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A brief note on the resemblance between relatives
in the presence of population stratification

R Sebro1,2 and NJ Risch1,3,4

Population stratification occurs when a study population is comprised of several sub-populations, and can result in increased
false positive findings in genomewide-association studies. Recently published work shows that sub-population-specific positive
assortative mating at the genotypic level results in population stratification. We show that if the allele frequency of a single
nucleotide polymorphism responsible for a trait varies between sub-populations and there is no dominance variance, then the
heritability of the trait increases, primarily due to an increase in the additive genetic variance of the trait.
Heredity (2012) 108, 563–568; doi:10.1038/hdy.2011.124; published online 11 January 2012

Keywords: population stratification; heritability; genomewide-association studies

INTRODUCTION

The phenotype of an individual is affected by both genetic and
environmental factors. One of the major challenges of the Human
Genome Project is identifying the genetic causes underlying pheno-
typic variation of quantitative traits (Hill et al., 2008). Fisher (1918)
unified biometrical and Mendelian genetics by demonstrating theore-
tically the observed resemblance between relatives due to genetic
factors. The heritability (‘narrow-sense heritability’) of a trait is the
ratio of the additive genetic variance (VA.Hardy–Weinberg equilibrium
(HWE)) to the total variance of the trait (VP), where the total variance
of the trait is the sum of the genetic variance and the environmental
variance of the trait. Therefore, the heritability of a trait lies between 0
and 1. The heritability of a trait is a population-specific parameter,
and can vary over time from generation to generation based on the
change in the frequency of an allele that changes the value of the trait
due to drift, selection, mutation and migration or due to changes in
environment or other non-genetic effects. Because heritability is
population specific, there is variability in the estimates of heritability
obtained from different studies for the same trait. For example,
estimates of heritability for the psychiatric disorders schizophrenia
and bipolar disorder range from 80 to 90% (Crow, 2011).
The heritability of a trait increases with phenotypic assortative

mating (Falconer and Mackay, 1996, pp 175–176). Sebro et al. (2010)
showed that a predictable phenomenon is seen in the presence of
population stratification—an increase in the number of unions
between spouse pairs with the same genotypes compared with that
expected assuming random mating. Sebro et al. (2010) also showed
that this increase is directly proportional to the variance of the
genotype frequency between sub-populations when the same geno-
types comprise the mating types. Sub-population or ancestry-related
positive assortative mating (Risch et al., 2009; Sebro et al., 2010)
results in population stratification, and is seen at all loci where the
allele frequency differs between sub-populations.

Positive assortative mating increases the heritability of a trait.
However, assortative mating occurs at the phenotypic level, where
mates select each other based on a physical or observable trait. The
positive assortative mating noted within a stratified population is at
the genetic level (genetic homogamy). No calculations exist in the
literature that show how positive assortative mating at the genetic level
affects the heritability of a trait. We use two methods for calculating
the mating type frequencies in the presence of population stratifica-
tion (Sebro and Rogus, 2010; Sebro et al., 2010), and show theoreti-
cally how the heritability of a trait changes with population
stratification using single-locus and two-locus models.

MATERIALS AND METHODS
Single-locus model
Consider the case where the population is comprised of G sub-populations,

where G, as well as the members of each sub-population is unknown. We

assume that there is random mating within each sub-population, but no

mating between sub-populations, and no selection from generation to genera-

tion. We further assume that generations are distinct and do not overlap, and

that there is no change in the number of individuals in each sub-population

across generations. Consider a single biallelic marker or single nucleotide

polymorphism (SNP) with alleles A and B. Let the frequency of the A allele

in the total population be p, and the frequency of the B allele be 1�p¼q. Let a

represent the average phenotypic value of individuals with the AA genotype, d

represent the average phenotypic value of individuals with the AB genotype and

�a represent the average phenotypic value of individuals with the BB genotype.

We use the method described by Sebro et al. (2010) (Method 1) and the

method described by Sebro and Rogus (2010) (Method 2) for calculating the

frequencies of the mating types in the presence of population stratification.

If we assume symmetry between the genotypes of spouse pairs

(AA�AB�AB�AA), then there are only 6 unique mating types. The frequency

of each of the 6 mating types can be calculated using Method 1 which is based

on the variance of the allele A frequency between sub-populations, Var(pi), and

the variance of the AA genotype frequency between sub-populations, Var(p2i)

and the variance of the BB genotype frequency between sub-populations,
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Var(q2i). Alternatively, the frequency of each of the six mating types can be

calculated using Method 2, which is based on the average allele A frequency in

the population, p; the variance (second central moment) of the frequency of the

A allele between sub-populations, Var(pi); the third and fourth central

moments of the frequency of the A allele between sub-populations.

We then use these mating type frequencies to calculate the covariance between

the following relatives: monozygous (MZ) twins, siblings and dizygotic twins,

parent-offspring, half-siblings, grandparent-offspring, avuncular pairs, first-cousin

pairs, and unrelated individuals. These results are shown in Table 1. Recent data

show that most of the genetic variance of complex traits are due to the additive

genetic variance and not the dominance genetic variance, which is negligible

(dB0) (Hill et al., 2008). We recalculate the covariances between the relative pairs

assuming no dominance variance (d¼0) in Table 2. Our calculations assume that

the genetic variability in a quantitative trait is caused by a single SNP in a single

gene, and that the SNP allele frequency varies between sub-populations.

Theoretical plots of the correlation between different relative pairs in the

presence of population stratification are generated, and the values obtained are

compared with those calculated assuming HWE. The mean trait value in a

population in HWE, mHWE, is equal to a(p�q)�2dpq, and the variance

of the trait in a population in HWE, VP.HWE is 2pq[a+d(p�q)]2+4d2p2q2.

Population stratification leads to excess homozygotes and a deficiency of

heterozygotes, a phenomenon known as the Wahlund Effect. The change in

expected genotype frequencies in a stratified population compared with that

expected in a population in HWE affects the mean and variance of the trait.

The mean trait value in a stratified population, mSTRAT, is equal to

a(p�q)�2d(1�F)pq, where F is Wright’s coefficient of inbreeding, and the

variance of the trait in the stratified population, VP.STRAT is

2pq[a+d(p�q)]2+4d2p2q2+2Fpq{[a+d(p�q)]2+2Fpq[�2d2(p�q)2�4ad(p�q)�
2d2Fpq]}.

To assess the impact of a, d and F on the correlation between relative pairs,

seven models are considered: a¼10, d¼0, F¼0 (HWE model with no

dominance variance); and six models, each with varying levels of population

stratification and dominance variance: a¼10, d¼0, F¼0.01; a¼10, d¼1,

F¼0.01; a¼10, d¼0, F¼0.05; a¼10, d¼1, F¼0.05; a¼10, d¼0, F¼0.1 and

a¼10, d¼1, F¼0.1. These results are shown in Figure 1.

Two-locus model
Complex disease traits are polygenic and the genetic variants discovered so far

have small effect sizes. To evaluate the impact of population stratification on

heritability in a polygenic model, we consider a two-locus model, where the

variance of the trait is affected by two loci.

There are 9 possible genotypes and 81 possible mating types in a two-locus

model with biallelic SNPs at each locus. If we assume symmetry of the mating

types, then there are 45 possible mating types.

Wright’s coefficient of inbreeding, F is used as a measure of the correlation

between uniting gametes at a single locus; however, two other parameters are

needed to adequately describe the mating frequencies in a stratified population

at a single locus (Sebro et al., 2010). When two loci are considered, an

additional measure of correlation must be accounted for—the correlation

between genes at different loci in the same gamete because of population

stratification. This correlation between genes at different loci in the same

gamete can be measured using ñ(correlation), which is equal to D/

O[p(1�p)r(1�r)], where D is the linkage disequilibrium induced between

the loci due to population stratification.

Consider a two-locus model with alleles A and a at the first locus and alleles

B and b at the second locus. The frequency of the A allele is p and the frequency

of the B allele is r. We assume that both loci are in complete linkage equilibrium

within sub-population (D¼0). The degree of population stratification at the

first locus is F1 and the linkage disequilibrium induced by population

stratification is D. If we restrict the model to the situation where the stratified

population comprising two equally sized sub-populations, then only p, r, F1

Table 1 Comparison of the covariance between relatives assuming HWE compared with that calculated in the presence of population

stratification

HWE Population stratification Model 1 Population stratification Model 2

Monozygotic

twins

VA.HWE+VD.HWE VA.HWE+VD.HWE+2Var(pi)a
2+ad�(4�Var(pi)

�8�p�Var(pi))+d
2(�2Var(pi)+8pVar(pi)

�8p2Var(pi)�4Var(p2i))

VA.HWE+VD.HWE+2Fpq((a+d(p�q))2+2Fpq(�2d2(p�q)2

�4ad(p�q)�2d2Fpq))

Sib-pairs/dizygotic twins ½ VA.

HWE+1
4�VD.HWE

½ VA.HWE+1
4�VD.HWE+3a2Var(pi)+ad(�4pVar(pi)

+2Var(pi)+Var(p
2
i)�Var(q2i))+d

2(2Var(pi)(�1+3p�3p2

+1/2Var(pi)�4Var(pi)
2)

½ VA.HWE+1
4�VD.HWE+3a2Fpq+ad(Fpq(4p�2)+4j3)+

d2(2Fp2q2(1�2F)+j3(�2+4p)+j4)

Parent-offspring ½� VA.HWE ½ VA.HWE+3a2Var(pi)+ad(�4p Var(pi)+2Var(pi)+

Var(p2i)�Var(q2i))+d
2(1+8pq+4Var(pi))

½ VA.HWE+3a2Fpq+ad(Fpq(4p�2)+4j3)+d
2(Fpq(�1+8pq�4Fpq))

Grandparent-offspring 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)+ad(Var(pi)�2pVar(pi)

+3/2Var(p2i)�3/2Var(q2i))+d
2(Var(pi)�(�5/2�12p

+12p2+2Var(pi)+Var(p
2
i)+Var(q

2
i))

1
4�VA.HWE+a2(7/2Fpq)+ad(�9Fpq+14Fp2q+4Fpq2+6j3)

+d2(3/2Fpq�12Fp2q+12Fp3q�8Fp2q2�4j3+8pj3+2j4)

Avuncular pairs 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)+ad(Var(pi)�2pVar(pi)+

3/2Var(p2i)�3/2Var(q2i))+d
2(Var(pi)�(�5/2�12p

+12p2+2Var(pi)+Var(p
2
i)+Var(q

2
i))

1
4�VA.HWE+a2(7/2Fpq)+ad(�9Fpq+14Fp2q+4Fpq2+6j3)

+d2(3/2Fpq�12Fp2q+12Fp3q-8Fp2q2�4j3+8pj3+2j4)

Half-siblings 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)+ad(Var(pi)�2pVar(pi)

+3/2Var(p2i)�3/2Var(q2i))+d
2(Var(pi)�

(�5/2�12p+12p2+2Var(pi)+Var(p
2
i)+Var(q

2
i))

1
4�VA.HWE+a2(7/2Fpq)+ad(�9Fpq+14Fp2q+4Fpq2+6j3)

+d2(3/2Fpq�12Fp2q+12Fp3q�8Fp2q2�4j3+8pj3+2j4)

First-cousins 1/8�VA.HWE 1/8�VA.HWE+15/4a2Var(pi)+ad(�13/2Var(pi)

+13pVar(pi))+d
2(Var(pi)�(�13/4+2p�2p2+3Var(pi))

+3/2Var(p2i)+3/2Var(q
2
i))

1/8�VA.HWE+a2(15/4Fpq)+ad(�13/2Fpq+13Fp2q)+d2

(11/4Fpq�10Fp2q+10Fp3q+6(p�q)j3+3j4)

Unrelated individuals 0 4a2Var(pi)+ad(2Var(p
2
i)�2Var(q2i))+d

2(�4Var(pi)

+2Var(p2i)+2Var(q
2
i))

4a2Fpq+ad(Fpq(16p�8)+8j3)+d
2(Fpq(4�16pq�4Fpq)+

(16p�8)j3+4j4)

Abbreviation: HWE, Hardy–Weinberg equilibrium.
VA.HWE¼2pq(a+d(p�q))2.
VD.HWE¼4d2p2q2.
f3¼third central moment of the frequency of the A allele between subpopulations.
f4¼fourth central moment of the frequency of the A allele between subpopulations.
Var(p2i)¼variance of the frequency of the AA genotype between subpopulations.
Var(q2i)¼variance of the frequency of the BB genotype between subpopulations.
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and D are required for calculation of the 81 mating types. This simplification

allows us to assess the impact of F1 and D on heritability. We allow for

stratification at both loci, and consider only the case where the degree of

stratification at the first locus, F1 is greater than that calculated at the second

locus.

Let the phenotypic value of the AABB, AABb, AAbb, AaBB, AaBb, Aabb,

aaBB, aaBb and aabb genotypes be a1, a2, a3, a4, a5, a6, a7, a8, and a9
respectively. The mean and variance of the trait value differ from that calculated

when assuming HWE because of the change in the genotype frequency

distribution. The joint genotype probability distribution for MZ twins,

parent-offspring, sib-pairs/dizygotic twins and unrelated individuals are

used together with the phenotypic value for each genotype to calculate

the covariance between these relative pairs. The correlation for each relative

pair was calculated for a simple additive model with no interaction,

where a1¼a1+a2, a2¼a1+d2, a3¼a1�a2, a4¼d1+a2, a5¼d1+d2, a6¼d1�a2,

a7¼�a1+a2, a8¼�a1+d2 and a9¼�a1�a2 respectively.

Eight models are considered: a1¼5, a2¼5, d1¼0, d2¼0, F1¼0.001,

D¼0.00001 (small F1, small D, with no dominance variance); a1¼5, a2¼5,

d1¼0, d2¼0, F1¼0.001, D¼0.00005 (small F1, larger D, with no dominance

variance); a1¼5, a2¼5, d1 ¼0.5, d2¼0.5, F1¼0.001, D¼0.00001 (small F1, small

D, with dominance variance); a1¼5, a2¼5, d1¼0.5, d2¼0.5, F1¼0.001,

D¼0.00005 (small F1, larger D, with dominance variance); a1¼5, a2¼5,

d1¼0, d2¼0, F1¼0.01, D¼0.0001 (large F1, small D, with no dominance

variance); a1¼5, a2¼5, d1¼0, d2¼0, F1¼0.01, D¼0.0005 (large F1, larger D,

with no dominance variance); a1¼5, a2¼5, d1¼0.5, d2¼0.5, F1¼0.01,

D¼0.0001 (large F1, small D, with dominance variance); a1¼5, a2¼5,

d1¼0.5, d2¼0.5, F1¼0.01, D¼0.0005 (large F1, larger D, with dominance

variance). Values of F1 and D were arbitrarily chosen to reflect a mild degree

of population stratification, mild linkage disequilibrium between loci, and are

values that could be seen in practice.

If there is gene–gene interaction (epistasis), then four additional variances

are required for parameterization of the two-locus model—the additive-

additive variance Iaa, the additive-dominance variance Iad, the dominance-

additive variance Ida and the dominance-dominance variance Idd. However, in

our model, we assume no epistasis, so that Iaa¼Iad¼Ida¼Idd¼0.

The theoretical correlation between first-degree relatives (parent-offspring

pairs), sib-pairs and unrelated individuals are shown in Figures 2–4,

respectively.

RESULTS

Although there is no genetic correlation between spouses (random
mating) within sub-populations, when the entire stratified population
is considered, there is a significant positive genetic correlation between
spouses, denoted by Wright’s coefficient of inbreeding F. Similarly, if
there is random mating with respect to the gene responsible for a trait,
then the genetic covariance between spouse trait values is zero;
however, if there is population stratification, then the genetic covar-

Table 2 Comparison of the covariance between relatives assuming HWE compared with that calculated in the presence of population

stratification, when there is no dominance variance (d¼0)

HWE Population stratification Model 1 Population stratification Model 2

Monozygotic twins VA.HWE VA.HWE+2a2Var(pi) VA.HWE+2Fpqa2

Sib-pairs/dizygotic twins ½ VA.HWE ½ VA.HWE+3a2Var(pi) ½ VA.HWE+3a2Fpq

Parent-offspring ½� VA.HWE ½ VA.HWE+3a2Var(pi) ½ VA.HWE+3a2Fpq

Grandparent-offspring 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)
1
4�VA.HWE+a2(7/2Fpq)

Avuncular pairs 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)
1
4�VA.HWE+a2(7/2Fpq)

Half-siblings 1
4�VA.HWE 1

4�VA.HWE+7/2a2Var(pi)
1
4�VA.HWE+a2(7/2Fpq)

First-cousins 1/8�VA.HWE 1/8�VA.HWE+15/4a2Var(pi) 1/8�VA.HWE+a2(15/4Fpq)

Unrelated individuals 0 4a2Var(pi) 4a2Fpq

Abbreviation: HWE, Hardy–Weinberg equilibrium.
VA.HWE¼2pqa2.
VD.HWE¼4d2p2q2.
Var(pi)¼variance of the frequency of the A allele between subpopulations.
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Figure 1 Correlation between relative pairs assuming HWE compared to that calculated assuming population stratification using a single-locus model.
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iance between spouses for the same trait is 4a2Var(pi)+ad(2Var(p
2
i)�

2Var(q2i))+d
2(�4Var(pi)+2Var(p

2
i)+2Var(q

2
i)) using the parameteri-

zation in Model 1, or 4a2Fpq+ad(Fpq(16p�8)+8j3)+d
2(Fpq

(4�16pq�4Fpq)+(16p�8)j3+4j4) using the parameterization in

Model 2. If we assume there is no dominance variance (d¼0), then
the genetic covariance between spouses for the same trait is 4a2Var(pi)
using the parameterization in Model 1 and 4a2Fpq using the para-
meterization in Model 2. It is well appreciated that there is apparent
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Figure 3 Genetic correlation (z-axis) between sib-pairs in the presence of population stratification using a two-locus model.
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homogamy for several physical characteristics including weight and
height; however, the magnitude of the positive correlation seen
between spouses could be partially due to population stratification.
There is increased genetic covariance between relatives in the

presence of population stratification. If we assume no dominance
variance, then the genetic covariance between MZ twins is 2pqa2(1+F)
and is increased by a factor of F relative to that calculated assuming
HWE. The genetic covariance between sib-pairs is pqa2(1+3F) and is
increased by a factor of 3F compared with HWE. The genetic
covariance between second-degree relatives is 1/2pqa2(1+7F), increased
by a factor of 7F relative to that calculated assuming HWE. Finally, the
genetic covariance between third-degree relatives 1/4pqa2(1+15F) is
increased by a factor of 15F relative to that calculated assuming HWE.
Because F is generally much smaller than 1 and on the order of 0.001 to
0.01 for most stratified populations, the ratio of the genetic covariance
between MZ twins to the genetic covariance between first-degree
relatives to that between second-degree relatives to that between
third-degree relatives remains almost 1:1/2:1/4:1/8, which is exactly
that predicted assuming a population in HWE.
Our results show that the heritability of a trait in a stratified

population is higher than the heritability of the trait in a population
in HWE if there is no dominance variance. This finding could explain
some of the variation in heritability estimates from different studies.
The results are similar when extended to the two-locus model.

If two genes contribute to the phenotypic value of a trait and the
population is in HWE (random mating), then contributions to the
variance of the trait from each locus can be summed. If we assume no
dominance variance and HWE, then the genetic correlation between
MZ twins is 1, the genetic correlation between sib-pairs as well as
parent-offspring pairs is ½, and the correlation between unrelated
individuals is 0.
The genetic correlation between MZ twins is always 1, and is not

affected by population stratification, or dominance variance. When

there is population stratification and no dominance variance, then the
genetic correlation between first-degree relative pairs is greater than ½.
The magnitude of the increase in genetic correlation over ½ is on the
order of F1, and increases slightly with an increase in linkage
disequilibrium between loci. The genetic correlation between sib-
pairs is also greater than ½, and the magnitude of the increase in
genetic correlation over ½ is on the order of F1, and increases slightly
with an increase in linkage disequilibrium between loci. An increase in
either F1 or D increases the genetic correlation between unrelated
individuals.
If there is dominance variance at either or both loci, then the

genetic correlation between sib-pairs and parent-offspring varies
significantly, and can be less than ½ or less than ½ depending on
the ratio of the dominance variance to the additive variance. Although
it is currently thought that the dominance variance is generally
minimal or almost 0, this finding may prove to be more significant
as we learn more about the Human Genome.

DISCUSSION

We show theoretically that if there is no dominance variance,
then the heritability of a trait in the presence of population stratifica-
tion is greater than that in a population in HWE. Although popula-
tion stratification does not affect the genetic correlation between MZ
twins, small amounts of population stratification can significantly
affect the genetic correlation noted between sib-pairs and parent-
offspring pairs. When a two-locus model with no dominance variance
is considered, the findings are similar—a higher degree of population
stratification measured by F1 is associated with a higher genetic
correlation between parent-offspring and sib-pairs. Similarly, in the
absence of dominance variance, an increase in the linkage disequili-
brium induced by population stratification measured by D results in
an increase in the genetic correlation between parent-offspring and
sib-pairs.
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Figure 4 Genetic correlation (z-axis) between unrelated individuals in the presence of population stratification using a two-locus model.
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Our findings are in concert with that expected based on the
literature, as it is well known that positive assortative mating increases
the heritability of a trait. Our work is novel, because we build on the
recently discovered fact that there is genetic positive assortative mating
at all loci that differ in allele frequency between sub-populations,
whereas prior works consider phenotypic positive assortative mating.
We do not assume the assortative mating is based on the phenotypic
resemblance between spouse pairs. In true assortative mating, spouse
selection is done at the phenotypic level. We assume there are intrinsic
differences in allele frequencies across sub-populations due to religion,
socioeconomic status, geographical restrictions or linguistic barriers,
probably due to genetic drift. For example, in a European-derived
sample from the Framingham Heart Study, there is a strong positive
genetic correlation between spouse pairs around the lactase gene
(LCT) (Sebro et al., 2010). Although possible, it is unlikely that
spouse selection is based on adult lactase-persistence, which is what
would be expected with phenotypic assortative mating.
The major clinical implication of our finding is that small amounts

of population stratification can have significant impact on the
correlation between different relative pairs. This finding is important
because the correlation of a trait between relative pairs is often used to
estimate heritability and twin data are often used in the study of the
genetic determination of traits. If researchers are interested in the ratio
of (VA.HWE) to the total variance of the trait (VP) when a population
is in HWE, then principal components (Price et al., 2006) or
STRUCTURE analysis (Pritchard et al., 2000) could be performed
to cluster individuals into sub-populations, and the narrow-sense
heritability could be estimated in each sub-population. One limitation
of this principal component/STRUCTURE analysis is that spouses
may belong to different sub-populations and these discordant pairs
should then be excluded from the analysis.
Our study has a few limitations. The model used for population

stratification does not allow for admixture or for spouses to belong to
different sub-populations. This assumption is likely violated in prac-
tice. Immediate admixture (where the spouses belong to different sub-
populations) attenuates ancestrally related positive assortative mating,
and therefore should slightly decrease the effect of population strati-
fication. Another limitation is that the two-locus model did not allow
for epistasis. There are several dozen different models of epistasis for
the two-locus case and further work needs to be done to understand
the impact of population stratification and the genetic correlation
between relatives when there is underlying epistasis. Finally, we assume
that there is no genetic heterogeneity and the effect of the gene on the
phenotype is the same for all sub-populations. This final assumption
is not always correct in practice. Risk heterogeneity exists between
ApoE and Alzheimer’s disease, where the association exists pan-
ethnically but is strongest in Caucasians and Asians, and weaker in
Hispanics and African-Americans (Risch, 2000).

Identifying the genes involved in complex quantitative traits
remains a challenge. Genomewide-association studies have yielded
some success in identifying genes associated with complex traits.
However, in some cases the identified variants only explain a small
proportion of the variation of the trait. For example, the GIANT
consortium have pooled genomewide-association studies involving
over 180 000 research participants, and have identified B200 variants
associated with stature/height; however, these 200 variants only
explain B10% of the variance of height and most of these variants
have very small effect sizes (Perola, 2011). The majority of the genetic
variance of several traits remains unexplained despite using these large
genomewide-association studies. This phenomenon has been termed
‘missing heritability’ (Perola, 2011).
Population stratification may be in part responsible for some of the

‘missing heritability’; however, other factors such as gene–gene inter-
actions and gene–environment interactions may also be involved. In
summary, further research needs to be done to better understand the
effect of population structure on quantitative trait analysis.
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