairwise linkage
disequilibrium), whereas lesser effects are expected at the population
or among-population level. Effects on estimation of genetic diversity
and population structure have mostly been hypothesized (Bonin et al.,
2004), demonstrated with simulations (Caballero et al., 2008), and
only recently explored empirically (Arrigo et al., 2009; Herrmann
et al., 2010; Crawford et al., 2011).
Bonin et al. (2004) hypothesized that 0.1% average genotyping

error among loci may provide little improvement for population
genetic inferences compared with 2%. It is important to know whether
the same can be said of 3 and 4% average error among loci because if
so, most studies would be able to include many more loci with
potentially greater power to detect subtle substructure. For population
genetic inferences, empirical error rates in published plant and animal
studies have beeno5% (Bonin et al., 2004) but rarely much over 2%.
The optimum tradeoff is not expected to be the same across study
systems, but until the empirical population genetic consequences of
these trade-offs are compared for a number of systems, choosing an
acceptable genotype error rate will be arbitrary.
Here, we use AFLPs to analyze the population structure of two

broadly distributed oyster species in the western North Atlantic: the
eastern oyster, C. virginica (Gmelin 1791) and the crested or horse
oyster, O. equestris (Say 1834). These two species co-exist along most
coasts of the southeastern United States but our comparison focuses
on the biotically rich central Atlantic Florida coast where both species
occur in a string of lagoons. A well-characterized step cline in
C. virginica (Reeb and Avise, 1990; Karl and Avise, 1992) centered
near Cape Canaveral, Florida (Hare and Avise, 1996) anchors our
AFLP error rate comparisons to a known phylogeographic pattern that
should be observed in representative data. AFLP markers previously
were used to compare an eastern oyster sample from just north of the
Cape Canaveral cline with a sample from Port Charlotte, southwestern
Florida, and strong differentiation was found as expected (Murray and
Hare, 2006). However, population comparisons directly across the step
cline have not been made previously with AFLPs. For crested oysters,
mitochondrial DNA sequence homogeneity has been reported
between Atlantic and Gulf of Mexico populations, but the small and
geographically sparse samples provided little power to test for struc-
ture along the Atlantic coast (Kirkendale et al., 2004).
This species comparison tests the generality of biotic and/or abiotic

processes generating coastal population structure in co-distributed
species with larval dispersal but somewhat different larval biology. The
crested oyster broods its larvae for several days before release to the
plankton, and oceanic salinities are most favorable to post-settlement
growth and reproduction (Hoese, 1960). The eastern oyster has
external fertilization and fully planktotrophic larvae that enjoy higher
viability within estuarine salinities (Shumway, 1996). Thus, despite
larval brooding by O. equestris, we hypothesized that it experiences
higher dispersal success than C. virginica among eastern Florida
lagoons by means of advection along the continental shelf, and
therefore would have lower population substructure among sampled
lagoon populations.

MATERIALS AND METHODS
Sample collection
For a larger study focused on C. virginica in 2007, nylon mesh bags full of clean

oyster shell were deployed on the intertidal shore at 30 sites along eastern

Florida to collect recently settled juvenile oysters (spat). Spat samples were
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collected and fresh shell bags deployed monthly from May to July. Because

C. virginica and O. equestris are difficult to distinguish at the spat stage, all spat

up to 100–150 individuals were collected at each site and initially regarded as

oyster spp. Spat tissues were dissected to avoid the gastrointestinal tract, and

preserved in 95% ethanol. Total genomic DNA was extracted from entire

specimens (1–20mg of tissue) using the DNeasy 96 Tissue kit (QIAGEN Inc.,

Valencia, CA, USA) following the manufacturer’s protocol for animal tissues.

DNAwas eluted in 100ml elution buffer and diluted to 20ng/ml working stocks
based on spectrophotometric measurements.

For the purposes of this study, we wanted to focus on a small set of

populations with known population structure (in C. virginica), but also wanted

the AFLP binsets to be based on as many samples as possible. We obtained spat

at 18 of the 30 sampling sites and genotyped a total of 573 oysters from the 18

sites, including all available spat from five focal sites (Figure 1) where both

species proved to be abundant (see below). To avoid ascertainment biases

during automated binset optimization, some spat from the other 13 sites were

also included and duplicate genotyped.

Species identification
Species-specific primers were designed to amplify different-sized fragments

from the nuclear 28S rRNA gene of each species. Each multiplex PCR reaction

of 15ml total volume included 0.025 units of Taq (Invitrogen, Carlsbad, CA,

USA), 1� buffer (Invitrogren), 0.2mgml–1 BSA, 0.125mM of each dNTP,

1.0mM MgCl2, 0.2mM each of Cv28s-L (5¢-AGAACCGGGGAGAGGTGC-3¢)
and Cv28-R (5¢-AGGGACGAGAGCGGAAGG-3¢), 0.1mM each of Oe28s-2L

(5¢-AAGAGCCGGGGGAAGGTAT-3¢) and Oe28s-R (5¢-ACCGAGGATCCCA
CCTAGA-3¢), and 1.0ml DNA template. An MJ Research PTC-225 was used for

PCR with 95 1C for 2min, 11 touchdown cycles (94 1C for 30 s, annealing for

20 s at 68 1C to 63 1C, �0.5 1C per cycle, 72 1C for 30 s), then 20 additional

cycles with annealing at 63 1C. PCR products were visualized in 1.5% agarose

gels. The expected band sizes were 150 bp for C. virginica and 400bp for

O. equestris.

AFLP data collection
AFLP fragments were generated according to a modified version of the

procedure outlined by Vos et al. (1995). Primers (one fluorescently labeled),

adaptors, enzymes and PCR conditions were the same as in Murray and Hare

(2006) except for several modifications made after exploring their effects on

reproducibility between duplicate reactions: the digestion included 100 ng of

genomic DNA in a 50ml total volume with 10U MseI; pre-selective PCR

included 0.1mgml–1 BSA in 10ml reactions; selective PCR included 0.0024mgml–1

BSA in 10ml reactions. The four selective primer pairs used, EcoRI-ACT/MseI-

CAA, EcoRI-ACT/MseI-CAC, EcoRI-ACT/MseI-CAG, and EcoRI-ACT/MseI-CAT,

were previously selected as less error prone from a larger set examined in

C. virginica (Murray and Hare, 2006). Two negative controls and one positive

control were included on each plate. AFLP fragments were run with an internal

LIZ size standard on an ABI PRISM 3730 genetic analyzer (Applied Biosystems)

at the Cornell University Life Sciences Core Laboratories Center.

Creating primary binsets
Replicate AFLP fingerprints, including independent restriction digestions of

genomic DNA, were collected for 117 C. virginica and 68 O. equestris

individuals from across all 18 collection sites (32% of all genotyped samples)

to measure genotyping repeatability and create binsets for each selective primer

pair in each species. Those duplicate fingerprints (‘duplicates’ hereafter) in

which one or both had obviously poor amplification (to an extent visually

detectable from the electropherogram trace) were removed from further

analyses. Finally, 110 to 115 duplicates in C. virginica (variation among the

four selective primers), and 68 duplicates in O. equestris were used for binset

creation. Binsets for each species were created separately, but because the

primer pairs were chosen for ease of reproducible scoring in C. virginica, it is

possible that ascertainment biases could affect some aspects of the O. equestris

data.

Bin definitions were initially determined from comparison of duplicates

using Peakmatcher software (DeHaan et al., 2002). This program analyzes a

matrix of fragment sizes (bp) output by Genemapper 4.0 (Applied Biosystems)

from multiple duplicate fingerprints. Peakmatcher optimizes marker bins by

evaluating many possible overlapping bins while maximizing duplicate finger-

print similarity and applying rules to exclude bins with error-prone attributes.

It was shown by the authors to be highly consistent with manual methods, but

more definable and repeatable (DeHaan et al., 2002). Peakmatcher was applied

to each species separately, and for each selective primer pair in turn, using the

‘autobin’ feature of Genemapper to generate comprehensive (75–500bp)

fragment size tables from duplicates using a relative fluorescent units minimum

of 200. Peakmatcher settings were: ‘category range’¼0.3–0.5, ‘category

increment’¼0.1, ‘minimum repeatability’¼75%, ‘minimum peaks pre-

sent’¼60%.

The bin definitions from Peakmatcher were imported into Genemapper

where each bin was visually checked across all duplicates. Bin borders were

manually adjusted to center the main peak density, and bins (loci) were

removed if it appeared they could be error prone upon inclusion of additional

samples (that is, non-duplicated samples). For example, some loci were rejected

because of adjacent peaks crowding a bin.

The resulting ‘modified Peakmatcher binset’ was used in Genemapper for

automated calling with a minimum signal intensity of 200 relative fluorescent

units. The resulting binary fragment presence/absence matrix was exported to

Microsoft Excel where error rate for each locus was calculated in two ways:

(1) Mismatch error rate (Bonin et al., 2004):

Nð0;1Þ+Nð1;0Þ
Nð1;0Þ+Nð0;1Þ+Nð1;1Þ+Nð0;0Þ

ð1Þ

For each locus, N(1,1) represents the number of duplicates where both

genotypes have a fragment, N(0,0) represents the number of duplicates where

neither genotype has a fragment, N(0,1) and N(1,0) represent the number of

mismatches where one genotype of a duplicate has a fragment and the other

does not.

(2) Jaccard error rate (Holland et al., 2008):

Nð0;1Þ+Nð1;0Þ
Nð1;0Þ+Nð0;1Þ+Nð1;1Þ

ð2Þ

The Jaccard error rate, by discounting (0,0) occurrences, will be inflated

relative to the mismatch rate when the band-present phenotype is at low

frequency, but in these cases it could be argued that the mismatch rate

estimation is too insensitive to errors. Thus, the two estimation methods are

complementary. Arbitrary thresholds were applied such that bins with mis-

match error rate 415% or Jaccard error rate 430% were removed to create

the smaller ‘primary binsets’ for subsequent automated fragment calling

(Supplementary Figure 1). On the basis of the four primer pairs, the primary

binset for C. virginica included a total of 229 loci with a 5.46% average

mismatch error rate, and for O. equestris included 187 loci with a 5.87%

average mismatch error rate.

Figure 1 Sample localities for C. virginica and O. equestris with acronym

abbreviations.
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Species assignment confirmation
The 28S species diagnostic was only applied to a subset of specimens and

among these a few disagreements were found with a first-generation mito-

chondrial diagnostic (data not shown). To resolve these ambiguities we used

preliminary AFLP data from all specimens to perform assignment tests,

classifying known-species reference sets based on unanimous mtDNA identi-

fications and assigning the rest as unknowns. For each species’ primary binset

in turn, Genemapper was used to generate a binary AFLP matrix for all 573

individuals. Assignment tests were conducted using AFLPOP v. 2.0 (Duchesne

and Bernatchez, 2002) applied to each matrix separately. The assignment

likelihood threshold was set to 0, that is, an individual was allocated to the

species in which it had the highest likelihood.

Marker selection and fragment calling
Further marker selection for each species was accomplished in two ways. First,

ScanAFLP (Herrmann et al., 2010) was applied to all samples (including both

duplicates) to either eliminate bins or apply locus-specific signal intensity

thresholds based on qualities of the fragment signal intensity distribution.

Because the whole point of ScanAFLP is to optimize low-signal calling thresh-

olds, we used the primary binset to export fragment data from each species

using Genemapper with minimum relative fluorescent units of 50. The

resulting ScanAFLP output is a binary data matrix referred to here as MatrixB

for consistency with Herrmann et al. (2010), although we implemented only

steps (2) and (3) from their procedure. For the second step, ScanAFLP output

matrices were imported into Excel, bins were sorted by locus-specific mismatch

error, and then the highest mismatch error bins (based on duplicates) were

iteratively removed until a desired average error rate was achieved among the

remaining loci. Nested data sets having zero to 4% average mismatch error, in

addition to matrixB, were created by randomly removing one fingerprint from

each duplicate. Degree of polymorphism was ignored during binset creation

and bin culling, so monomorphic loci were present in all analyses.

Genetic diversity and population structure comparisons
To evaluate the effect of genotyping error on population genetic inferences, the

genotype matrices with different average error rates were used to estimate

population diversity and infer population structure in the two species. Intra-

population genetic diversity of each species was measured from all loci in each

data set as band richness after rarefaction to n¼29, Br(29), and percentage of

polymorphic loci at 1% level for a standardized sample size, PLP1%(29),

calculated using Aflpdiv 1.1 (Coart et al., 2005). Band richness is the average

number of band-present phenotypes expected at each AFLP locus in each

population in a specified sample size (Coart et al., 2005). Expected hetero-

zygosity,He, was estimated using AFLP-SURV 1.0 (Vekemans et al., 2002) using

the Bayesian method with non-uniform prior for allele frequency estimation

and assuming Hardy–Weinberg equilibrium. We distinguish between band-

present phenotype frequency, which is a simple band counting calculation, from

band-present allele frequency that when estimated using Bayesian procedures,

depends on the inferred allele frequency spectrum (Bonin et al., 2007). To test

for differences in genetic diversity among populations, one-way ANOVA was

applied using calculations in Excel (McDonald, 2009).

Multilocus pairwise FST within species was calculated according to the

Bayesian method of AFLP-SURV with statistical significance evaluated relative

to a null distribution of values based on 10000 permutations of individuals

among populations. Observed FST values were considered significant if they

were greater than the 99th percentile of the null distribution (Vekemans et al.,

2002). Individual locus FST was calculated as the standardized variance of

weighted average allele frequencies (Hedrick, 2005, p489) and tested for a

correlation with mismatch error rate using SPSS11.5. To test for hierarchical

population differentiation, analysis of molecular variance (AMOVA) was

carried out using GenAlEx 6.3 (Peakall and Smouse, 2006) to estimate fPT

based on a Euclidian band-sharing genetic distance.

The number of distinct populations represented in the data from each

species was estimated using STRUCTURE 2.3 (Pritchard et al., 2000). For each

species, STRUCTURE was run 20 times each for K¼1–5, using the correlated

allele frequencies and admixture model, RECESSIVEALLELES set to 1 and

sampling locations as a prior (LOCPRIOR¼1). Runs used 400 000 MCMC

iterations after a burn-in of 100 000. Using Structure Harvester v. 0.6.7 (http://

taylor0.biology.ucla.edu/struct_harvest/) for calculations, the best supported

value of Kwas judged by comparing estimated Ln P(X|K) averaged over the 20

runs at each K. Structure results were plotted using DISTRUCT 1.1(Rosenberg,

2004).

Some substructure patterns are indicative of technical artifacts and we

looked for these in each of the data sets. Care was taken to make sure there

was not a one to one correspondence between PCR plate composition and

sample composition from a locality. Then, plate boundary artifacts (plate

effects) were identified with STRUCTURE bar charts by determining whether

inferred clusters (different colors in the output for K41) corresponded with

plate boundaries as opposed to locality of origin.

RESULTS

Characterizing AFLP profiles and error
Our automated procedures generated candidate bins (loci) with error
rates as high as 90% for Jaccard and 25% for mismatch error before
arbitrary truncation to 30% and 15%, respectively, produced the
primary binset as a starting point for (further) marker selection and
calling using ScanAFLP (Supplementary Figure 1). First, each species-
specific primary binset was used to generate a genotype matrix
including all individuals (that is, both species combined). In cases
where the 28S diagnostic had been ambiguous because of disagree-
ment with earlier mtDNA assays, AFLP species assignments with each
of these data sets were consistent with 28S, confirming its accuracy.
Two specimens showed a conflict between AFLP and 28S identifica-
tions, but these had the lowest assignment likelihoods and poor
quality (low signal) AFLP data. After removal of these two specimens,
data sets contained 246 individuals assigned to C. virginica and 197
individuals to O. equestris.
For each species, five nested (that is, non-independent) data sets

were created from matrixB with incrementally less average mismatch
error based on duplicates (Table 1). For C. viginica, some AFLP data
from the CAT-selective primer showed plate effects (Supplementary
Figure 2) as described below and was repeated from the archived pre-
selective reaction (15 individuals). The matrixB mismatch error rate
was 4.7% in C. virginica and 5.7% in O. equestris. The number of loci
in the six data sets (0–4% error plus matrixB) ranged from 28 to 206
for C. virginica, and 26 to 167 for O. equestris.
Mismatches can be tallied within duplicates across all loci, or for

each locus across all duplicates. Comparing duplicate genotypes in
matrixB, the percent of mismatches varied from 0.49 to 16.02% and
had a median of 3.88% in C. virginica versus 1.80 to 21.56% in
O. equestris with a median of 4.49%. Non-normalized chromato-
graphs in duplicate pairs with the highest error were checked for signs
of low or high signal intensity and no distinctions were found. Locus-
specific mismatch error rate distributions also were right skewed in all
data sets (not shown) with a minimum of zero and maximum of
21.74% for C. virginica and 25.00% for O. equestris in the matrixB
data sets.
Homoplasy was evident from a negative correlation between frag-

ment size and band-present frequency, which was significant when
based on band phenotypes (r¼�0.49 to �0.87; Po0.01) and on
Bayesian band-present allele frequencies (r¼�0.41 to �0.87; Po0.01;
Figure 2). Decomposing the patterns that produced this correlation,
both species had roughly J-shaped frequency distributions of band-
present phenotype frequencies, with the 0–0.1 class (fixed or nearly
fixed for band-absent allele) and the 0.9–1.0 class (fixed or nearly fixed
for band-present allele) being the second and first most abundant
classes, respectively, in every data set (Supplementary Figure 3).
However, whether examining band phenotype frequency or
Bayesian-estimated allele frequencies, the frequency distribution was
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distinct for fragment lengths below and above 300 bp (Figure 2). As
expected from homoplasy (comigrating fragments) in smaller
fragments, band-present allele frequencies were skewed-high for frag-
ments o300 bp whereas frequencies were skewed-low, with many
fewer moderate frequency loci, for fragments 4300 bp (Figure 2).
Furthermore, in both species, as higher error loci were discarded to
produce smaller data sets with lower average error, the loci with
moderate band-present frequencies were disproportionately elimi-
nated (Figure 2; Supplementary Figure 3), strengthening the disparity
in allele frequency spectrum for fragments o300 and 4300 bp in
length. Homoplasy was not restricted to small fragments; even
fragments 4300 bp showed a significant negative correlation between
fragment size and band-present frequency for C. virginica in matrixB
(r¼�0.60, Po0.01) and for O. equestris in the three largest data
sets (Po0.05).

Mismatch error rate relative to He and FST
It is important to know the degree to which genotyping error is
associated with observed levels of genetic diversity or degree of
population differentiation. Not surprisingly, gene diversity (He) was
substantially higher in data sets of both species containing more loci
and higher average mismatch error (Figure 3). All else being equal, this
should lead to lower levels of FST in the higher-error data sets, as has
been shown previously for AFLP data (Herrmann et al., 2010), but
that was not the case here. Instead, in C. virginica overall FST increased
roughly in parallel with He, showing its highest value in matrixB
where mismatch error was greatest, whereas FST varied little across the
O. equestris data sets (Figure 3). Indeed, locus-specific FST was
positively associated with mismatch error rates in the matrixB data
(Po0.01; r¼0.37) and all smaller data sets except 0% error.

Effect of error rate on population structure inference
For C. virginica data with average error rates of 2% or less, STRUC-
TURE failed to detect any population structure (strongest support for
K¼1, Figure 4a). For data sets with mismatch error X3%, STRUC-
TURE results indicated support for K¼2 or 3 in C. virginica
(Figure 4a). With K¼2 assumed, STRUCTURE divided the five
samples into two clusters consistent with the phylogeographical

Table 1 Number of duplicate samples (DS) and loci for AFLP data sets in each species, listed by the selective EcoRI and MseI nucleotides

No. of DS Number of loci

0% Error 1% Error 2% Error 3% Error 4% Error MatrixB Primary binset Peakmatcher output

C. virginica

EcoRI-ACT/MseI-CAA 115 6 24 33 39 44 49 52 217

EcoRI-ACT/MseI-CAC 115 9 26 37 43 51 52 59 211

EcoRI-ACT/MseI-CAG 110 7 28 38 46 51 53 64 231

EcoRI-ACT/MseI-CAT 113 6 14 30 38 47 52 54 210

Total 28 92 138 166 193 206 229 869

O. equestris

EcoRI-ACT/MseI-CAA 68 5 12 17 21 24 31 33 151

EcoRI-ACT/MseI-CAC 68 9 23 31 42 53 61 68 176

EcoRI-ACT/MseI-CAG 68 4 9 16 19 27 35 42 197

EcoRI-ACT/MseI-CAT 68 8 19 26 33 38 40 44 178

Total 26 63 90 115 142 167 187 702

The average mismatch error rate (four primer pairs) of peakmather output, primary binset, matrixB are 8.30%, 5.46%, 4.72% in C. virginica, and 9.67%, 5.87%, 5.72% in O. equestris,
respectively.

Figure 2 Average frequency of band-present allele across the five

populations relative to fragment size (bp) for (a) C. virginica and (b) O.

equestris based on the matrixB (open triangles) and 0 error (filled squares)

data sets. The 0 error data are a subset of the matrixB data after culling

high-error loci. Allele frequencies were estimated from all individuals using

AFLPsurv with Bayesian non-uniform priors.

Figure 3 Overall expected He(left scale and solid lines) and overall FST (right

scale, dashed lines) plotted for C. virginica (open circles) and

O. equestris (hatch marks) across the six data sets. Both parameters were

estimated with AFLPsurv using Bayesian non-uniform priors.
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break at Cape Canaveral, FL (Hare and Avise, 1996). In the north,
samples PNC and RBR were clustered together into a population with
no admixture, whereas south of Cape Canaveral VER, BWP, WPA
formed a cluster with similar admixture composition across the
samples (Figure 5a). Clustering with K¼3 either made admixture
patterns more complex in every southern individual (3% error) or
distinguished the BWP sample with a different admixture pattern (4%
error and matrixB; Figure 5b). MatrixB data showed plate effects
within the BWP sample.
For C. virginica data sets with inferred K41, that is, 3% error to

matrixB, we evaluated tradeoffs between signal and noise based on the
magnitude of differentiation. One statistic that appeared informative
was mean genetic distance among clusters, calculated from the matrix
of Bayesian posteriors output from STRUCTURE. For the highest

likelihood K¼3 runs with each data set, the mean genetic distance
among the three inferred clusters increased from 3% error to 4% error
then decreased with matrixB (0.041, 0.052, 0.020, respectively), as
might be expected if population substructure signal was initially being
added with additional loci but eventually became overwhelmed by
noise. Similarly, focusing on the 3rd cluster that occurs only in BWP
(Figure 5b), the FST analog reported by STRUCTURE increased from
0.42 to 0.52 between 3% error and 4% error, then dropped to 0.09 for
the matrixB data set.
A slightly different tradeoff pattern was found using AMOVA to

compare data sets for the strength of support for two-region hier-
archical structure in C. virginica. The genetic break between regions
was significant in all data sets (Pp0.001) and explained up to 5.14%
of the variance in the 3% error data but decreased in smaller and
larger data sets (Supplementary Figure 4). The proportion of variation
among populations within the regions increased with average error to
a high of 2.85% in matrixB data, all with Pp0.003 except that 0
error was not significant (Supplementary Figure 4). In summary,

Figure 4 Mean Ln P(D) values from 20 STRUCTURE runs evaluating K¼1–

5 in the six data sets for (a) C. virginica and (b) O. equestris. Note breaks in

the Y axis scale; absolute probabilities vary across data sets because of their

different number of loci, but it is the pattern of relative support across

different K in different data sets that is of interest.

Figure 5 Bar plots from STRUCTURE analysis using different data sets from

C. virginica and assuming (a) K¼2 or (b) K¼3. Data set labels are to the left

of each plot, population samples are demarcated with thin vertical black

lines and labeled above with acronym names, and each individual genotype

is represented as a vertical bar partitioned into segments of different shades

representing the posterior probabilities of membership in K inferred clusters.

In (b), membership on experimental genotyping plates is labeled at the

bottom with capital letters A – H and plate boundaries are shown with black

tick marks to highlight possible artifacts. (c), Bar plots from STRUCTURE

analysis using 4% error and matrixB data sets from O. equestris with K¼2.

Bar plots and legends organized as in (a) and (b). Note genetic cluster

boundaries in the matrixB result align with genotyping plates in some cases,

indicating plate artifacts that are not evident in the 4% error data.

Population structure & AFLP error tradeoffs
H Zhang and MP Hare

621

Heredity



STRUCTURE results showed maximum differentiation of clusters in
4% error data, whereas AMOVA detected maximum regional variance
with 3% error, but in both cases similar patterns would lead to
identical conclusions with both 3% and 4% data sets.
In O. equestris, no geographical structure (K¼1) was found among

the five populations in all data sets except matrixB (Figure 4b), but if
K¼2 was assumed then matrixB data showed cluster boundaries
aligned with plate boundaries (Figure 5c). Interestingly, in the 4%
error result for O. equestris, the second ‘cluster’ distinguished BWP as
an admixed population, similar to results in C. virginica with K¼3.
AMOVAwas used to test all possible regional breaks (single partitions)
among the five populations analyzed. 4% error data showed a
significant regional break between VER and BWP (0.49% variation
between regions, Pp0.01), and the same break was marginally
significant with 3% error data (Pp0.048).

Population genetic comparison between species
Quantitative comparisons are reported for the 4% error data set but
the 3% error data showed consistent patterns except where noted. All
diversity measures, Br(29), PLP1%(29) and Bayesian He, had higher
average values in O. equestris, but the differences were only significant
for He (Po0.05, paired t-test across populations). In addition,
C. virginica showed higher variation in diversity among populations
than O. equestris, as indicated by the coefficient of variation across
samples (Table 2). Planned comparisons between the two northern
and three southern samples in C. virginica showed significantly lower
diversity in the north for Br(29) (ANOVA, F(1,775)¼6.94, P¼0.009)
and He (F(1,770)¼5.40, P¼0.02).
Higher pairwise FST values were found in C. virginica compared

with O. equestris, even for pairs within one or the other C. virginica
region (Table 3). All pairwise FST values in C. virginica were different
from zero at the 0.01 level whereas in O. equestris this was true only
for the VER-BWP comparison. On the basis of non-hierarchical

AMOVA analyses, more variation was distributed among populations
in C. virginica (4.90%) than in O. equestris (0.71%).

DISCUSSION

The effects of genotyping error on population genetic inferences
Relatively high genotyping errors are a well-known weakness of AFLP
data; they can be minimized but rarely eliminated. In highly poly-
morphic species with large genomes, even selective amplification using
three random nucleotides will produce complex AFLP fragment
profiles with inevitable genotyping error (Althoff et al., 2007).
Given that many population genetic inferences depend primarily

on increased genomic sampling for accuracy and statistical power,
there is likely to be a tradeoff whereby larger data sets (more loci)

Table 2 Collection coordinates, month of collection in 2007, average March–May 2007 salinity (parts per thousand), sample size (N) and

genetic diversity statistics for C. virginica and O. equestris at five collection sites

Sample ID Lat. (1N) Long. (1W) Collect. month Salinity (p.p.t.) N Br(29) PLP1% (29) He s.e. (He)

C. virginica

PNC 29.08 80.93 06 33.9 72 1.664 0.777 0.2219 0.0121

RBR 28.90 80.85 05,06 35.5 29 1.627 0.627 0.2207 0.0123

VER 27.65 80.37 06 32.5 57 1.735 0.808 0.2567 0.0121

BWP 26.87 80.07 05,06,07 32.8 48 1.715 0.767 0.2488 0.0126

WPA 26.68 80.05 06 31.7 40 1.712 0.751 0.2476 0.0118

Mean 1.691 0.746 0.2391 0.0122

s.d. 0.044 0.070 0.0166

CV 2.608 9.343 6.9626

O. equestris

PNC 29.08 80.93 06 33.9 37 1.731 0.761 0.2883 0.0140

RBR 28.90 80.85 05,06 35.5 40 1.726 0.768 0.2969 0.0142

VER 27.65 80.37 06 32.5 45 1.710 0.761 0.2791 0.0143

BWP 26.87 80.07 05,06,07 32.8 36 1.738 0.768 0.2987 0.0139

WPA 26.68 80.05 06 31.7 39 1.676 0.711 0.2786 0.0142

Mean 1.716 0.754 0.2883 0.0141

s.d. 0.025 0.024 0.0095

CV 1.441 3.208 3.2944

Abbreviation: CV, coefficient of variation.
Diversity statistics estimated from 4% error AFLP data sets include band richness after rarefaction to N¼29, Br(29); Percent polymorphic loci based on band phenotypes after standardization to
N¼29 with 1% threshold, PLP(29)1%; expected heterozygosity and its s.e. (He). The mean, s.d. and CV of each diversity statistic were also presented.

Table 3 Pairwise FST values (lower left) and P values from

permutation tests of significance (upper right) in C. virginica and

O. equestris

PNC RBR VER BWP WPA

C. virginica

PNC 0.002 0.000 0.000 0.000

RBR 0.011 0.000 0.000 0.000

VER 0.039 0.038 0.000 0.000

BWP 0.081 0.068 0.024 0.000

WPA 0.057 0.042 0.011 0.022

O. equestris

PNC 0.862 0.022 0.046 0.254

RBR 0.000 0.199 0.025 0.091

VER 0.009 0.004 0.007 0.013

BWP 0.009 0.010 0.011 0.503

WPA 0.004 0.007 0.010 0.002
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accompanied by larger mean mismatch error yield greater information
about population differentiation than error-free data sets including
fewer loci. Improvements in performance gained by including some
error-prone loci are likely to be limited, however, if error-generated
noise ultimately overwhelms the signal in the data. Most AFLP studies
report average mismatch error rates around 2%, so the most common
protocol is not to use error-free data, but to arbitrarily determine a
threshold for data to analyze and interpret.
Our goal was to devise methods for empirically identifying geno-

typing error and to evaluate its effects on population genetic infer-
ences. The known genetic cline in C. virginica provided some
expectations for evaluating error effects, making it informative to
compare results using nested data sets with different levels of mean
among-locus mismatch error. Our results suggested that both high-
and low-error data sets gave biased views of population structure.
Although evaluating the consequences of error will be more subjective
in the absence of a priori knowledge about substructure patterns, our
methods for minimizing genotyping error and evaluating signal/error
tradeoffs involved two approaches that can be applied in any study:
(i) test for substructure patterns that are not expected in nature (for
example, plate effects) and (ii) evaluate trends in population genetic
summary statistics across nested data sets with a range of mean error
rates measured in duplicates. We suggest that a subjective and
transparent analysis of genotyping error effects is better than no
analysis at all because it makes uncertainty in the results more explicit.
Plate-level effects can be caused by factors out of the researcher’s

control such as slight band shifts in individual runs of a genetic
analyzer. Plate effects in both C. virginica and O. equestris seemed to be
manifest in data sets having average mismatch error near 5% or more,
whereas all population substructure patterns which were found using
data with 3 and 4% average mismatch error were consistent with
biological expectations or interpretations. Thus, our first error detec-
tion and evaluation strategy yielded a clear upper bound for the
average mismatch error rates needed to avoid plate effects.
To create data sets differing in overall genotyping error (using our

‘primary binset’ as a starting point), we applied the locus selection and
phenotype-calling criteria in scanAFLP (Herrmann et al., 2010) before
progressively culling loci with the highest mismatch error as measured
in duplicate samples. This approach contrasts with AFLPSCORE
(Whitlock et al., 2008) where the interaction of locus selection and
phenotype scoring thresholds are plotted with respect to average
genotyping error in replicate samples, but no further culling of loci
is perfomed after choosing a set of thresholds. We suspect that the
skewed distribution of locus-specific error rates observed here is not
unusual, compromising average genotyping error as a sole criterion
for choosing a final data set. Others have noted the same thing, for
example, by removing ‘singleton’ loci from the optimum data set as
judged with AFLPSCORE (Crawford et al., 2011).
The progressive culling of high-error loci ultimately produced

data sets with relatively low information content. The lowest error
C. virginica data sets (0–2% error) failed to detect known population
structure using STRUCTURE, although the regional break was evident
from AMOVA even in the 0 error data. This low power to detect
regional substructure with assignment tests is at least partly attribu-
table to a limited number of loci being included (28, 92 or 138 loci).
However, the positive association between mismatch error and FST
among individual loci suggests that low-error data sets may have been
biased for low FST, at least in C. virginica. Given that mismatch error
was the primary metric used for reducing the among-locus average
error, and with this metric moderate allele frequencies tended to show
higher error, culling high-error loci also biased the allele frequency

spectrum. The resulting low-error data sets were depleted of loci with
moderate average allele frequencies. This might ordinarily be expected
to increase inferred population structure, not decrease it, for the same
reasons that apply to SNP ascertainment biases (Morin et al., 2004).
Indeed, the zero error data set for O. equestris shows slightly higher
mean FST relative to other data sets. However, with balanced sampling
across an allele frequency cline as in C. virginica, moderate allele
frequencies within the combined samples are expected to be associated
with high FST. In addition, skewing allele frequency distributions away
from moderate frequency (high He) loci in low-error data sets will
lower the power of assignment tests beyond what is expected based on
the same number of unbiased loci. Thus, achieving low mismatch
error by locus culling does not necessarily lead to accurate inferences,
but can introduce a bias on FST in either direction.
Homoplasy is a well-documented artifact of scoring dense fragment

profiles (Vekemans et al., 2002) with stronger impacts expected on
smaller fragments (Althoff et al., 2007; Caballero et al., 2008).
Simulated metapopulations with �p ¼ 0:1 studied by Caballero et al.
(2008) showed homoplasy effects to include a downward bias on FST
and an upward bias on both He and �p, each bias monotonically
increasing with shorter fragment size. In this study, a negative
correlation between fragment size and band-present phenotype fre-
quency indicated some homoplasy effects in all fragment size classes.
For unknown reasons band-present frequency distributions transi-
tioned abruptly between fragments o300 versus 4300 bp in
C. virginica (Figure 2). The Caballero et al. (2008) predictions for
homoplasy effects were seen much more strongly in loci o300 versus
4300 bp in 4% error C. virginica data; the loci o300 bp had �p five
times larger and HS three times larger than loci 4300 bp. In contrast
to expectations, however, among-locus average FST was twice as high
for short fragments (0.0409 vs 0.0212, both significantly different than
zero at Po0.001). In fact, this FST discrepancy between short and long
fragments was an order of magnitude for 0 error (0.0114 vs 0.002,
Po0.006 for both) and 1% error data, and smallest for matrixB
(0.0529 vs 0.0424). The differences in average FST do not appear to be
a function of genomic sampling because the number of loci in short
(11–131) vs long (17–122) fragment subsets was similar across the
data sets. The O. equestris data showed the same differences between
short and long fragments and the same bias trends, although in this
case the fragments 4300 bp in each data set had FST that was not
statistically different from zero, whereas the shorter fragments had FST
similar to that shown in Figure 3. We do not have an explanation for
this disagreement with simulation-based predictions, but note that
many of the highest FST loci among small fragments showed clinal
patterns in agreement with previous codominant data (data not
shown). These loci clearly have useful information content despite
indications of strong homoplasy effects at that fragment size class. In
fact, excluding loci o300 bp for fear of homoplasy effects would have
removed all but one locus with FST 40.1.
By relying on duplicate samples for automated binset optimization

and subsequent marker selection, this study used AFLP analysis
methods that can facilitate scaling up to much larger samples.
Although this approach is atypical, the application of Peakmatcher
here produced a similar number of initial loci (229 in the primary
binset) as previously achieved by manual binning (226 loci) of the
same four primer pairs in different Florida samples of C. virginca
(Murray and Hare, 2006). The use of duplicate fingerprints for binset
optimization, rather than requiring that bins be defined based on all
samples, requires replication of a substantial fraction of representative
samples (410%). This investment also improves estimates of locus-
specific mismatch error rates for accurate ranking of loci and high-
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error culling. A new tool for automated binset optimization was
recently described along with novel descriptive statistics for evaluating
the ‘information content’ of bins without the benefit of duplicate
genotypes (Arrigo et al., 2009); comparing this approach to the
optimization methods applied here will be a valuable next step for
advancing the utility of automated binsetting.
Regardless of methods used for binset creation, we recommend

using liberal locus acceptance criteria initially, producing genotypes
for many loci with a high variance in locus-specific mismatch error
rates. Subsequent removal of high-error loci should be empirical,
proceeding until detectable artifactual substructure is eliminated.
Then a nested series of data sets that vary with respect to average
mismatch error can be evaluated with respect to population sub-
structure. Trends in the degree and pattern of substructure across data
sets can be used to justify data set choice and evaluate robustness of
biological inferences. For biologically plausible patterns of structure,
we assumed that the data set showing maximum divergence provides
both accuracy and optimum power for detecting subtle patterns.
Study objectives and the degree of independent knowledge on sub-
structure patterns will determine how conservative the data set choice
should be. Even for population-level analyses that account for geno-
typing error in parameter estimates (Foll et al., 2010), the comparative
approach described here can help empirically evaluate unpredictable
consequences of genotyping error.

Relating population structure to larval dispersal
It is widely recognized that both habitat preference and life history can
be important factors in determining larval dispersal capacity in
sedentary benthic species. For example, estuarine species usually
show lower gene-flow potential than comparable demersal marine
species (Bilton et al., 2002). Also, species with direct development
often show more population structure than species with planktonic
larvae (reviewed in Pelc et al., 2009).
Higher population differentiation in C. virginica than O. equestris

suggests the latter species has higher dispersal potential or lower gene
flow constraints along eastern Florida. However, co-distributed species
don’t necessarily share the same historical processes leading to today’s
patterns. Furthermore, different habitat use by co-distributed species
can lead to differences in population connectivity. For these two oyster
species there are several plausible causes of their different degrees of
population substructure.
First, lower tolerance of marine salinities may constrain gene flow

for C. virginica relative to O. equestris. Effective larval dispersal may be
largely confined within lagoons for C. virginica and be relatively ‘open’
along the continental shelf for O. equestris. There are hydrodynamic
scenarios that could limit larval dispersal along the continental shelf
connecting populations north and south of Cape Canaveral (Hare
et al., 2005), but results here indicate that O. equestris experiences no
major barrier.
The second potential factor affecting dispersal propensity is larval

life history. Although O. equestris has internal fertilization and broods
young, veliger larvae are released after several days (Menzel, 1955). We
are not aware of any precise data on planktonic larval duration for
O. equestris, but 2 weeks is typical of the genus (Castanos et al., 2005)
and this is similar to planktonic duration of C. virginica in southern
waters. Still, by brooding its larvae for several days during early
development when physiological tolerances are most constrained
(Wright et al., 1983), O. equestris may increase larval survivorship
and long distance dispersal potential.
The third important factor in this comparison is historical. The

phylogeographic break and clinal allele frequencies in C. virginica

at Cape Canaveral were speculated to be a result of secondary contact
(Reeb and Avise, 1990; Hare and Avise, 1996). Results from this study
using new samples and novel markers indicate that this regional break
has remained strong for nearly two decades. Here, as in the AFLP
analysis of oysters by Murray and Hare (2006), there is only a small
minority of C. virginica loci showing strong differentiation, many
of them with geographically coincident clines. It is possible that the
two oyster species compared here experience similar contemporary
barriers to gene flow near Cape Canaveral, but effective population
sizes were too large to promote much differentiation by genetic drift
and it is only in the case of C. virginica that pre-contact north/south
differences remain in sharp contrast across the secondary contact
zone.
Despite the regional contrast between these two oyster species, it is

interesting that they showed a geographically concordant pattern of
subtle population structure. In both species the BWP population is
distinguished from the other two southern populations by having a
slightly different admixture pattern. There is no detectable difference
in DNA quality between BWP and other accessions, nor other
technical artifacts identified that could explain this concordance.
There appears to be ample opportunity for strong genetic drift with
BWP because it is from a narrow section of intracoastal waterway cut
between Lake Worth and Palm Beach Inlet to the south and Jupiter
Inlet to the north.
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