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Despite dramatic reduction in sequencing costs with the
advent of next generation sequencing technologies, obtain-
ing a complete mammalian genome sequence at sufficient
depth is still costly. An alternative is partial sequencing. Here,
we have sequenced a reduced representation library of an
Iberian sow from the Guadyerbas strain, a highly inbred
strain that has been used in numerous QTL studies because
of its extreme phenotypic characteristics. Using the Illumina
Genome Analyzer II (San Diego, CA, USA), we resequenced
B1% of the genome with average 4� depth, identifying
68 778 polymorphisms. Of these, 55457 were putative fixed
differences with respect to the assembly, based on the genome
of a Duroc pig, and 13321 were heterozygous positions within
Guadyerbas. Despite being highly inbred, the estimate of
heterozygosity within Guadyerbas was B0.78kb�1 in auto-

somes, after correcting for low depth. Nucleotide variability was
consistently higher at the telomeric regions than on the rest of
the chromosome, likely a result of increased recombination
rates. Further, variability was 50% lower in the X-chromosome
than in autosomes, which may be explained by a recent
bottleneck or by selection. We divided the whole genome
in 500kb windows and we analyzed overrepresented gene
ontology terms in regions of low and high variability. Multi
organism process, pigmentation and cell killing were over-
represented in high variability regions and metabolic process
ontology, within low variability regions. Further, a genome wide
Hudson–Kreitman–Aguadé test was carried out per window;
overall, variability was in agreement with neutral expectations.
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Introduction

By slashing the sequence costs with respect to Sanger
sequencing, recent massive parallel sequencing technol-
ogies (NGS) have democratized genomics research. With
an increasing portfolio of applications ranging from
complete genome sequencing to transcriptome sequen-
cing (RNAseq) or metagenomics, NGS has revolutio-
nized biology.

Nevertheless, sequencing a complete mammalian
genome at reasonable depth is still expensive. As an
alternative, a genome may be sequenced partially.
Ideally, a targeted partial resequencing, for example,
exome resequencing, would be the preferred choice (Ng
et al., 2009); yet, sequence capture is also very expensive

and not 100% effective; their overall cost effectiveness is
therefore questionable. A feasible alternative is partial
shotgun sequencing. In this spirit, resequencing reduced
representation libraries (RRL) is a proven cost effective
strategy (Van Tassell et al., 2008). Initially, this approach
was proposed to identify massively single nucleotide
polymorphisms (SNPs) when applied to pool resequen-
cing (Van Tassell et al., 2008). Several groups have
already shown in livestock, including pigs, how several
hundreds of thousands of SNPs can be identified using
that approach (Ramos et al., 2009).

Nevertheless, sequencing pools has a number of
disadvantages for inferring genetic parameters like
nucleotide diversity—it is biased against singletons—or
linkage disequilibrium, the haplotype is basically lost
(Cutler and Jensen, 2010). Here, we decided to sequence
a RRL of a single individual rather than a pool to gain
more in depth knowledge on a very peculiar Iberian pig
strain and to complement the extant RRL pools in
porcine (Ramos et al., 2009). To facilitate comparison with
current data, we used one of the protocols used
previously in the pig (Ramos et al., 2009).

The sequenced pig was a sow from the Iberian strain
Guadyerbas. This is an obese, black, hairless and early-
maturing Iberian strain. It represents one of the most
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ancient surviving Iberian lines, with no evidence of
introgression of Asian genes, that has remained isolated
since 1945 in a closed herd, El Dehesón del Encinar, located
in Toledo, central Spain (Toro et al., 2000). A relevant
aspect is that the complete pedigree since the founding of
the herd is known, including that of the individual
sequenced. Furthermore it has been used in several
QTL experiments, including F2 crosses with Landrace
(Pérez-Enciso et al., 2000) and Meishan (Noguera et al.,
2009). Performance characteristics compared with a lean
international breed, Landrace, have been also reported
(Serra et al., 1998).

Here, we present the analysis of a single Guadyerbas
sow RRL sequence dataset obtained with short read
technology (Genome Analyzer II, Illumina). Despite the
fact that only about 1% of the genome was sequenced,
we present results that are relevant from the species
perspective and that can have important implications for
animal breeding.

Materials and methods

Material
The Guadyerbas herd was founded with four boars and 10
sows in 1945, and has been maintained with controlled
pedigree and minimum co-ancestry mating practices to
minimize increase in inbreeding (Odriozola, 1976).
Despite this, and because of isolation and small number
of breeding animals, average inbreeding coefficient F is
very high for all surviving pigs. In the specific female
sequenced, autosomal F was B0.39 and B0.46 for sex
chromosome X. These inbreeding coefficients were
obtained through a forward simulation program taking
into account the whole pedigree since 1945. A compre-
hensive genealogical study of this herd has been
presented elsewhere (Toro et al., 2000).

RRL preparation and sequencing
To generate the sequencing library, we used 3.4mg of
genomic pig dsDNA, quantified with PicoGreen, and
digested with 10U of the blunt cutting restriction
endonuclease HaeIII. The DNA was processed with the
Illumina genomic sample preparation kit. Briefly, blunt-
ended fragments were A-tailed using the Klenow exo
enzyme provided in the Illumina kit, followed by
ligation of double-stranded adapters. The adapters were
generated by annealing of oligonucleotides A 50-AATGA
TACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATC*T-30 where * denotes a phos-
phorothioate bond and oligonucleotide B 50-P-GATCGG
AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC
GTATGCCGTCTTCTGCTTG-30 (Sigma, St Louis, MO,
USA). A 5� adapter mix in water with a final concen-
tration of 20 mM of each oligonucleotide was prepared in
a thermocycler by heating to 65 1C for 5min and cooling
to 20 1C with a ramp of 0.1 1Cs�1. According to the
Illumina protocol, adapter ligation is followed by size
selection of the ligation products and a PCR step, which
results in library enrichment and at the same time
introduces sequences required for the in situ bridge PCR
amplification in the Illumina flow cell. We modified the
procedure such that we used adapters that already
included the sequences necessary for amplification in the
flow cell, as well as for sequencing primer binding, and

skipped the enrichment PCR step. Such a strategy is
advantageous, because errors introduced in the enrich-
ment PCR step can confound SNP identification, in cases
where molecules with the same PCR error are sequenced
multiple times. Also, omission of enrichment PCR
minimizes coverage biases that result from GC content
imbalances of the sequenced target (Dohm et al., 2008;
Kozarewa et al., 2009). We carried out the adapter ligation
as described in the Illumina genomic sample preparation
kit protocol, that is, in a volume of 50ml with 10 000U of
T4 DNA ligase (New England Biolabs, Ipswich, MA,
USA) in 1� quick ligation buffer (66mM Tris-HCl,
10mM MgCl2, 1mM dithiothreitol, 1mM ATP, 7.5%
polyethylene glycol, pH 7.6) at 25 1C for 15min. There-
after, we purified the sample with a QIAquick column
(Qiagen, Hilden, Germany), eluted in 30 ml of 1�TE and
performed size selection on a 6% polyacrylamide gel.
The gel area corresponding to the final size of the library
including adapters (300–325 bp; library insert size of
200±10 bp) was excised. The DNA was eluted by
crushing the gel slice and incubation in 1� elution buffer
(500mM ammonium acetate, 0.1% SDS, 0.1mM EDTA)
for 2 h at room temperature with gentle agitation. We
separated the crushed polyacrylamide from the eluted
DNA by using a cellulose acetate column (SpinX, Sigma,
St Louis, MO, USA) and then precipitated the DNA by
addition of 0.1 volumes of 3M sodium acetate pH 5.2 and
2.5 volumes of ice-cold absolute ethanol and spinning at
13 200 r.p.m. for 20min. After washing with 70% ethanol
and drying in a SpeedVac centrifuge for 5min, we
resuspended the DNA pellet in 15 ml 1�TE. The
concentration of the library was determined by TaqMan
PCR (Quail et al., 2008).
We loaded the library into three Illumina flow cell

lanes at a concentration of 5 pM (one lane) and 8pM (two
lanes), and sequencing on the Illumina Genome Analy-
zer II was carried out with 50 and 40 cycle recipes,
respectively. The image data were processed using the
Illumina pipeline 1.3.2. From the three runs, a total of
25.3Mb called reads were obtained. Sequences have been
deposited in short read archive (SRA accession
SRP005367).

Bioinformatic analysis
Reads were trimmed to 40 bp because of low 30-end
quality. We discarded reads containing Ns, homopoly-
mers longer than 17 nucleotides, an average minimum
phred quality smaller than 20 and reads that did not start
with a CC motif (HaeIII cuts at ‘GGCC’ motif). Reads
were filtered using custom Perl scripts. We aligned the
remaining sequences against the reference porcine
genome assembly 9 (ftp://ftp.sanger.ac.uk/pub/
S_scrofa/assemblies/Ensembl_Sscrofa9/) with GEM
(http://sourceforge.net/apps/mediawiki/gemlibrary/
index.php?title¼The_GEM_library), MAQ (Li et al.,
2008) and Mosaik (http://bioinformatics.bc.edu/
marthlab/Mosaik) retaining for variant calling only
those reads that mapped unambiguously. We identified
SNPs with GEM, MAQ and GigaBayes (Quinlan et al.,
2008). Data were visualized with Eagleview (Huang
and Marth, 2008).
When mapping the filtered reads with GEM, we used

default options except for the mismatches allowed in
each read to the reference genome (four mismatches
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were allowed). In the MAQ assembly, we also allowed a
maximum of four mismatches for a read to be used in
consensus calling and the minimum mapping quality
was set to 10. When filtering the SNPs, the minimum
consensus quality and adjacent consensus quality was
10. In all softwares, the minimum depth to call a SNP
was 3� and the maximum, 20� . In MosaikAligner, we
used a hash size of 20, with four mismatches allowed, the
alignment candidate threshold was 20, the maximum
number of hash positions to be used per seed was 100,
the alignment mode was set to unique and the alignment
algorithm was ‘all’. The minimum posterior probability
threshold for reporting a polymorphism candidate was
set to 0.9 in Gigabayes. We classified the SNPs into two
classes, fixed (F) when the differences were between the
assembly and the Iberian reads, and segregating (S) when
the Iberian pig was heterozygous. For a heterozygous
SNPs to be called, the minimum non-reference allele count
should be 420% with a minimum count of two.

Statistical and genetics analysis
As emphasized by several authors (Hellmann et al., 2008;
Lynch, 2008; Jiang et al., 2009), estimating nucleotide
diversity from NGS data requires specific methods to
account for unequal depth along the genome and
sequencing and assembly errors. Here, we are interested
in estimating the heterozygosity h for each window. For
multiple individuals, two different estimators have been
proposed by Hellmann et al. (2008) and by Jiang et al.
(2009). However, in the case of a single individual, both
estimators coincide with the estimator of Lynch (2008)
and correspond to the maximum composite likelihood
estimator for h. If the mating is random and the
population is in Hardy–Weinberg equilibrium, this is
also a maximum composite likelihood estimator for the
variability y of the population. In the absence of
sequencing and mapping errors, the formula for the
unbiased maximum composite likelihood estimator
for h is

ĥ� ¼ SP1
nr¼1

LðnrÞP�ðSjnrÞ
ð1Þ

where S is the number of heterozygous sites detected in
the window, L(nr) is the number of bases with depth nr in
the window and P*(S|nr) is the probability that a
heterozygous site is detected when the read depth at
that site is nr. The analytical expression is
P*(S|nr)¼ 1�2�(nr�1) (Hellmann et al., 2008; Lynch, 2008;
Jiang et al., 2009). In case of sequencing errors, if the error
rate or the SNP qualities are known and the error rate is
not too large, the estimator can be corrected simply by
subtracting the average number of false SNPs from
S. Although sequencing errors can in principle be
estimated from the data at hand (Lynch, 2008), this
could induce some extra noise in the estimator and, more
importantly, it is difficult to allow for errors in the
assembly, a potentially much larger distortion factor than
sequencing errors.

Here, we decided to follow a compromise to minimize
assembly errors, but not being too strict in order not to
discard many potentially true SNPs: we considered only
the SNPs that had been called by at least two softwares,
MAQ, Gigabayes or Gem, and only with depth between

3 and 20. A similar approach has been recently followed
in the 1000 genomes project, where the SNPs called were
a consensus between different algorithms (Durbin et al.,
2010). In addition, we requested that the non-reference
allele is present in at least two reads and a minimum
allele count X20% among all reads covering that
position. Therefore, we applied equation (1) using those
SNPs called by two or the three softwares and summing
between nr¼ 3 and 20. Therefore, equation (1) needs to
be modified

ĥ ¼ SP20
nr¼3

LðnrÞPðSjnrÞ
; ð3Þ

where

PðSjnrÞ ¼ 1� 2�nr
Xna�1

k¼0

nr
k

� �
þ

Xnr

k¼nr�nbþ1

nr
k

� �" #
;

with na¼max(2, 0.2�nr) being the minimum number of
non-reference allele reads requested and nb, the mini-
mum number of reference allele reads. The above
formulae stems from the restriction we set, for instance,
for nr¼ 3, the only way a true SNP is called is the
probability that exactly two reads belong to the alter-
native allele and one, to the reference allele, that is, a
binomial with P¼ 0.5, n¼ 3 and two successes or
3
2

� �
2�3 ¼ 0.375. Note as well that Lynch’s and similar

corrections do differ from (3) when nr is small,
P*(S|nr¼ 3)¼ 0.75 vs P(S|nr¼ 3)¼ 0.375, whereas
P*(S|nr¼ 10)¼ 0.998 vs P(S|nr¼ 10)¼ 0.988.

As is clear from equation (3), the raw number of true
heterozygous sites is underestimated from simply
counting S. The contrary occurs with the number of
fixed differences (F) because a fixed difference can
actually be a segregating SNP, and because in the
assembly no heterozygous positions are allowed: only
one of the two alleles is reported. Here, we estimated

Ŝ ¼ ĥ
X20
nr¼4

LðnrÞ; ð4Þ

and,

F̂ ¼ max 0; F �
X20
nr¼4

ĥ2�nrLðnrÞ
" #

ð5Þ

In (4) the estimate is negative when no fixed difference
has been observed, in those cases the estimator was
truncated to 0. We computed the average number of
SNPs, F̂ and Ŝ, along non-overlapping contiguous 500 kb
windows.

We also obtained Hudson–Kreitman–Aguadé
(HKA) diversity (yHKA) estimates (Hudson et al., 1987).
Briefly, HKA method tests whether there is a deviation
between observed and expected number of polymorph-
isms, where the expected polymorphism is obtained
from the divergence between an outgroup and the
population studied. The HKA statistic for locus (that is,
window) i is:

Hi ¼
½Ŝi � EðŜiÞ�2

VarðŜiÞ
þ ½F̂i � EðF̂iÞ�2

VarðF̂iÞ
ð6Þ
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and the multilocus HKA test is w2 ¼
P

i Hi, with degrees
of freedom equal to the number of loci and where the
sum is across the i-th loci (here, the windows of 0.5Mb
length). We applied the test separately for autosomes and
chromosome X. The expected values are

EðŜiÞ ¼ ŷi ¼
Ŝi þ F̂i

T þ 2
;

and

EðF̂iÞ ¼ ŷiðT þ 1Þ;
with T, the divergence time, given by

T ¼

P
i

F̂iP
i

Ŝi

� 1;

with approximate variances Var(�)¼E(�)� [1þE(�)]. The
HKA procedure is primarily devised to compare two
species, whereas here we considered the reference
assembly (a Duroc pig) as outgroup. Therefore, the
power of HKA should be relatively low, but can provide
a rule of thumb as to which are the most extreme
windows in terms of variability.

We also developed a Monte Carlo procedure to infer
genetic parameters in a more general framework. Given
that a single individual was sequenced, we do not intend
to provide accurate inferences, but rather to show, as a
proof of principle, how genome wide data of the kind
obtained here can be used to make inferences on
demographic history. Suppose the simplest possible
model to characterize the Iberian—Duroc breed history,
that is, an ancestral population of size N that t
generations ago split into the two breeds, which may
have occasionally interchanged individuals from Iberian
into Duroc at a rate m (Figure 1). The procedure consisted
of simulating the number of fixed and segregating SNPs
according to this model and choosing the set of
parameters that produced the best fit with the observed
data. For given values of NIB (Iberian Ne), NDU (Duroc
Ne), m, and t, we simulated 500 kb windows by
coalescence using MaCS (Chen et al., 2009) of one Duroc
individual and 14 Iberian animals, 30 sequences in total.
Next, as the complete pedigree from the 14 founder
individuals of the herd is known, we simulated by gene
dropping the genome window of the Iberian pig

sequenced, according to the known pedigree. Finally,
we extracted the same number of fragments and number
of base pairs as actually sequenced from the simulated
window. We counted the number of fixed and segregat-
ing SNPs per window, and we repeated the process for
each of the 4363 windows obtained in the real data. For
the Duroc assembly, we randomly sampled an allele in
the simulated Duroc sequences. Finally, we obtained the
observed and simulated HKA-y estimator described
above (ŷi) for each i-th window; as measure of goodness
of fit, we used the Wilcoxon’s ranked signed test across
windows. We did a grid search using this procedure for
different values of NIB, NDU, m and t; assuming a true
y¼ 0.0013 for the autosomes and y¼ 0.0005 for the X
chromosome, and r, scaled recombination rate, 0.001.
These values are taken from the literature (Ojeda et al.,
2006; Amaral et al., 2009). The whole procedure was
implemented in a Perl script with calls to MaCS and R.

Gene ontologies (GO)
We ranked the 500 kb windows according to estimated
heterozygosity and we selected the most extreme
windows to test whether genes within the windows
were enriched in particular ontologies. GO were down-
loaded using Biomart (http://www.biomart.org). Our
Goslim (http://www.geneontology.org/GO.slims.shtml)
was composed of 23 parental pig GO extracted from
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi.
After filtering for biological process, we selected the
following GO: biological regulation, cellular process,
metabolic process, multicellular organismal process,
developmental process, signaling, localization, response
to stimulus, immune system process, cellular component
organization, reproduction, biological adhesion, cellular
component biogenesis, death, locomotion, multi-organ-
ism process, growth, pigmentation, rhythmic process,
viral reproduction and cell killing. GO statistics were
calculated using the GOquick browser (http://www.
ebi.ac.uk/QuickGO/). Expected and observed GO per-
centages were contrasted with a Fisher’s exact test as
implemented in R. To test enrichment of specific
ontologies, we simply computed a two sided t-test
assuming a normal distribution for number of counts.

Results

Alignment and polymorphism detection
Out of three Genome Analyzer II lanes, we obtained
B25.3 million reads. After filtering and removing
ambiguous matching reads, that is, reads matching the
reference more than once, we retained 5 million reads for
further analysis (Figure 2). The total length assembled
was B2.3Gb. The reads spanned 83.1Mb of the porcine
assembly v.9 with at least one read, and 25.1Mb with at
least three reads and a maximum depth of 20. The
average depth, counting only regions with read depth
between 3 and 20 was 4� . All chromosomes were
uniformly covered and we did not notice biases regard-
ing read distribution within chromosomes (Supplemen-
tary File S1). Only four out of the 4363 windows were not
covered by any read. The RRL was also unbiased with
respect to depth of coding vs non-coding regions, 4.08�
and 4.07� , respectively. Table 1 shows relevant statistics
per chromosome.

ancestral pool (θ)

split
time (τ)

Coalescence (MACS) |
NDU, NIB, m, τ

migration
(m)

Gene dropping |
known Iberian pedigree for 20 generations

and RRL data

Duroc (NDU) Iberian (NIB)

Figure 1 Simulated isolation with migration model that represents
the Iberian/Duroc history (the public assembly pertains to a Duroc
sow). The Duroc and Iberian populations descend from an ancestral
population harboring a nucleotide diversity y¼ 4Nem; after the split
t generations ago, both breeds of effective sizes NDU and NIB may
have interchanged individuals with rate m. A mixed coalescence
and gene dropping procedure was used.
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SNPs were called with three different programs. The
number of variants called by each software differed:
MAQ was the most conservative and GEM, the most
liberal. The latter can be explained by the fact that it does
not use sequence qualities to filter the alignments and the
SNP calls. Overall, the discrepancy between the pro-
grams decreased with depth. The average depth of the
SNPs detected with at least two programs was 4.5� and
of those detected with the three programs, 6.5� . Using
the SNPs called by at least two programs, a total of 68 778
SNPs were identified, equivalent to an average 2.7 SNPs
per kb sequenced. Main variability statistics by window

are in Supplementary File S2, together with a summary
of variability within intergenic, intronic, CDS and UTR
regions.

Variability distribution and population genetics inference
To gain further insight into the variability distribution,
using equations 3 and 4, we plotted the Iberian average
heterozygosity (ĥ) and average fixed differences between
the assembly and Iberian f̂ ¼ F̂=

P20
nr¼4 LðnrÞ in non-

overlapping contiguous windows of 500 kb. Genome
wide results are in Supplementary Figure S3, whereas
Figure 3 shows the lowess adjusted curves results in
chromosomes SSC4 and SSCX. A trend of increasing
variability in f̂ toward the telomeres is clearly visible in
SSC4; this pattern also exists in ĥ, but is less apparent
because the scale is too coarse. This can also be seen in
the sex chromosome, although less markedly than in
autosomes because of an overall lower level of varia-
bility. Note that this is not caused by differences in depth,
which is fairly uniform along the chromosome (Supple-
mentary Figure S1). The average nucleotide diversity
yHKA was 1.7� 10�3 in the 5% most extreme telomeric
windows, much higher than the value found in the 10%
of windows surrounding the centromere: 5.4� 10�4.
These figures correspond to the average over all
chromosomes, except acrocentric chromosomes, that is,
SSC13–SSC18. Excluding SSC7, which harbors the highly
polymorphic SLA region near the centromere, the
statistics are 1.7� 10�3 vs 4.9� 10�4 for telomeric and
centromeric regions, respectively.

The average SNP rates per base pair for chromosome X
were f̂¼ 9.2� 10�4 and ĥ¼ 3.7� 10�4. Interestingly, these
values are B50% lower than those of the autosomes
1.9� 10�3 (f̂) and 7.8� 10�4 (ĥ), whereas the expected
ratio is 75% under a stationary neutral model, because
the effective population size of the X chromosome is 3

4
that of the autosomes.

Next, we computed the HKA test to examine whether
the observed pattern departs from what is expected
under the stationary neutral model. The estimated
divergence, when measured in twice effective size (2Ne)
units, was B1.3 both for autosomes and the X-chromo-
some. In contrast, the weighted nucleotide diversity yHKA

was 8.0� 10�4 and 3.8� 10�4 in autosomes and in X-
chromosome, respectively (Table 2). These values are in
complete agreement with those from the simple hetero-
zygosity estimates ĥ (Table 1). Again, the HKA estimate
also indicates a much lower variability at the X
chromosome than expected, relative to the autosomes.
The plot in Supplementary File S4 shows that, genome-
wide, there were no wide departures from neutrality,
neither for autosomes nor for X chromosome, according
to this test.

We applied the model in Figure 1 to adjust demo-
graphic parameters in the Iberian lineage using the
stochastic method described above. We estimated the set
of parameters by minimizing the distance, in a signed
rank test, between simulated and observed HKA
statistics for each 500 kb window. We did that separately
for autosomes and the sex chromosome. The analyses
discarded a migration (m¼ 0) between breeds and
suggested an effective size of Iberian B20% that of the
ancestral population, assuming an initial y¼ 0.0013
and y¼ 0.0005 for autosomes and sex chromosome,

Table 1 Statistics per chromosome

Chrom. Total
assembled
X3� (Mb)

Average
coverage
(3–20� )

Sa Fb ĥc f̂d

SSC1 2.45 3.97 842 5023 0.48 1.51
SSC2 1.95 4.00 1334 4363 1.11 1.88
SSC3 1.90 4.01 1517 3519 1.15 1.48
SSC4 1.34 3.98 971 3027 0.95 1.73
SSC5 1.05 3.96 639 2685 1.09 2.11
SSC6 2.21 4.01 895 4890 0.58 1.85
SSC7 1.68 3.97 471 4509 0.60 2.49
SSC8 0.91 3.96 485 2197 0.73 2.15
SSC9 1.33 3.96 823 3142 0.77 1.85
SSC10 0.69 3.97 438 1822 1.08 2.42
SSC11 0.66 3.95 406 1770 0.95 2.44
SSC12 1.16 3.99 782 2520 1.06 1.67
SSC13 1.40 3.96 614 2618 0.63 1.58
SSC14 2.06 3.98 837 4512 0.57 2.10
SSC15 1.05 4.01 653 2607 0.67 1.77
SSC16 0.67 3.97 419 1636 0.81 2.27
SSC17 0.87 3.99 528 1960 0.99 2.38
SSC18 0.66 3.96 370 1396 1.10 1.57
SSCX 1.03 4.01 297 1261 0.37 0.92
Total autosomes 24.02 3.98 13 024 54 196 0.78 1.89

aNumber of heterozygous sites, raw numbers.
bNumber of fixed differences, raw numbers.
cAverage estimated heterozygosity within Iberian per kb.
dAverage estimated number of differences between Iberian and
assembly per kb.

25 M raw reads (50 bp)

No N’s
Start  with ‘CC’
No homopolymers > 17 bp
Minimum average Phred quality >20
Trimmed to 40 bp

56%

14 M filtered reads (40 bp)

64% 36%

9 M matching reads
(< 4 mismatches)

5 M reads not matching
reference genome

56% 44%

4 M ambiguous reads5 M unambiguous reads

Figure 2 Bioinformatics pipeline.
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respectively. As shown in Figure 4, the fitted parameters
adjusted the observed values for the w2-statistics quite
well for the autosomal windows, whereas fit was less
good for SSCX windows.

Outlier regions and their annotation
As results in Supplementary File S4 suggest, the genome-
wide pattern of nucleotide variability was approximately
neutral, according to the HKA test. Certainly, not the
whole genome evolves according to the standard neutral
model and the apparent neutrality may simply mean
lack of power or too large windows that may mask
highly local selective events. To complement the ana-
lyses, we next focused on extreme windows for low or
high heterozygosity (ĥ). A large number of windows
(1820) turned out to be devoid of any heterozygous SNP.
Therefore, we selected those 81 windows with at least
10.1 kb assembled and having at least one fixed
difference; 19 and 17 of the windows were located in
chromosomes 6 and 7, respectively (Supplementary File
S2). The expected number of windows for those

chromosomes, according to its size, is about five and
the overrepresentation is highly significant (Po10�7). In
SSC6, in particular, 10 windows were almost contiguous,
spanning windows 92–115, the average heterozygosity of
this whole interval was 10�4 or six times lower than
average genome wide. Further, although chromosomes 6
and 7 present lower than average heterozygosities, they
are not outliers: chromosomes 1, 13 or 14 have compar-
able heterozygosities (Table 1). Also, in contrast to what
would be predicted, only three windows were located in
chromosome X (five are expected).
We also considered the most extreme windows in

terms of heterozygosity. A problem with the interpreta-
tion of these windows is that a large variability can be
distorted by possible misalignments. Although we
minimized this risk by considering SNPs called by
several aligners, we retained, from the 100 windows
with maximum heterozygosity, those with over a kb
assembled and whose f̂ was below the median. There-
fore, we ensured that, whereas ĥ was extreme, f̂ was not.
We found 31 such windows (Supplementary File S2). In
this case, no dramatic departures in the number of
windows by chromosome were observed.
To gain further biological insight, we studied Gene

Ontology enrichment of genes located in the windows
with extreme values of nucleotide diversity. We looked
for overrepresented GO of genes in these windows with
respect to overall GO frequencies among all sequenced
genes. The observed and expected results are in Figure 5.
Among the high variability windows, we found that GO
categories multi organism process (P¼ 10�5), pigmenta-
tion (Po10�12) and cell killing (Po10�13) were over-
represented. In general, genes related with defense
(RAB27A, NCF1) and olfactory receptors were among
the high variability windows, as could be expected. We
only found the generic metabolic process (Po10�10) and
apoptosis (P¼ 0.05) GO as overrepresented among genes
located within low variability windows. In chromosome
6, several of the genes are involved in carbohydrate
metabolism (FUT1, FUT2, BAX, GYS1, CA11), oxidor-
eductase activity (DHDH, PGD, MTHFR). Among those
in SSC7, protein folding (HSP90AB1, HSP90AA1, DNA-
JA4), all in all, there was not a clear metabolic route
overrepresented. The results simply suggest that these
genes exhibit lower than expected variability, be it

0 50 100 150 200 250

SSC 4

Window (0.5 Mb)

0 50 100 150 200 250

0.0000

0.0015

SSC 7

Window (0.5 Mb)

0 50 100 150 200 250

0.0000

0.0015

0.0000

0.0010

SSCX

Window (0.5 Mb)

0 50 100 150 200 250 300

0.0000

0.0015

SSC 14

Window (0.5 Mb)

Figure 3 Lowess adjusted curves of variability in chromosomes 4, 7, 14 and X. An increased variability is observed towards the telomeres in
metacentric chromosomes 4 and X, whereas the ratio is distorted in SSC7 because of high SLA variability near window 50; SSC14 is
acrocentric. Solid red line, Iberian heterozygosity (ĥ); dashed black line, Iberian—Duroc heterozygosity (f̂). Position refers to window number.
A full color version of this figure is available at the Heredity journal online.

Table 2 HKA statistics

Divergence (2N units) yHKA per kb

Autosomes 1.32 0.80
SSCX 1.45 0.38

0.5 2.5 4.5 6.5 8.5 10

HKA chi2 (autosomes)

0

1000

2000

3000

0.25 2.2 3.8 5.2 6.8 8.2 9.8

HKA chi2 (SSCX)

0

500

1500

2500

Figure 4 Histograms comparing observed (black bars) and simu-
lated (grey bars) HKA statistics across autosomal and sex chromo-
some windows. The simulated results correspond to parameter
values that minimized the Wilcoxon statistics.
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because of specific selection in livestock or because of
other biological constraints. More data is required to
ascertain the precise cause.

Discussion

We have presented the first re-sequencing effort of the
Iberian pig breed, the most emblematic pig breed in the
Mediterranean area and one of the most important
porcine local varieties in economic terms worldwide. The
pig sequenced belongs to a peculiar Iberian strain with
unique phenotypic characteristics that has been used in
multiple QTL experiments (Pérez-Enciso et al., 2000;
Noguera et al., 2009). For reasons stated in the introduc-
tion, we chose to use RRL in a single individual.
Although the RRL is a cost effective alternative to
targeted sequencing, it has drawbacks also. It is basically
a shotgun approach where potential regions of interest
may not be covered. The easiest way to improve RRL
would be to digest in silico with different enzymes and
compare different band lengths such that the coverage of
targeted regions is maximized. In the case of porcine
species, this strategy is risky because the sequence is
incomplete and even assembly is still under develop-
ment. Besides, (Amaral et al., 2009) found that the
correspondence between theoretical and observed se-
quences is not perfect, likely because band excision is not
absolutely precise.

In this work, we have primarily focused on the
distribution of nucleotide diversity. We found a global

autosomal Iberian heterozygosity rate of ĥ¼ 0.78� 10�3

per nucleotide (Table 1). This value is much larger
than the naı̈ve estimator of simply dividing the number
of SNPs by the length assembled, and illustrates the need
of applying specific statistic tools with genome wide
NGS data, especially at low depth (Lynch, 2008; Haubold
et al., 2010). Assuming a mutation rate (m) of 10�8, this
results in an estimate of effective size Ne¼ ĥ/4
mB2� 104. This value is quite high, especially consider-
ing that this is a highly inbred animal. It suggests that the
actual effective size in the founder herd might be actually
double, given that inbreeding coefficient of the
sequenced animal is B0.39. When correcting for in-
breeding, this diversity is comparable with that reported
in other porcine species (Amaral et al., 2009, 2011) or in
humans.

Both chromosomes 6 and 7 were enriched in windows
of low variability (Supplementary File 2). The case of
SSC6 is noticeable because a long stretch of B12Mb
(windows 92–115) was almost devoid of any SNP within
Guadyerbas ĥ¼ 1.4� 10�4, the average number of differ-
ences was, nonetheless, close to the genome wide mean
(f̂¼ 1.7� 10�3). Certainly, a reason for long stretches
without polymorphisms is the high inbreeding of the
sequenced animal. To test that, we ran a forward
simulation algorithm using the true pedigree of the
animal since the founder herd. Assuming an equivalence
of 1 cM to 1Mb, the expected size of an identical by
descent fragment (IBD) is B2.6Mb (s.d., 3.2), the
probability of having an IBD fragment is the inbreeding
coefficient (0.39 for autosomes). The probability of a
fragment of 12Mb being IBD in the sequenced animal is
6� 10�3 or 0.02 if recombination rate is lower, 1 cM to
1.5Mb. Therefore, although the event is unlikely, it is not
impossible when the whole genome is considered. But,
given that this region is the lowest extreme in nucleotide
variability, we can speculate that a selective sweep, if
occurred, was previous to the herd founding. In a
previous intercross between Guadyerbas and Landrace,
we found that SSC6 harbors a large effect QTL for
intramuscular and fat deposition (Ovilo et al., 2000);
however, the most likely candidate gene, the leptin
receptor, is far away from windows 92–115: its predicted
position is window 206.

Two interesting remarks can be made about the
distribution of nucleotide variability: an increased
variability in telomeric regions and lower than expected
diversity on the X chromosome. Increased variability in
telomeric regions is likely explained by larger recombi-
nation rates as compared with centromeres, where
recombination is rare. A positive correlation between
variability and recombination is a well known observa-
tion in many species (Hedrick, 2010). Traditionally,
different hypotheses have been proposed to explain this
observation: increased mutation rate, hitchhiking and
background selection. The latter two seem to explain
better experimental results overall (Hudson, 1994;
Hedrick, 2010). Our data, in principle, would favor
background selection because generalized hitch hiking
events in all telomeric regions are unlikely, although
recent work (Hellmann et al., 2008) suggest that hitch
hiking fit the data better in humans than a simplistic
background selection model. These authors also report
that an elevated mutation rate also accounts for increased
variability in sub telomeric regions.

Figure 5 Expected and observed gene ontology counts among
genes located in high and low variability windows. Bars with
asterisk are significant (Po0.001) overrepresented gene ontologies.
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Reduced variability on SSCX merits some additional
discussion. Theory dictates that expected nucleotide
diversity of the X chromosome is 3

4 times that in
autosomes, but we find a much lower value pSSCX/
pSSCAB50% (Table 1). This observation is unlikely to be
an artifact because we found identical ratio both for ĥ
and f̂; further, an even lower ratio 36%, has been reported
in the literature (Amaral et al., 2009). The relative levels
of variability between autosomes and sex chromosomes
has been debated for quite some time, but the recent
availability of NGS has renewed the interest and
promised to deliver new insights. All demographic,
mutational and selective events can alter the theoretical 3

4
ratio. In the literature, both higher and lower ratios have
been observed, even within the same species (Ellegren,
2009). A decreased nucleotide diversity pSSCX/pSSCA can
be produced by a larger number of reproducing females
than males (Ellegren, 2009), but the opposite is rather the
norm in livestock; therefore female polygamy is not an
explanation. Alternative explanations are increased male
than female dispersal (this can happen in livestock if we
assume that males sire different herds than their
mother’s whereas females stay in the same herd), or
strong bottlenecks (Pool and Nielsen, 2007). Finally,
selection either background or directional, can also
reduce sex to autosomal variability. It should be noted
that the sow’s inbreeding coefficient, inferred from the
pedigree, is B0.46 in chromosome X and 0.39 for the
autosomes. Therefore, the expected ratio of diversity
pSSCX/pSSCA after the herd was found is approximately
(1�0.46)/(1�0.39)B0.88. This value is much higher than
what is expected under a random mating scheme. The
reason is that matings in this herd were carefully
designed to minimize increase in inbreeding (Toro
et al., 2000). But this figure also means that, if a bottleneck
is to be responsible of the low variability in SSCX, it must
have occurred before the herd foundation approximately
mid twentieth century.

Logically, a final aim of all this flood of sequencing
data in livestock species is to be able to uncover the
causal mutations that underlie complex traits in domestic
species. Here, genomewide, we found no strong depar-
tures of expectations under a neutral model neither with
the HKA test (Supplementary File S4) nor with the
demographic model described in Figure 1. This can be
because of the length of window chosen (500kb), which
may be too large to identify selective events, but also to
the fact that a single animal has been sequenced. Also, the
HKA test is primarily designed for species divergence,
whereas divergence between Duroc (the assembly)
against Iberian breeds is examined here. Nevertheless,
detection of more subtle signals may require complete
genome resequencing and a larger number of animals, as
illustrated recently by Andersson and coworkers (Rubin
et al., 2010). Also importantly, the complex interaction
between demographic events and moving selection
targets cannot be forgotten when looking for selection
footprints (Pool et al., 2010). Despite these drawbacks, we
have characterized outlier regions and looked for gene
ontology enrichment as a tool to gain biological insight.
We find high heterozygosity within Guadyerbas for
pigmentation and cell killing, particularly the cellular
response to antigens. These genes could be candidates for
balancing selection within the Iberian lineage, a topic that
should be further explored when more data is available.

Conclusions

Although we have sequenced a single individual, our
data yield some interesting conclusions regarding the
genetic architecture of the pig and of the Iberian pig in
particular. More specifically, we have observed that (i) the
estimated heterozygosity is 0.78� 10�3 per site, a non-
negligible variability considering the inbreeding coefficient
of the sow was B39%; (ii) variability tends to be higher in
telomeric than in centromeric regions, plausibly a symp-
tom of prevalent background selection due to increased
recombination in those regions; (iii) the X chromosome is
much less variable than expected relative to autosomal
variability; although more work is required, this fact could
be partly explained by a strong bottleneck; (iv) overall,
variability is in agreement with expectations from the
HKA test. Probably because of the sparse coverage and the
fact that a single individual was sequenced, we did not
observe clear signals of directional selection in QTL
regions like the leptin receptor in SSC6.
For the future, the next logical step will be to sequence

more animals, either in pools or individually. Fortu-
nately, recent works have shown that sequencing at very
high depth may not be necessary to infer genetic
parameters with confidence (Sackton et al., 2009; Durbin
et al., 2010). This will allow us to refine our model for the
demographic history of the Iberian pig and to extend and
confirm the catalog of genetic variants, including indels
and other structural variants, for example, copy number
variants. But, in addition to more experimental data, we
shall also pursue the development of new statistical
approaches that allows us to interpret the flood of data
produced by the new sequencing technologies (Pool
et al., 2010). The method proposed here (Figure 1) is, but
a first attempt in this direction.
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