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Mapping quantitative trait loci using the MCMC
procedure in SAS

S Xu and Z Hu
Department of Botany and Plant Sciences, University of California, Riverside, CA, USA

The MCMC procedure in SAS (called PROC MCMC) is
particularly designed for Bayesian analysis using the Markov
chain Monte Carlo (MCMC) algorithm. The program is
sufficiently general to handle very complicated statistical
models and arbitrary prior distributions. This study introduces
the SAS/MCMC procedure and demonstrates the application
of the program to quantitative trait locus (QTL) mapping.
A real life QTL mapping experiment in wheat female
fertility trait was used as an example for the demonstration.

The fertility trait phenotypes were described under three
different models: (1) the Poisson model, (2) the Bernoulli
model and (3) the zero-truncated Poisson model. One
QTL was identified on the second chromosome. This QTL
appears to control the switch of seed-producing ability of
female plants but does not affect the number of seeds
produced once the switch is turned on.
Heredity (2011) 106, 357–369; doi:10.1038/hdy.2010.77;
published online 16 June 2010
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Introduction

Most traits of agricultural importance are quantitative in
nature (Falconer and Mackay, 1996), for example, grain
yield and protein content in corn (Dudley and Johnson,
2009). Many clinical traits in human are also quantitative,
for example, obesity and hypertension (Baima et al., 1999;
Rankinen et al., 2006). The current molecular technology
allows quick development of linkage map for a species
with saturated molecular markers, especially the single-
nucleotide polymorphism markers. These markers
provide anchors to locate quantitative trait loci (QTL),
called QTL mapping. Statistical methods have been well
developed for QTL mapping (Lander and Botstein, 1989).
However, these methods were mainly for traits with
a continuous distribution. When a trait has a discrete
distribution, for example, binary disease trait, new
methods are required (Xu and Atchley, 1996). Many
agriculturally important traits do have discrete distribu-
tions. Discrete distribution is also common in human
clinical traits, for example, cancer susceptibility
(Balmain, 2002). These traits, although simple pheno-
typically, often have a polygenic background. QTL
mapping is important in understanding the genetic
architecture for these traits.

Bayesian methods of QTL mapping (Yi and Xu, 2000;
Xu et al., 2008) are preferable for traits with non-normal
distribution, especially when multiple QTL are consid-
ered. There are many statistical software packages that
can perform Bayesian analysis using the Markov chain

Monte Carlo (MCMC) algorithm. Most of the software
packages are specialized for particular problems in some
special areas. The WinBUGS program, developed by the
software development staff of MRC Biostatistics Unit,
Cambridge, UK, is perhaps the most popular Bayesian
analysis program. The program can be downloaded from
the following website, http://www.mrc-bsu.cam.ac.uk/
bugs/winbugs/contents.shtml. This program is not
problem specific and can handle models with high level
of complexity. WinBUGS has been applied to QTL
mapping in many studies (Sillanpää and Bhattacharjee,
2005; Yi and Xu, 2008). Another general purpose of
Bayesian analysis program is the MCMC procedure in
SAS (Chen, 2009; SAS Institute Inc, 2009). The MCMC
program is a new procedure in the SAS v9.2 release and
is still an experimental version. The procedure has not
been as popular as the WinBUGS program because of
the short time after the first release of the trial edition.
However, because of the wide application of the
Bayesian analysis in modern statistics, the MCMC
procedure will soon become the most popular Bayesian
analysis tool, especially in areas such as statistical
genomics and bioinformatics. The MCMC procedure is
extremely flexible and general because it can deal with
arbitrary prior distributions for the parameters and
arbitrary probability density for the data. The only
restriction is that the density and the priors must be
programmable using the SAS data step functions. This
implies that PROC MCMC can handle improper priors.
Unlike the WinBUGS program that uses the Gibbs
sampler (Geman and Geman, 1984) as default to draw
variables, the MCMC procedure in SAS, by default,
draws variables using the adaptive block random walk
Metropolis algorithm with a normal proposal distribu-
tion (Gilks, 2003). The block random walk Metropolis
algorithm is an improved version of the general
Metropolis-Hastings algorithm (Metropolis et al., 1953;
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Hastings, 1970) so that it does not require analytic
form of the conditional posterior distribution. As a
consequence, the MCMC procedure is the most flexible
Bayesian analysis software available so far in the world.

Reports of PROC MCMC application to general data
analysis are rare. Our literature search failed to show
any publication on the application of this procedure to
any fields, although our search may not be sufficiently
thorough. We are sure that the MCMC procedure in SAS
has never been applied to QTL mapping. As Bayesian
QTL mapping has been widely accepted by researchers
and will become the main stream method of QTL
mapping in the foreseeable future (Satagopan et al.,
1996; Sillanpää and Arjas, 1998; Wang et al., 2005; Yi and
Xu, 2008), PROC MCMC will become one of the most
popular QTL mapping programs. This is particularly
evident because many clinic traits have complicated
densities beyond the normal distribution (Baima et al.,
1999; Balmain, 2002; Rankinen et al., 2006) and Bayesian
QTL mapping for these traits is difficult to conduct using
other programs.

Four other SAS procedures have the ability to perform
Gibbs sampler-implemented Bayesian analysis as an
option (SAS Institute Inc, 2009). They are the GENMOD
procedure, the PHREG procedure, the LIFEREG proce-
dure and the MIXED procedure. These procedures may
be used for Bayesian QTL mapping. The models and
priors used in the Bayesian analyses, however, must be
found in the list of intrinsic models and priors provided
by the SAS procedures. Users do not have the freedom to
define their own models and priors. More recently, we
published a user defined SAS procedure called the QTL
procedure (Hu and Xu, 2009). An option in the PROC QTL
statement allows users to choose the Bayesian method for
QTL mapping. Again, users do not have the option to
choose complicated models and arbitrary priors.

We recently carried out a QTL mapping project for
binary traits of line crosses using the MCMC procedure
and were very excited about the performance of the
procedure. We would like to share our experience with
all SAS users who intend to conduct QTL mapping
studies in the near future. This report provides an
example of QTL mapping using the MCMC procedure.
Starting from this example, users can modify and
customize the code to analyze their own data using the
models and priors of their own choice. Interested users
should read the PROC MCMC help document for the
syntax and details of the MCMC procedure. Readers of
this paper should be regular SAS users and are supposed
to be knowledgeable in the MCMC implemented
Bayesian method.

Experiment

The experiment was conducted by Dou et al. (2009).
A female sterile line of wheat XND126 and an elite wheat
cultivar Gaocheng8901 with normal fertility were crossed
for genetic analysis of female sterility measured as the
number of seeded spikelets per plant. The parents, their
F1 and F2 progeny were planted at the Huaian experi-
mental station in China for the 2006–2007 growing
season under the normal autumn sowing condition.
The mapping population was an F2 family consisting of
243 individual plants. About 84% of the F2 progeny had
seeded splikelets and the remaining 16% plants did not

have any seeds at all. Among the plants with seeded
spikelets, the number of seeded spikelets varied from
one to as many as 31. The phenotype is the count data
point and can be modeled using the Poisson distribution.
A total of 28 SSR markers were used in this experiment.
These markers covered five chromosomes of the wheat
genome with an average genome marker density of
15.5 cM per marker interval. The five chromosomes are
only part of the wheat genome. These chromosomes
were scanned for QTL of the Poisson trait using the
MCMC implemented Bayesian method. The purpose of
the QTL mapping was to identify chromosome regions
that are associated with the fertility trait. The dependent
variable was the Poisson phenotype, whereas the
independent variables were numerically coded genotype
indicator variables for the part of genome under
investigation. We emphasize the advantage of the
Bayesian analysis over the classical maximum likelihood
method for detecting multiple QTL simultaneously
within a single model. To conduct the multiple locus
analysis, we placed one pseudo marker in every 5 cM of
the genome. This generated 75 pseudo markers for the
five chromosomes (see Supplementary Material for the
map of the 75 pseudo markers). Therefore, we had a total
of 75 model effects, one for each pseudo marker. For each
model effect, the numerically coded coefficient was the
difference between the conditional probabilities of the
two homozygote genotypes. Let A1 and A2 be the alleles
carried by Gaocheng8901 and XDN128, respectively. Let
A1A1, A1A2 and A2A2 be the three genotypes for the kth
pseudo marker of the genome in the F2 family. The
numerically coded value for each locus is

Zjk ¼pðGjk ¼ A1A1jmarkerÞ
� pðGjk ¼ A2A2jmarkerÞ

ð1Þ

for k¼ 1,y, 75, where the conditional probability of QTL
genotype given marker information was calculated using
the multipoint method of Jiang and Zeng (1997). If a
pseudo marker happens to overlap with a fully informa-
tive marker, the independent variable Zjk would take one
of the three values, 1, 0 and �1, respectively, for the three
genotypes, A1A1, A1A2 and A2A2. For the purpose of
demonstration, we assumed that there is no dominance
effect and thus there is only one Z variable for a locus.
The map of the 75 pseudo markers, the phenotypic
values (Poisson phenotypes) of the 243 plants and the
75 numerically coded independent variables are also
provided in the Supplementary Material of this study.

Model

Poisson data
Let yj¼ {0, 1, 2,y, N} be the observed number of seeded
spikelets for the jth plant for j¼ 1,y, n and n¼ 243. Let
mj be the expected number of seeded spikelets for the jth
plant. The Poisson density for the data point is

fðyjjmjÞ ¼
m
yj
j

ðyjÞ!
expð�mjÞ ð2Þ

The expectation is connected to the QTL effects through
a log-link function (to be described later).
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Binary data
In the F2 family of 243 plants, 39 of them (16% of 243) had
no seeds. It is natural to think that there might be a set of
QTL controlling the ability of plant to produce seeds (the
seed presence trait) and a set of QTL controlling the
number of seeded spikelets once the seeds are produced.
The seed presence trait is a binary trait, whereas the
number of seeds is a Poisson trait. These two traits may
be controlled by different sets of QTL. The binary
phenotype is denoted by yj¼ 0 for no seed and yj¼ 1
for the presence of seed (regardless of how many seeds).
Let mj be the expectation of the seed presence for the jth
plant for j¼ 1,y, n and n¼ 243. The binary (also called
Bernoulli) density for the data point is

fðyjjmjÞ ¼ m
yj
j ð1� mjÞ1�yj ð3Þ

The expectation is connected to the QTL effects through a
probit link function (to be described later).

Truncated Poisson data
For the 204 seeded plants (84% of the 243 plants), the
number of seeded spikelets varied. We now examine the
genetic basis of the seeded spikelets variation using only
the 204 plants. The sample size of this sub-population
was n¼ 204 now. Let yj¼ {1, 2,y, N} be the observed
number of seeded spikelets for the jth plant for j¼ 1,y, n
and n¼ 204. It is a zero-truncated Poisson distribution.
Let mj be the expected number of seeded spikelets for the
jth plant. The zero-truncated Poisson density for the data
point is

f0ðyjjmjÞ ¼
fðyjjmjÞ

1� expð�mjÞ
¼

m
yj
j expð�mjÞ

ðyjÞ! 1� expð�mjÞ
h i ð4Þ

The expectation is connected to the QTL effects through a
log-link function to be described in the following section.

Link function
The log link: For the Poisson and truncated Poisson
densities, the log-link function was chosen. Let

Zj ¼ bþ
Xm
k¼1

Zjkgk ð5Þ

be the linear model for the QTL effects, where m¼ 75 is
the number of pseudo markers, b is the intercept, gk
is the QTL effect of the kth pseudo marker and Zjk is
the conditional expectation of the genotype indicator
variable defined earlier. The Z variable defined in such
a way so that gk is equivalent to the additive effect
a defined by Falconer and Mackay (1996). This is the
additive model because the dominance effects have been
ignored in the model. We are interested in estimating
the parameter vector y¼ {b, g1, y, g75}. The relationship
between mj and Zj is through the log link,

Zj ¼ logðmjÞ ð6Þ

More intuitively, the inverse of the log link is

mj ¼ expðZjÞ ¼ exp bþ
Xm
k¼1

Zjkgk

 !
ð7Þ

The probit link: For the binary density, the probit link
function was chosen, although the logit-link function is
another option. The probit link is described as

Zj ¼ probitðmjÞ ¼ F�1ðmjÞ ð8Þ

More intuitively, the inverse of the probit link is the
standardized normal cumulative function,

mj ¼ FðZjÞ ¼ F bþ
Xm
k¼1

Zjkgk

 !
ð9Þ

where F( ) is the standardized cumulative normal
distribution.

Prior distribution
There are many prior distributions from which we can
choose. We only chose one type of prior for each para-
meter as an example. The intercept was assigned a flat
normal prior, that is,

pðbÞ ¼ Normalðbj0; 1015Þ ð10Þ

This prior is almost identical to p(b)¼Normal (b|0,
N)p1. Each of the QTL (pseudo marker) effect was
assigned
a normal prior,

pðgkÞ ¼ Normalðgkj0; s2kÞ ð11Þ

This prior is QTL specific, that is, each QTL has its own
prior variance. The variance in the prior was assigned
a higher level prior (hierarchical prior),

pðs2kÞ ¼ Inv-w2ðgkjt; oÞ ¼ Inv-w2ðgkj10�10; 10�10Þ ð12Þ

This prior is not much different from the Jeffreys’ prior
(Berger, 1985),

pðs2kÞ ¼ Inv-w2ðgkj0; 0Þ ¼ 1=s2k ð13Þ

This hierarchical model is also called the Bayesian
shrinkage analysis (Wang et al., 2005).

SAS code

The SAS codes to read the data, to analyze the data and
to report the result are provided in this section. We
assumed that the original data are stored in a folder
named ‘c:\mcmc\fertility’ with a file name ‘fertility.csv’.
The posterior sample is written to the same folder with
a file name ‘post-sample.csv’. The file locations and
the names of the input and output files should be
customized by the users.

Poisson data analysis
The SAS code for the Poisson data analysis is given in
Table 1. Here are explanations of the SAS code. The
statements before ‘proc mcmc’ are typical SAS state-
ments for data input (creating a SAS data set). Readers
are supposed to be familiar with the SAS language, and
thus no explanation was given. The MCMC procedure
starts with the statement ‘proc mcmc’. The SAS code
in this example is defined in a macro named ‘fertility’.

Mapping QTL using PROC MCMC
S Xu and Z Hu

359

Heredity



The reason for using the SAS macro will be given in
Appendix A after all the statements of the MCMC
procedure are explained. More explanations are also
given in Appendix A.

Binary data analysis
The SAS code for the binary data analysis is given in
Table 2. The code differs from that of the Poisson data
analysis only by a few lines. Explanations for the few
extra lines are given in Appendix B.

Truncated Poisson data analysis
The SAS code of the truncated Poisson data analysis is
given in Table 3. The explanations for the few statements

that differ from the previous SAS codes are given in
Appendix C.

Result

MCMC procedure
Each of the three data analyses took about 9 h of central
processing unit time (2.5GHz and 3.25GB of RAM)
to complete the MCMC sampling. The most important
output of each analysis was the posterior sample saved
in the outpost¼data set. From this posterior sample,
users can obtain summary statistics about the parameters
of interest. In addition to the posterior sample, users can
choose to report the summary and diagnostic statistics
for the parameters specified in the monitor¼ ( ) option in

Table 1 SAS code for the Poisson data analysis
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the output window. Table 4 demonstrates the summary
statistics table for the variables monitored in the
MCMC procedure for the binary data analysis. Figure 1
shows the trace-autocorrelation-density (TAD) panel
produced by the MCMC procedure for this binary data
analysis.

The 75 pseudo markers were distributed along five
chromosomes of the wheat genome. The posterior mean
(Bayesian estimate) and the a¼ 0.10 equal-tail credible
interval (bracketed by the 5 percentile and 95 percentile)
are plotted against the marker location, forming an
estimated QTL effect profile and two credible interval
profiles (see Figure 2). The top panel of Figure 2a shows
the result of the Poisson data analysis. A marker in
the second chromosome (at about 100 cM of the
genome) shows an association with the Poisson trait.

The estimated effect was different from zero with
high credibility (the credible interval excluded zero).
There appears to be some activity towards the end
of chromosome 5, but with very low credibility
(the credible interval included zero). Therefore, we are
confident that one QTL has been detected for the
Poisson trait in chromosome 2.
The QTL effect profile and the credible interval profiles

for the binary data analysis are shown in Figure 2b, the
panel in the middle. The pseudo marker identified in the
Poisson data analysis was also identified for the binary
data analysis (the pseudo marker at position 100 cM of
the genome). The equal-tail credible interval excluded
zero. Although more pseudo markers showed some
activities (estimated QTL effects deviating from zero),
none of them had high credibility.

Table 2 The SAS code for the binary data analysis
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The panel at the bottom of Figure 2c shows the result
for the zero-truncated Poisson data analysis. The QTL
controlling the Poisson and the binary traits in chromo-
some 2 was not detectable for the truncated Poisson trait.
This means that the QTL in chromosome 2 only controls
the switch from seed absence to seed presence. It does
not control the numbers of seeds. We can see some
activities towards the end of chromosome 5. This time,
the credible interval almost excluded zero. Although
the credibility was not high, it was stronger than what
we saw in the Poisson data analysis. We can claim an

association between a pseudo marker in the end of
chromosome 5 and the number of seeds, but only with
modest credibility. The overall conclusion was that the
seed presence trait and the number of seeds are
controlled by different sets of QTL.

Table 5 gives the detailed information about the large
QTL identified for the Poisson and binary traits and the
suggested QTL identified for the truncated Poisson trait.
The QTL on chromosome 2 is close to the right hand
side marker (0.66 cM away). This explains the high credi-
bility of the QTL. The suggested QTL on chromosome 5

Table 3 The SAS code for the zero-truncated Poisson data analysis
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is 52 cM away from the left marker and 17 cM away
from the right marker. Therefore, there is virtually no
information for the large interval, explaining the
low credibility (wide credibility interval) for this QTL.
The estimated QTL effects were used to calculate the
expected values of the traits for different genotypes.
Let A1 be the allele of the fertile parent Gaocheng8901
and A2 be the allele of the sterile parent XND126. For the
Poisson trait, the expected numbers of seeded spikelets
for the three genotypes of QTL 1 are

mðA1A1Þ
mðA1A2Þ
mðA2A2Þ

2
4

3
5¼ expðbþ gÞ

expðbÞ
expðb� gÞ

2
4

3
5 ¼

expð2:9165þ 0:4089Þ
expð2:9165Þ

expð2:9165� 0:4089Þ

2
4

3
5

¼
27:8101
18:4765
12:2754

2
4

3
5

ð14Þ

For the binary trait, the expected probabilities of seed
producing for the three genotypes of QTL 1 are

mðA1A1Þ
mðA1A2Þ
mðA2A2Þ

2
4

3
5 ¼

Fðbþ gÞ
FðbÞ

Fðb� gÞ

2
4

3
5 ¼

Fð1:5679þ 1:5867Þ
Fð1:5679Þ

Fð1:5679� 1:5867Þ

2
4

3
5

¼
0:9992
0:9415
0:4925

2
4

3
5

ð15Þ

For the truncated Poisson trait, the expected numbers of
seeded spikelets for the three genotypes of QTL 2 are

mðA1A1Þ
mðA1A2Þ
mðA2A2Þ

2
4

3
5 ¼

expðbþ gÞ
expðbÞ

expðb� gÞ

2
4

3
5 ¼

expð3:1144þ 0:6715Þ
expð3:1144Þ

expð3:1144� 0:6715Þ

2
4

3
5

¼
44:0753
22:5199
11:5064

2
4

3
5

ð16Þ

Interval mapping
To compare the MCMC analysis with existing methods,
we also performed interval mapping for the female
fertility trait under the maximum likelihood frame-
work. In the interval mapping, we scanned the whole
genome with a 5 cM increment for a total of 75 putative

positions (pseudo markers). The model contained one
putative QTL at a time. The entire genome scanning
required 75 separate analyses, one for each putative
position. We used the GENMOD procedure in SAS to
perform the interval mapping. PROC GENMOD can
handle Poisson data with the log-link function and
binary data with the probit (or logit)-link function. The
truncated Poisson data analysis with the GENMOD
procedure requires a user-defined density and link
function, which we have not figured out yet, and thus
we simply deleted the observations with zero seeds from
the data and analyzed the remaining 204 plants using
the Poisson model.
Figure 3 shows the estimated QTL effects plotted

against the genome location for the Poisson data (a), the
binary data (b) and the zero-truncated Poisson data (c).
For the Poisson data analysis, the QTL effect was quite
large across the entire chromosome 2. Chromosomes 1
and 3 also showed some effects, although not as large
as chromosome 2. The binary data analysis generated
QTL effect profiles with almost the same pattern as the
Poisson data analysis, except that the confidence inter-
vals are wider. The zero-truncated Poisson data analysis
showed no evidence of QTL effects across the entire
genome.
Figure 4 shows the LOD score profiles of the three data

analyses. Using the permutation analysis (Churchill and
Doerge, 1994), we generated genome-wide critical values
for the LOD scores. The threshold values were 11.96, 2.75
and 2.44, respectively, for the Poisson data, the binary
data and the truncated Poisson data. Interval mapping
detected one QTL at approximately the same position as
the one detected in the MCMC analysis. However, the
signals of the LOD test statistic profiles for the interval
mapping are not as sharp as those of the MCMC
procedure. The entire chromosome 2 has LOD scores
greater than the critical values for the Poisson and binary
data analysis. The truncated Poisson data analysis
showed no QTL across the whole genome.
In summary, the interval mapping detected the entire

chromosome 2 as significant but the MCMC analysis
narrowed down a QTL to a single pseudo marker
near the end of chromosome 2. Therefore, the MCMC
analysis outperformed the maximum likelihood interval
mapping.

Discussion

We used the wheat female fertility trait as an example to
demonstrate the MCMC procedure for QTL mapping.
We chose the simplest additive model for the presenta-

Table 4 Posterior sample summary statistics for the variables monitored in PROC MCMC for the binary data analysis

Parameter N Mean s.d. Percentile

2.50% 5% 50% 95% 97.50%

Beta 1000 1.5679 0.1935 1.1965 1.2422 1.5580 1.8951 1.9614
Gamma1 1000 0.1814 0.3704 �0.2814 �0.1665 0.0696 0.8969 1.1676
Gamma2 1000 0.1351 0.4568 �0.9653 �0.5517 0.0670 0.8849 1.0845
Gamma3 1000 0.0139 0.2280 �0.2247 �0.0564 0.000193 0.1876 0.4220
Sigmasqr1 1000 3.4429 12.0789 0.00089 0.0012 0.0438 23.4292 50.0437
Sigmasqr2 1000 1.4469 4.9278 0.00133 0.00133 0.0926 7.225 12.7707
Sigmasqr3 1000 0.4501 3.3120 0.000023 0.000023 0.000045 0.3378 2.5623

Mapping QTL using PROC MCMC
S Xu and Z Hu

363

Heredity



tion. Dominance effects have been ignored for simplicity.
The mapping population was small (n¼ 243) and the
marker density was low (15.5 cM per interval). A more
complete analysis should be conducted with denser
marker map in large population. In addition, dominance
and epistatic effects should also be considered in the
complete analysis. The MCMC procedure can handle
multiple QTL with dominance and epistatic effects.
For the complete analysis, each locus should have two
genotype indicator variables, one for the additive effect
and one for the dominance effect. Each pair of loci
should have four epistatic effects, additive by additive,
additive by dominance, dominance by additive and
dominance by dominance. This study emphasizes the
MCMC procedure, not the biology, and thus a complete
analysis was not conducted.

Another simplification we made here was the defini-
tion of the Z variables. We took the Haley and Knott
(1992) approach by substituting the missing QTL
genotypes by the conditional expectations given marker
information. In a fully Bayesian analysis, we should
sample the Zjk variables from the conditional posterior
distributions. Let

dj ¼ ½dj1 dj2 dj3� ð17Þ

be a multinomial variable with sample size one (multi-
variable Bernoulli variable) taking value [1 0 0], [0 1 0] or
[0 0 1], respectively, for A1A1, A1A2 or A2A2. One can
calculate the conditional posterior distribution of dj
(see Wang et al., 2005), denoted by

p�j ¼ ½Prðdj1 ¼ 1j � � �Þ Prðdj2 ¼ 1j � � �Þ Prðdj3 ¼ 1j � � �Þ�
ð18Þ

The multinomial variable dj can be sampled from

pðdjj � � �Þ ¼ Multinomialðdjj1; p�j Þ ð19Þ

Once dj is sampled, the Zjk variable simply takes

Zjk ¼ dj1 � dj3 ð20Þ

If dominance effects are considered in the model, a W
variable is needed to capture the dominance effect for
each locus. The W variable is defined as

Wjk ¼ dj2 � ðdj1 þ dj3Þ ð21Þ

The Haley and Knott’s (1992) definitions of the Z and
W variables simply take the expectations

Zjk ¼ Eðdj1 � dj3Þ ¼ Eðdj1Þ � Eðdj3Þ ð22Þ

and

Wjk ¼ Eðdj2Þ � ½Eðdj1Þ þ Eðdj3Þ� ð23Þ

These expectations are then treated as known values
throughout the analysis.

The MCMC procedure in SAS can handle very
complicated models. The Poisson and binary data
analyses were already more complicated than the
continuously distributed normal traits. The truncated
Poisson trait was even more complicated. Although
PROC MCMC can handle truncated Poisson density, we
chose to define the density in the programming state-
ments to show the flexibility of the MCMC procedure.
We can see that the MCMC procedure only requires very
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Figure 1 Convergence diagnostics for the population mean (intercept) of the binary data analysis. This diagnostic analysis is represented by
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limited recoding to accomplish the complicated models.
This property of the MCMC procedure is unique and no
other Bayesian programs can compete with it.

An alternative way to handle this type of data is to use
the zero-inflated Poisson model (Cui and Yang, 2009).
We can fit two models to the same data simultaneously.
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Figure 2 Bayesian estimate of QTL effect for the female fertility trait
of wheat. The blue curve is the profile of the posterior mean of the
QTL effect. The red lines define a¼ 0.10 equal-tail credible interval
(5 and 95 percentiles) of the posterior distribution of the QTL effect.
The five chromosomes are separated by four vertical references
lines. The marker positions are indicated by the ticks on the
horizontal axis. (a) The top panel gives the result for the Poisson
data analysis with sample size n¼ 243. (b) The panel in the middle
shows the result for the binary data analysis with sample size
n¼ 243. (c) The panel at the bottom is the result of the zero-
truncated Poisson data analysis with sample size n¼ 204. A full
color version of this figure is available at the Heredity Journal online.

Table 5 Information about the identified QTL by the MCMC procedure for the three data analyses (Poisson, binary and truncated Poisson)

QTL 1 QTL 2 Intercept

Chromosome 2 5
Left marker Xgwm296 (19.63 cM) Xwmc291 (86.54 cM)
QTL location 26.33 cM 138.63 cM
Right marker Xbarc95 (26.97 cM) cft21 (155.66 cM)
Credibility High Low
Effect (Poisson) 0.4089 (0.0859) — 2.9165 (0.0210)
Effect (binary) 1.5867 (0.7337) — 1.5679 (0.1935)
Effect (trunc-Poi) — 0.6715 (0.9169) 3.1144 (0.0182)

Abbreviations: MCMC, Markov chain Monte Carlo; QTL, quantitative trait locus.
The posterior means and posterior s.d.s (in parentheses) for the QTL effects and the intercepts are presented in the last three rows of the table.
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Figure 3 Maximum likelihood estimate of QTL effect for the female
fertility trait of wheat. The blue curve is the profile of the estimated
QTL effect. The red lines define the a¼ 0.10 confidence interval (5
and 95 percentiles) of the QTL effect. The five chromosomes are
separated by four vertical references lines. The marker positions are
indicated by the ticks on the horizontal axis. (a) The top panel gives
the result for the Poisson data analysis with sample size n¼ 243.
(b) The panel in the middle shows the result for the binary data
analysis with sample size n¼ 243. (c) The panel at the bottom is the
result of the zero-truncated Poisson data analysis with sample size
n¼ 204. A full color version of this figure is available at the Heredity
Journal online.
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One is the Poisson model and the other is the ‘zero
model’. The zero model captures QTL for the binary
trait and the Poisson model captures QTL responsible
for the variation of the number of seeded spikelets.
The MCMC procedure can be used to handle the
zero-inflated Poisson model by adding a user defined
log-likelihood function. We should also describe
the regression coefficients using a multivariate normal
prior for both the model effect and the zero model
effect jointly. The additional coding requires handling
matrix algebra, which can be done but a little tedious,
and we have not figured it out at this moment. We will
prioritize the zero-inflated Poisson model as our
next project. At this moment, the three different models
are sufficient to demonstrate the usefulness of the
procedure.

Unfortunately, the high flexibility of PROC MCMC is
traded off by the low computational efficiency in terms
of long time taken for completing the MCMC sampling
process. The MCMC procedure is extremely time
consuming for large models (models with a large
number of parameters). It is highly efficient for small
but complicated models. By default, the MCMC proce-
dure samples all variables using the block random walk
Metropolis algorithm. This algorithm requires tuning
the parameters of the proposal distribution. Most of the
central processing unit time is actually taken for tuning
the proposal distribution. This explains the low compu-
tational efficiency. There is an option in the ‘proc mcmc’
statement that allows users to skip the tuning step. This
option is to set the number of iterations of each tuning
loop to zero, that is, ‘ntu¼ 0’. However, without the
tuning process, the MCMC sampler may requires an
even longer chain to reach the stationary distribution.
Therefore, it is not advised to skip the tuning step. The
MCMC procedure does provide an option for skilled SAS
users to write their own samplers for the parameters of
interest. This option is called user-defined sampler
(UDS). If the sampler for a parameter is UDS, the tuning
process is not needed. If the UDS is a Gibbs sampler,
the acceptance rate is 100% (most efficient). However,
writing UDSs can be very cumbersome and, by doing
that, we are not taking advantage of the MCMC
procedure. In addition, the overhead cost of calling other
procedures when UDS is used may further slow down
the speed. As the MCMC procedure is an experimental
procedure, much improvement in terms of the comput-
ing speed is expected in future releases.

The SAS/MCMC procedure is an excellent tool for
teaching the Bayesian method of QTL mapping. As more
researchers and students are interested in the Bayesian
method, a user friendly software package is necessary
and the SAS/MCMC procedure can fulfill that need. The
data input and output are all handled by SAS within
the same environment. Students only need to learn the
MCMC statements, which are simple and easy to code.

In terms of Bayesian QTL mapping, existing programs
are available, for example, Bqtl (Bayesian QTL mapping,
The R Development Core Team, 2001), MultiMapper
(Sillanpää and Arjas, 1998), R/qtlbim (Bayesian interval
mapping, Yandell et al., 2007). They are more efficient
than the MCMC procedure. We recently released a user-
defined SAS procedure, the QTL procedure (Hu and Xu,
2009). With the QTL procedure in SAS, users can choose
the method¼ ‘bayes’ option in the proc QTL statement.
This option will turn on the MCMC implemented
Bayesian shrinkage algorithm for QTL mapping
(Xu, 2003; Wang et al., 2005). Unfortunately, users have
no freedom to choose their own priors and likelihood.
The high computational efficiency for the specialized
programs is compromised by the low flexibility. The
MCMC procedure for QTL mapping can be very efficient
if users only want to investigate a target region of the
genome for an extremely complicated likelihood for the
trait and complicated priors for parameters. The trun-
cated Poisson trait is an example of complicated like-
lihood. The scaled inverse w2 distribution for the prior of
a variance component is not very complicated, but one
can easily handle hierarchical models by assigning prior
distributions to the degree of belief and scale parameter
in the scaled inverse w2 distribution. Details of the
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Figure 4 LOD scores for the maximum likelihood method of QTL
mapping for the female fertility trait of wheat. The horizontal
straight line represents permutation-generated threshold value
for the LOD score test statistic. The five chromosomes are separated
by four vertical references lines. The marker positions are indicated
by the ticks on the horizontal axis. (a) The top panel gives the
result for the Poisson data analysis with sample size n¼ 243.
(b) The panel in the middle shows the result for the binary data
analysis with sample size n¼ 243. (c) The panel at the bottom is
the result of the zero-truncated Poisson data analysis with sample
size n¼ 204.
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hierarchical Bayesian model for QTL mapping can be
found in the study by Yi and Xu (2008).

Finally, the map of the 75 pseudo markers, the original
data (plant id, phenotype and numerically coded geno-
types for the 75 markers) and the SAS codes presented
in the main text of this article can be downloaded
from our personal website (http://www.statgen.ucr.edu)
under the PROC MCMC software section. Readers can
use the data and the codes for practicing and testing
the MCMC procedure.
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Appendix A

Detailed explanations of the SAS code for the Poisson data analysis

%macro fertility; - Create a SAS macro named ‘fertility’.
ods graphics on; - Turn the graphics Output Delivery System (ODS) on.
proc mcmc - Call the MCMC procedure
data¼fertility - This is an option of the proc mcmc statement. It tells proc mcmc to use data with a name

fertility.
outpost¼xx.postsample - Tells proc mcmc to write the posterior sample to a SAS dataset named

xx.postsample. The two level SAS dataset name means that the posterior sample will be stored in
thefolderwithlibnamexxasapermanentSASdataset.Thedatasetcontainsallvariablesdefined
in the parms and prior statements plus the log likelihood, the log prior density and the log-
posterior density. If users define some functions of the variables, these functions will also be
stored in the posterior sample dataset.
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seed¼12345-Thisoptionallowsuserstosettheseedforrandomnumbergenerators.Choosingthesameseed
willallowtheuserstoduplicatetheresults.Ifnoseedisgiven,procmcmcwillassumesadefault
seedofzero,whichwillgenerateadifferentsequenceofrandomnumberseverytimetheprogramis
executed.

nmc¼50000 - This option defines the total length of the Markov chain excluding the burn-in deletion.
thin¼50-Thisoptiondefinesthethinningrate.Inthiscase,theposteriorsamplewillkeeponedrawin

every 50 iterations. In this example, the posterior sample size (named xx.postsample) will
contain 50000/50¼1000 observations.

nbi¼5000 - Defines the number of iterations in the burn-in period. In this case, proc mcmc starts to
collectposteriorsampleafter5000iterations.Theburn-inperioddoesnotaffecttheposterior
samplesizestoredintheoutpostdataset.Forexample,thecurrentsettingrequiresprocmcmcto
run a total of 50000þ5000¼55000 iterations, although the posterior sample only contains 1000
observations.

simreport¼5 - This option tells proc mcmc to report the progress of the MCMC sampling. It is useful for
runningalargemodel thattakesaverylongcomputingtime.Theprocedurewillwriteamessageon
theSASlogwindow5timesduringtheMCMCsampling processtotelltheuserhowmuchtime leftfor
the program to finish. Note that proc mcmc only starts to report the progress after the tuning
period ends. The tuning time can vary from data to data. For a large model, the tuning time may be
longerthanthesamplingtime.Forexample,forsomedata,procmcmcmaytake20hfortuningand10h
forsampling.Ifyousetsimreport¼5,theprogramstartstoreporttheprogresswhenthesampling
process starts (after 20h) and report the progress in every 2h (2�5¼10h) until the sampling
progress finishes.

monitor¼(beta gamma1-gamma3 sigmasqr1-sigmasqr3) - Variables included in the braces will be subject
topostMCMCanalysis.Notethatthereare75gamma’sand75sigmasqr’s.Weonlymonitorthefirst
three gamma’s and the first three sigmasqr’s.

stats(percent¼(2.55509597.5))¼all-Telltheprogramtoreportthepercentilevaluesdefinedinthe
percent¼() option for all the variables included in the monitor¼() option.

diagnostics¼(all geweke(f1 ¼0.3 f2 ¼0.3)) - Tells the programto report the Geweve z -test convergence
diagnose statistics using the first 30% of the posterior sample and the last 30% of the posterior
sample for all the variables included in the monitor¼() option.

ods select PostSummaries ESS Geweke PostIntervals TADpanel; - This statement tells proc mcmc to select
thefollowingitemstobehandledbytheSASoutputdeliverysystem(ODS)foroutput:(1) Thepost
MCMC summaries for the variables contained in the monitor¼() option, (2) the effective sample
sizes,(3)theGewekez-testdiagnosticstatisticsforconvergence,(4)thecredibilityintervals
and (5) the trace-autocorrelation-density (TAD) panels. Each monitored variable has a TAD panel
that contains three figures drawn in the same page (the trace plot, the autocorrelation plot and
the marginal posterior density).

array z[75]; - Define an array named z which refers to z1--z75.
array gamma[75]; - Define an array named gamma. Later on, you can refer gamma1-gamma75 for the 75

variables defined by this array statement. Note the difference between array gamma {75} usually
defined in the data step and array gamma[75] defined here.

parms beta 0; - Define a parameter named beta and assign a value 0 as the initial value.
%do k ¼1 %to 75; - Starts a do-loop 75 times.

parms gamma&k 0; - Define parameter gamma[k] and initialize with 0.
parms sigmasqr&k 1; - Define parameter sigmasqr[k] and initialize with 1.
prior gamma&kB normal(mean¼0, var¼sigmasqr&k);
prior sigmasqr&kB sichisq(1e-10,1e-10);

%end; - Ends the do-loop.
The MCMC procedure does not allow users to define the parms variables and their priors using the
notation gamma[k]. This explains the use of the SAS macro.

eta¼beta; - Assign eta the value of beta.
do k ¼1 to 75; - Define a do-loop.

eta¼etaþ z[k]*gamma[k]; - The use of gamma[k] is legal here in the assign statement, although it is
not legal in the parms and prior statements.

end;
mu¼exp(eta); - Define the log link (inverse is exponential).
model yB poisson(mu); - Define the Poisson density.
ods graphics off; - Turn off the ODS graphics.
%mend; - Ends the macro.
%fertility - Execute the macro.
proc export data¼xx.postsample outfile¼bb dbms¼csv replace; - Writes the posterior sample stored in

the SAS dataset xx.postsample into a physical excel file with a name defined in the filename bb
statement.Thefilenamebbreferstoaphysicalfile‘post-sample.csv’inthe‘c:\mcmc\fertility’
folder.

If we want to sample all the 75 gamma variables together as a block, you can use the following statement,

parms gamma: 0;
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The notation ‘gamma:’ is a short expression of gamma1-gamma75. It will be a nightmare for the MCMC procedure to
sample that many parameters in a block. It will take forever for the program to tune the parameters of the proposal
distribution. One can skip the tuning step, but takes a risk of not converging to the stationary distribution for the
Markov chain within a reasonable time frame.

Appendix B

Detailed explanations of the SAS code for the binary data analysis
Majority of the statements are the same as the SAS code given in the Poisson data analysis. The binary analysis requires
a few different statements, which are explained below.

y ¼(y40); - This statement in the data step redefines variable y as a binary variable.
mu¼probnorm(eta); - Probit link from the linear part to the expectation of the binary trait. You can

choose the logit-link function rather than the probit link function using
mu¼logistic(eta);
model y B binary(mu); - Define the binary (also called the Bernoulli) density of data. You can

use binary(mu) and the alias bern(mu) interchangeably.

Appendix C

Detailed explanations of the SAS code for the truncated Poisson data analysis
The SAS code is largely the same as the code in the Poisson data analysis. This appendix provides the explanations for
the few extra statements.

if y40;-ThisstatementinthedatastepselectsobservationsoftheSASdatasetwhenseedsarepresent.
The subset of the sample is 204 in the fertility data.

fy¼log(fact(y)); - Create a new variable fy¼log(y!). The fact(y) function is the factorial of count y.
priorbetaBgeneral(log(1));-Thisstatementdefinesaflatpriorforvariableb,i.e.,p(b)¼1.Because

theflatpriorisnotanintrinsicdensity,youmustusethegeneralfunctionwiththelogdensityof
the user defined prior as the argument. The log density is log(1).

prior sigmasqr&kBgeneral(�log(signasqr&k)); - Define the Jeffreys’ prior for the kth variance
component, p(s k

2)¼1/s k
2. The log prior density is log p(s k

2)¼ �log p(s k
2).

f ¼ y* log(mu) � mu� fy; - Define logarithm of the Poisson density,

log fðyjjmjÞ
h i

¼ log m
yj
j expð�mjÞ=ðyjÞ!

h i
¼yj logðmjÞ � mj � log ðyjÞ!

� �
g ¼log(1� exp(� mu)); - Define the logarithm of probability of y40, i.e., log[1� exp(�m j)].
f0 ¼f �g; - This statement defines the logarithm of the truncated Poisson density,

log f0ðyjjmjÞ
h i

¼ log fðyjjmjÞ
h i

� log 1� expð�mjÞ
h i

:

model yBgeneral(f0);-ThetruncatedPoissondensityisauserdefineddensityandthusitmustbeplaced
as an argument inside the general function.

Supplementary Information accompanies the paper on Heredity website (http://www.nature.com/hdy)
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