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Multi-locus inference of population structure:
a comparison between single nucleotide
polymorphisms and microsatellites

RJ Haasl and BA Payseur
Laboratory of Genetics, University of Wisconsin, Madison, WI, USA

Although growing numbers of single nucleotide polymor-
phisms (SNPs) and microsatellites (short tandem repeat
polymorphisms or STRPs) are used to infer population
structure, their relative properties in this context remain
poorly understood. SNPs and STRPs mutate differently,
suggesting multi-locus genotypes at these loci might differ in
ability to detect population structure. Here, we use coales-
cent simulations to measure the power of sets of SNPs and
STRPs to identify population structure. To maximize the
applicability of our results to empirical studies, we focus on
the popular STRUCTURE analysis and evaluate the role of
several biological and practical factors in the detection of
population structure. We find that: (1) fewer unlinked STRPs
than SNPs are needed to detect structure at recent
divergence times o0.3 Ne generations; (2) accurate estima-
tion of the number of populations requires many fewer

STRPs than SNPs; (3) for both marker types, declines in
power due to modest gene flow (Nem¼ 1.0) are largely
negated by increasing marker number; (4) variation in the
STRP mutational model affects power modestly; (5) SNP
haplotypes (y¼ 1, no recombination) provide power compar-
able with STRP loci (y¼ 10); (6) ascertainment schemes that
select highly variable STRP or SNP loci increase power to
detect structure, though ascertained data may not be
suitable to other inference; and (7) when samples are drawn
from an admixed population and one of its parent popula-
tions, the reduction in power to detect two populations is
greater for STRPs than SNPs. These results should assist
the design of multi-locus studies to detect population
structure in nature.
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Introduction

A variety of tasks in biological research rely upon
accurate identification of population structure. Knowl-
edge of population structure aids or makes possible the
identification of contemporary and historical barriers to
effective dispersal (for example, Vandergast et al., 2007;
Latch et al., 2008), analysis of ecological speciation (for
example, Taylor et al., 2006), proper control of the false-
positive rate in genotype–phenotype association studies
(for example, Pritchard and Rosenberg, 1999; Marchini
et al., 2004), inference of ancient population dynamics
(for example, Underhill and Kivisild, 2007), identification
of source populations for genetic rescue (for example,
Richards, 2000), and delineation of management units
in conservation biology (for example, Bowen et al., 2005;
Rowe and Beebee, 2007). The diversity of biologists
engaged in the analysis of population structure empha-
sizes the need for sound guidance, including a broad
sense of the statistical power offered by a data set pro-
posed for collection. Production of a data set insuffi-
ciently powered to reject the null hypothesis of panmixia,
for example, only wastes valuable laboratory resources.

Single nucleotide polymorphisms (SNPs) and micro-
satellites (referred to here as short tandem repeat
polymorphisms or STRPs) are commonly employed in
the detection of population structure. In addition to
technical differences that impact the development and
collection of these marker types (Zhang and Hewitt,
2003), individual SNPs and STRPs possess different
information content (Rosenberg et al., 2003, Liu et al.,
2005). SNPs are low information, diallelic markers,
expected to be less effective indicators of genetic
divergence between populations than highly variable
STRPs (Pritchard and Rosenberg, 1999; Liu et al., 2005).
Yet, a small percentage of SNPs are highly diagnostic of
population structure (Rosenberg et al., 2003; Turakulov
and Easteal, 2003) and a sufficiently large SNP data set
may provide the same power to detect structure as a
smaller STRP data set (Pritchard and Rosenberg, 1999;
Rosenberg et al., 2003; Morin et al., 2004). If ‘large’ is not
too large, the labor-intensive development of STRP
markers might make their use as indicators of population
structure less attractive than SNPs.

Evidence of population structure accumulates over
time in the form of (1) changes in allele frequencies due
to random genetic drift, and (2) the emergence of private
alleles due to mutation, which may or may not introgress
to other populations. At the time of divergence, STRP
loci will, on average, be more diverse than SNP loci due
to higher mutation rates. Greater diversity provides more
opportunity for genetic drift to generate detectable
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frequency differences between diverging populations.
High STRP mutation rate also leads to rapid accumula-
tion of population-specific variation. Thus, we would
expect to observe the greatest differences in power
between SNPs and STRPs on recent time scales. Little
more than intuition supports the reality of a time-scale-
dependent microsatellite ‘advantage’ however, and
intuition fails to indicate how the expected power gap
between SNPs and STRPs might decline as a function of
divergence time. Other important factors expected to
affect the relative power of SNPs and STRPs to detect
population structure include gene flow and ascertain-
ment bias (Wakeley et al., 2001; Hey and Nielsen, 2004;
Rosenblum and Novembre, 2007; Narum et al., 2008).

Several details regarding the evolution of STRP
variation further complicate characterization of STRP
power to detect population structure in particular. First,
STRP loci evolve via mutations that decrease or increase
the current repeat number. Recurrent mutation fre-
quently leads to homoplastic alleles, which are identical
by state (size) but not identical by descent (Ohta and
Kimura, 1973). The presence of size homoplasy in a STRP
data set is likely to dampen the signal of population
structure and common genotyping techniques only tag a
fraction of total size homoplasy (Estoup et al., 2002).
Second, STRP mutation rate varies by several orders of
magnitude both within and between species (Rubinsz-
tein et al., 1995a; Brinkmann et al., 1998; Crozier et al.,
1999; Udupa and Baum, 2001). The interaction between
size homoplasy and STRP variation, both of which
increase with mutation rate, is not well understood
(Rousset, 1996). As a result, the effect of mutation rate on
power to detect structure remains difficult to predict. For
example, while loci with the highest mutation rates
may show ubiquitous homoplasy, this effect might be
mitigated by the increased informativeness associated
with high levels of variation. Finally, the simplest model
of STRP evolution posits that each mutation increases or
decreases the repeat number by one step with equal
probability (Ohta and Kimura, 1973). Empirical evidence
suggests this model is an over-simplification, with some
mutations resulting in multi-step shifts in size (Di Rienzo
et al., 1994; Rubinsztein et al., 1995b; Ellegren, 2000) and
mutation direction sometimes being size-dependent
(Ellegren, 2000; Xu et al., 2000; Dieringer and Schlotterer,
2003). Multi-step mutations should lead to a more diffuse
distribution of allele states than expected under a single-
step model (Moran, 1975). STRP loci subject to frequent
multi-step mutations will therefore show very different
genetic diversities from those of loci at which multi-step
mutations are rare. It is important to consider all of these
complications when assessing the power of STRPs to
detect population structure.

Coalescent simulation enables the efficient production of
SNP and STRP data for multiple populations (Hudson,
2002). Using simulated SNP and STRP data sets, we
quantified the effects of marker type, number of markers,
time since divergence, gene flow, ascertainment bias and
mutation rate and model on the power to detect population
structure. In addition to measuring power to detect
population structure per se, we compared the ability of
both marker types to identify the true number of
populations. Also, we examined the potential of SNP
haplotypes to detect population structure. The power of
simulated, multi-locus data was assessed using STRUCTURE

(Pritchard et al., 2000), which is commonly employed in
empirical studies and detects evidence of population
structure resulting from both drift and new mutation.
The comparisons of SNP and STRP power presented here
should provide valuable guidance to biologists interested
in capturing evidence of population structure in nature.

Materials and Methods

Table 1 lists the parameters and the range of values
examined in our simulations. These parameters include
demographic, evolutionary, and experimental factors
that affect all empirical studies of population structure.
Simulated values were chosen for their relevance to
empirical studies of population structure in a broad
range of species. Some parameter values were only used
in a specific circumstance; we did not test all combina-
tions of the parameter values detailed in Table 1.

Coalescent simulation
Each simulated locus was generated by first producing a
random genealogy according to specified population
parameters and sample size using the coalescent pro-
gram MS (Hudson, 2002). Custom-written programs
were then used to (1) divide the genealogy into nested
groups of branches and (2) add mutations to each branch
based on branch length, specified mutation model and
population mutation rate (y¼ 4Ne m).

Generating genealogies: Each simulated genealogy was
rooted in a single, panmictic population. At a specified
time in the past (referred to throughout as divergence time),
this population instantaneously split into 2 or 5 popu-
lations of equal size. So that our results may be applied to
any species, we report divergence time in units of Ne

generations. Nevertheless, it is instructive to point out that
for humans 0.2 Ne generations is equivalent to B40000
years (assuming Ne¼ 10000 and a generation time of 20
years). Gene flow between the simulated populations was
specified by the population migration rate, 4Nem. Each
genealogy terminated in 100 simulated alleles, which were
combined to form 50 diploid individuals (see the section
‘Generating data sets’).

Table 1 Parameters investigated and their simulated values

Parameter Simulated values

Divergence time 0.02–1.04 Ne generations
Migration rate 0 and 1.0 Nem
Population number 2 and 5

Marker type
Marker identity SNP, STRP, SNP haplotype
Ascertainment bias None, 40.2 heterozygosity (SNPs and

STRPs), 40.1minor allele frequency
(SNPs)

STRP y 10 and 100
Mutational model SNPs: Infinite Sites Model

STRPs: Infinite Alleles Model
Generalized Stepwise Model
Stepwise Mutation Model

Marker number 5–10 000 (SNPs)
5–100 (STRPs)
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Adding mutations: The effects of migration rate and
divergence time on the branching pattern of a genealogy
were handled by the program MS. To simulate mutation
under a variety of models and track the mutation history
of each allele, we wrote a Cþþ program that is freely
available at our laboratory website (see Appendix).
We checked the accuracy of our code by comparing
results from simulations to theoretical predictions
assuming mutation-drift equilibrium (for example,
2*Var[STRP allele size]Ey ; Moran, 1975).

To add mutations, genealogies were first split into
individual branches. The number of mutations along a
branch was Poisson distributed, with parameter l¼ yt,
where t is the branch length in units of 4Ne generations.
All SNP data were generated using an infinite sites
model (ISM), which precludes recurrent mutation and
produces data sets free of homoplasy. Under the ISM,
each mutational event generates a polymorphic site
within the simulated DNA sequence. Ultimately, SNP
simulations produced SNP haplotypes. Although y
influences the number of polymorphic sites comprising
a simulated haplotype, the frequency of any one allele
was simply a function of where its source mutation fell
on the tree. This quality of SNPs allowed us to generate
SNP haplotypes under an ISM with y¼ 10 (to ensure at
least one polymorphic locus) and randomly select one
polymorphism as a legitimate, simulated SNP.

Genetic variation at STRP loci was simulated using
y¼ 10 (unless otherwise stated) and three different
mutation models: an infinite alleles model (IAM),
stepwise mutation model (SMM), and generalized step-
wise model (GSM). Although the IAM does not
realistically describe the STRP mutational process,
comparisons between IAM and other models allowed
us to measure the effects of homoplasy. Regardless of
mutation model, mutations were first added to the two
internal-most branches descended from the most recent
common ancestor (MRCA) of the genealogy. Mutations
were then added to less and less inclusive branches,
concluding with external branches. Each mutation
incremented or decremented the ancestral allele size by
at least one step. Under the IAM, step size was a random
integer on the interval (�1000, 1000) excluding zero. This
range was large enough to effectively eliminate homo-
plastic alleles from data sets, thereby approximating
infinite allele mutation at STRP loci. Under the SMM,
step size was –1 or 1 with equal probability. Under the
GSM, step size followed a geometric distribution and
was multiplied by –1 with probability 0.5. We used a
geometric distribution with P¼ 0.42, which resulted in a
high frequency of multi-step mutations (for example,
P{3-step mutation or greater | mutation occurred}¼
0.20). These probabilities represent an extreme form of
the GSM (Estoup et al., 2002).

Generating data sets: To construct multi-locus data sets
for diploid individuals, Hardy–Weinberg equilibrium
and linkage equilibrium were assumed. At each locus,
the 50 simulated alleles sampled from each population
were randomly combined into diploid genotypes.
The multi-locus genotype of each individual was
constructed by combining the genotypes from
separately simulated (unlinked) loci. Collections of
multi-locus genotypes were used to create input files
for STRUCTURE.

Ascertainment bias: When analyzing population
structure, researchers often genotype loci (SNPs or
STRPs) known to be highly variable. To increase the
applicability of our results to empirical studies, we
modeled this ascertainment bias. Although STRP loci are
frequently ascertained based on number of alleles or
heterozygosity, SNP loci are generally ascertained based
on minor allele frequency. To facilitate direct comparison
of the effect of ascertainment bias on the power of SNPs
and STRPs, we modeled bias based on heterozygosity.
We ascertained loci by measuring heterozygosity of each
simulated locus in 5 (SNPs only), 25 or 50 alleles from
one population. This mimicked the use of a subsample to
ascertain loci. Only SNPs with heterozygosities X0.2 or
STRPs with heterozygosities X0.85 in the specified
subsample were added to the simulated data set. In
five-population simulations, we only examined SNP
ascertainment. In this case, we used minor allele
frequency as the SNP ascertainment criterion because
SNP and STRP ascertainment were not being compared
directly and minor allele frequency is the more common
measure of SNP ascertainment.

Ascertainment bias not only affects power to detect
population structure. Inference of migration rate and
changes in population size, for example, becomes less
accurate when ascertained SNP data sets are used
(Wakeley et al., 2001). This decline in accuracy may stem
from differences in genetic diversity between the
reference population used to perform ascertainment
and other sample populations. To address this concern,
we calculated heterozygosity in the reference population
from which the ascertainment subsample was drawn
and the non-reference population. For each divergence
time tested, measured heterozygosities were averaged
across all 100 replicates. The diversities of the reference
and non-reference populations, as measured by hetero-
zygosity, were then compared.

Assessing power to detect population structure
Multi-locus data sets, no specific hypothesis of population
structure: For each set of parameter values tested, 100
STRUCTURE input files were generated. Each file
represented an independent realization of a hypo-
thetical experiment to detect population structure.
Power was defined as: (number of input files leading to
rejection of H0)/100, where H0 is the null hypothesis that
the samples are derived from a single, panmictic
population.

For each set of parameter values, we monitored the
analysis of a single data set in STRUCTURE to determine
the appropriate burn-in and total length of the Markov
chain. For data sets of o50 loci, a total chain length of
10 000 and burn-in of 5000 generally produced a
stationary chain that was sampled sufficiently. For larger
data sets, a total chain length of 20 000 and burn-in of
10 000 proved sufficient. Increasing total chain length
further did not affect the results. We ran STRUCTURE
using a correlated allele frequency model, as this prior
facilitates the detection of subtle population structure
(Pritchard et al., 2007). The parameter l, which char-
acterizes the prior allele frequency distribution, was
generally set to its default value of 1. This value might be
inappropriate for SNP data sets with an abundance of
rare minor alleles (Pritchard et al., 2007); we therefore
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estimated l for a representative set of SNP data sets and
found that lower, estimated values of l did not
qualitatively affect our results. We specified an admix-
ture model and used the data sets to infer the admixture
parameter a, which indicates the degree to which
individuals are admixed.

Two-population simulations modeled experiments
attempting to distinguish between a single, panmictic
population and two populations. Each input file was run
in STRUCTURE with K¼ 1 and K¼ 2. To assess evidence
for the two simulated populations, the difference statistic
of the log-likelihood ratio test was calculated:
D¼�2(LnLK¼ 1–LnLK¼ 2). The critical value of D
(a¼ 0.05) was based on simulated null distributions.
A separate null distribution was generated for each
distinct combination of mutational model, marker type
and marker number. Each null distribution comprised
5000 D-values based on a data set simulated under the
null hypothesis of one panmictic population. For a
variety of parameter values, we confirmed that popula-
tion assignments of individuals in significant K¼ 2 runs
resulted in two populations of roughly equal size.

Single loci, membership in one of two populations
specified a priori: To ask whether analyses of
individual loci produce similar results to STRUCTURE,
the power of single SNP and STRP loci to detect
significant differentiation between samples from two
populations defined a priori was assessed using the
probability test (approximation of the Fisher’s exact test)
of population differentiation, as implemented in
GENEPOP (Raymond and Rousset, 1995). For each set
of parameter values tested, 1000 data sets of 100 samples
of a single locus were generated using the same method
as discussed above. The resulting P-value represents the
probability that all alleles are drawn from the same
population.

SNP haplotypes
We also considered the ability of combinations of multi-
SNP haplotypes to detect population structure. SNP
haplotype data were simulated in the same way as SNP
loci (detailed above). Rather than selecting one poly-
morphism from the simulated sequence, however, we
retained the entire haplotype. SNP haplotypes were
simulated with y¼ 1 and no recombination. In humans, a
per-locus y of 1 is roughly equivalent to a random
1000 bp sequence, assuming 4Ne¼ 40 000 (Schaffner et al.,
2005) and m¼ 2.5� 10�8 (Nachman and Crowell, 2000).
Each unique haplotype was defined as an allele.
Haplotype alleles were combined to create multi-locus
data sets and analyzed using STRUCTURE. We com-
pared the power of individual haplotypes and their
component SNPs to detect structure using GENEPOP. In
GENEPOP, we performed Fisher’s exact probability test
and specified the ‘genic differentiation’ option.

Assessing ability to detect a specific number

of populations
The ability to detect the presence of population structure
per se does not guarantee accurate estimation of the
number of populations. The latter task is presumably
more demanding, requiring greater quantities of data
and/or less ambiguous data. To investigate this issue, we

simulated five-population data sets in the same manner
as two-population data sets, except with five equally
sized populations splitting from each other at the time of
divergence. STRUCTURE settings were the same as for
two-population data sets. An intermediate divergence
time of 0.16Ne was selected as a single test case. We chose
an intermediate divergence time because it allowed for
considerable between-population genetic divergence
without making the detection of multiple populations a
trivial task. The specific selection of 0.16Ne, however, was
arbitrary. We tested K-values of 1 through 9 for each data
set. These runs showed greater run-to-run variability, so
each K-value was run five times.
Instead of calculating power, we employed the widely

used method of Evanno et al. (2005) to estimate the
number of populations from STRUCTURE results. We
calculated the authors’ DK statistic based on likelihood
scores averaged over the five STRUCTURE runs. Using
20 (per Evanno et al., 2005) rather than five STRUCTURE
runs did not qualitatively affect the results. For a given
set of parameter values, each data set produced DK
statistics that were not directly comparable. We therefore
divided each set of DK statistics by the largest value in
the set to normalize DK values within the range [0,1] for
each data set. This rescaled DK was then averaged over
the 100 data sets for each value of K.

Simulation Homoplastic Index
By recording the mutational history of each lineage in
each simulated genealogy, we were able to assess
whether any two STRP alleles identical by state were
also identical by descent. An ad hocmetric, the simulation
homoplastic index (SHI) was formulated to quantify the
level of homoplasy in an STRP data set:

SHI ¼ 1

d

Xd
l¼1

1� 1

k

Xk

i¼1

ðIi � 1Þ � ðPi � 1Þ
Ii � 1

" #

where d is the number of loci in the data set, k is the
number of alleles at the locus l, Ii is the number of
instances of allele i, and Pi is the number of distinct
mutational paths observed to lead to allele i. The
expression on the right-hand side of the rightmost
summation sign was set to 0 if Ii¼ 1. SHI ranges from 0
(no homoplasy) to 1 (every allele is homoplastic). SHI
was calculated for every allele, whether or not it was
present in all subpopulations, making it a different
quantity than the index of size homoplasy defined by
Estoup et al. (2002).

Admixture
We also investigated whether sampling from a recently
admixed population interfered with accurate inference of
population structure. We considered an admixed popu-
lation C and parent populations A and B. Population C
was generated by drawing proportion p of its lineages
from parent population A and proportion 1-p of its
lineages from parent population B. Moving forward in
time, no gene flow was allowed between populations A,
B and C. Before creation of population C by admixture,
we simulated no gene flow between the parent popula-
tions A and B. We varied p (0.1 or 0.5) and the time since
divergence of parent populations A and B (0.15 or 0.4 Ne

generations). In all cases, the admixture event occurred
10�3 Ne generations ago, equivalent to 1 generation ago
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for a population with Ne¼ 1000 or 10 generations ago for
a population with Ne¼ 10 000. 10-STRP (SMM. y¼ 10)
and 100-SNP data sets were used, because data sets of
these marker types and size showed near identical power
to detect two populations at the two divergence times
tested (power B0.68 at 0.15 Ne generations and 1.0 at 0.4
Ne generations).

We specifically investigated the questions: (1) Do
samples drawn exclusively from the admixed population
appear to be drawn from two genetically divergent
populations?; and (2) Do samples drawn evenly from
parent population A and admixed population C appear
to be drawn from 1, 2, 3 or more populations? For each
set of parameter values investigated, we generated 100
simulated data sets and ran STRUCTURE for K¼ 1
through K¼ 5. In the case of the first question, we
simulated a sample of 50 individuals from admixed
population C alone. In the case of the second question,
we simulated a sample of 25 individuals from parent
population A and 25 individuals from admixed popula-
tion C. In addition to examination of log-likelihood
scores for each value of K, in the case of the second
question we also extracted the inferred ancestry propor-
tions from the K¼ 2 output file. Based on all 5000
individuals in all 100 data sets, we calculated the
percentage of individuals with minor ancestry propor-
tions o0.05 or 40.40.

Results

Divergence time
Two-population simulations: Significant power (40.95)
to detect population structure at very recent divergence
times required as many as 15 times more SNPs than
STRPs. For example, obtaining power of 0.95 or 0.99 at a
divergence time of 0.06 Ne generations required 1000
SNPs vs 75 STRPs (Figure 1a) and 1500 SNPs vs 100

STRPs (Figure 1b), respectively. As divergence time
increased, however, the number of markers required to
obtain significant power declined for both marker types.
This decline was precipitous for SNPs: 97.7% fewer SNPs
(35 vs 1500) were needed to obtain 0.99 power for a
divergence time of 0.40 Ne generations than for a
divergence time of 0.06 Ne generations. Between the
same time points, 90% fewer STRPs (10 vs 100) were
needed to obtain 0.99 power. At divergence times 40.40
Ne generations, small, approximately equal numbers of
SNPs and STRPs were needed to achieve high power.
Note that these results apply to completely isolated
populations and assume constant Ne.

Five-population simulations: For a divergence time of
0.16 Ne generations, 25-STRP data sets were the first to
show marked peakedness at K¼ 5, though other values
of K were still broadly supported (Figure 2a). 100 STRP
data sets showed an average rescaled DK of 0.98 for K¼ 5
(values of rescaled DK close to 1 suggest strong support
for a particular number of populations), whereas other
values of K received little support (Figure 2a). 35-SNP
data sets showed a bias toward low K-values (Figure 2b).
Even 10 000-SNP data sets were less efficient at detecting
five populations than 100 STRPs (Figure 2). However,
1000-SNP data sets in which all loci were ascertained
based on the criterion of minor allele frequency 40.1
were near perfect at detecting the correct value of K
(Figure 2b).

Single loci and genetic differentiation
For all divergence times tested, the average SNP locus
had considerably less power than the average STRP
locus to detect genetic differentiation between isolated
populations (Figure 3). For all divergence times 40.2 Ne

generations, SNP loci showed B25% the power of STRP
loci at the a¼ 0.05 level. SNP loci ascertained on the basis

Figure 1 Power of SNPs and STRPs to detect population structure. SNP and STRP curves indicate the minimum number of loci needed to
detect population structure with (a) 0.95 power or (b) 0.99 power. In this and all subsequent figures, points indicate parameter combinations
that were tested in simulations; points are connected by lines for ease of interpretation. Unless otherwise noted, all simulations were run
under the condition of no gene flow.
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of heterozygosity 40.2 in an ascertainment sample of
five chromosomes performed better (Figure 3). However,
ascertained SNP loci still only possessed B50% of the
power of non-ascertained STRP loci at the a¼ 0.05 level
for all divergence times 40.2 Ne generations.

Gene flow
For small data sets, power to detect the presence of
structured populations was markedly reduced by a
single migrant per generation (Nem¼ 1.0). At divergence
times 40.15 Ne generations, small data sets of both
marker types were similarly affected by modest gene
flow, showing 30–50% reductions in power (Figure 4a: 10
STRPs; Figure 4b: 100 SNPs). 25-STRP and 200-SNP data

sets were less affected by gene flow at the level of
Nem¼ 1 (Figure 4).

STRP mutation
Mutation rate: Increasing STRPmutation rate by an order
of magnitude (y¼ 10 vs y¼ 100; both SMM) resulted in a
significant reduction in power for simulations of 15 STRP
data sets under conditions of no gene flow (Figure 5a).
While y¼ 10 data sets reached 40.90 power at a diver-
gence time of B0.15 Ne generations, y¼ 100 data sets did
not obtain40.90 power until B0.30 Ne generations. When
the same simulations were run using an IAM model,
thereby eliminating homoplastic alleles from data sets,
y¼ 100 data sets failed to show increased power with
divergence time, whereas y¼ 10 data sets showed a
dramatic improvement in power relative to y¼ 10, SMM
data sets (Figure 5a).

Homoplasy: As expected under an SMM, homoplasy as
measured by SHI (Figure 5b) increased significantly with
y, plateauing at B0.55 for y¼ 100 at 0.1 Ne generations
and reaching B0.20 for y¼ 10 at a divergence time of
1.04 Ne generations. For y¼ 10 data sets, SHI increased
slightly across the entire range of divergence times
tested, indicating continued accumulation of homoplasy.
SHI failed to increase beyond a divergence time of 0.1 Ne

generations for y¼ 100 data sets. The plot of SHI for
GSM-modeled data sets (y¼ 10) closely tracked that of
SMM (y¼ 10) data sets (Figure 5b). Thus, despite a
doubling of diversity at GSM modeled loci (see the
section ‘STRP mutation model’), this mutation model did
not affect levels of homoplasy. As expected, IAM
modeled data sets were free of homoplasy (Figure 5b),
validating our method for approximating an infinite
alleles mutation process at STRP loci.

STRP mutation model: GSM (P¼ 0.42, y¼ 10) modeled,
15-STRP data sets outperformed SMM-modeled
data sets, though the effect was only marginal for
divergence times 40.15 Ne generations (Figure 5c). The
number of alleles at GSM (P¼ 0.42, y¼ 10) modeled
loci were roughly double that of SMM loci: 17.1 and 8.3

Figure 2 Ability of SNPs and STRPs to detect five simulated populations. All simulations were simulated with a divergence time of 0.16 Ne.

Figure 3 Power of individual SNPs and STRPs. For each set of
parameter values tested, 1000 SNP and 1000 STRP loci were
individually tested for significant differentiation using the prob-
ability test of genic differentiation in GENEPOP. Loci used to
generate the ascertained SNP were ascertained using an ascertain-
ment sample of 25 chromosomes from one of the two populations.
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alleles/locus for GSM and SMM loci, respectively (based
on the metapopulation, averaged over 1000 simulated
loci).

SNP haplotypes
15-SNP-haplotype data sets (y¼ 1, see Materials and
methods) offered near identical performance to 15 STRP

Figure 4 Effect of gene flow on power of SNPs and STRPs to detect population structure. The effect of one migrant per generation on the
power to detect population structure for data sets comprising (a) 10 or 25 STRPs; (b) 100 SNPs.

Figure 5 Effect of mutation rate and model on the power of STRPs to detect population structure. (a) power of 15 STRP data sets (simulated
with y¼ 10 or y¼ 100) to detect population structure under IAM and SMM; (b) homoplasy as measured by SHI for y¼ 10 and y¼ 100, under
the SMM, as well as y¼ 10 under the GSM (P¼ 0.42) and IAM; (c) power of 15 STRP data sets to detect population structure under SMM and
GSM (P¼ 0.42). All simulations were run under the condition of no gene flow.
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data sets in STRUCTURE analyses. Increasing marker
number from 15 to 35 did less to improve the power of
SNP haplotype data sets than STRP data sets (Figure 6a).
The number of polymorphic loci comprising a simulated
SNP haplotype varied from run to run. The average
number of polymorphic loci per haplotype ranged from
5.47 to 7.04 for divergence times of 0.02 and 0.40 Ne

generations, respectively.
We also analyzed the power of individual SNP

haplotypes and their component SNPs to diagnose
genetic differentiation between populations. Figure 6b
illustrates the increase in power that resulted from the
combination of completely linked SNPs. For divergence
times o 0.1 Ne generations, individual SNP haplotypes
showed only modest improvement in power relative to
the average individual SNP comprising them. For
divergence times 40.15 Ne generations, however, an
individual haplotype possessed roughly double the
power of its average component SNP.

Ascertainment bias
In modeling ascertainment bias, we varied the size of
subsamples used to ascertain loci: 5 (SNPs only), 25 or 50
samples from one of the two populations. For 15-STRP
data sets, although ascertainment produced a marked
increase in power relative to the use of non-ascertained
data, the size of the ascertained subsample did not affect
the magnitude of this increase (Figure 7a). The same was
largely true of 35-SNP data sets. However, the increase in
power due to ascertainment was greater for SNPs than
STRPs. Also, for divergence times o0.14 Ne generations,
SNP data sets based on ascertained subsamples of five
showed a power increase that was 25–100% greater than
data sets based on ascertainment subsamples of 25. For
the same divergence times, ascertained subsamples of 50
showed a less dramatic increase in power.

Figures 7c and d show the average heterozgyosity
(across 100 replicates) for the reference population from
which the ascertainment sample was drawn and the non-
reference population. Although the graphs are based on

data from ascertainment subsamples of 25 for STRPs
(Figure 7c) and five for SNPs (Figure 7d), near identical
results were obtained when different ascertainment
subsample sizes were plotted. STRP ascertainment led
to small differences in diversity between the reference
and non-reference population: B7% lower heterozygos-
ity in the non-reference population at 0.32 Ne generations
(Figure 7c). SNP ascertainment, on the other hand, led to
samples in which the reference population was much
more diverse than the non-reference population: B37%
lower heterozygosity in the non-reference population at
0.4 Ne generations (Figure 7d).

Admixture
Regardless of whether P¼ 0.1 or 0.5 and whether the
divergence of the parent populations occurred 0.15 or 0.4
Ne generations ago, K¼ 1 consistently showed a signi-
ficantly larger log-likelihood score when the simulated
sample was drawn from the admixed population alone.
The false-positive rate (the frequency at which K¼ 2 was
significant) was o0.05 for all parameter value combina-
tions. In the case where the simulated sample consisted
of equal number of individuals from the admixed
population and one parent population, marker type,
age of divergence and admixture proportion p all
impacted the power to detect two populations in the
sample (Table 2). Both 10-STRP and 100-SNP data sets
had low power to detect two populations when P¼ 0.5,
though 100-SNP data sets were much better than 10-
STRP data sets when the divergence time between parent
populations was more ancient. Both marker types had
power X0.9 when P¼ 0.1 and the divergence of the
parent populations was 0.4 Ne generations ago. The
generally greater power of 100-SNP data sets to detect
two populations in the admixture case was accompanied
by a larger fraction of individuals with minor ancestry
proportions o0.05 (Table 2). Similarly, the proportion of
individuals with minor ancestry proportions 40.4 was
often much smaller for 100-SNP data sets than 100-STRP
data sets (Table 2).

Figure 6 Power of SNP haplotypes. (a) Comparison of the power of SNP haplotype and STRP data sets to detect population structure using
STRUCTURE. (b) Comparison of the power of single SNP haplotypes and their component SNPs to detect significant population
differentiation using GENEPOP. The data points are each derived from the simulation of 1000 SNP haplotypes.
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Discussion

In the context of detecting population structure, several
recent studies have examined the power or informative-
ness of SNP, STRP and SNP haplotype loci using
simulations or empirical data (Liu et al., 2005; Ryman
et al., 2006; Narum et al., 2008; Smith and Seeb, 2008;
Morin et al., 2009). In this study, we aimed to provide a
more detailed comparison of these marker types with
applicability to a wide variety of species by focusing on
several factors expected to affect the ability to detect
population structure. These factors included divergence
time, gene flow, marker number, ascertainment bias,
STRP mutation rate and STRP mutation model. Because
of its popularity among empirical researchers and its

ability to handle multi-locus data sets, we mainly
focused on STRUCTURE analysis and scenarios where
a hypothesis of population structure was not proposed.
However, we also performed a limited number of exact
tests (probability test of population differentiation) on
individual SNP, STRP and SNP haplotype loci where
population membership was specified a priori. Collec-
tively, the results suggest that our conclusions are
broadly relevant to studies both with and without
explicit hypotheses of population structure.

Certainly, there are many other methods for inferring
population structure. One of particular importance is
principal components analysis (PCA), first introduced in
this context more than 30 years ago (Menozzi et al., 1978)
and today popularly implemented in the program

Figure 7 Effect of ascertainment bias. (a) 15-STRP data sets. The two ascertained curves are derived from ascertainment subsamples of 25 or
50 alleles from one population and are highly coincident. (b) 35-SNP data sets; (c) average heterozygosity (across 100 replicates) at STRP loci
of the reference population from which the ascertainment subsample of 25 was drawn and the non-reference population; (d) same as C for
SNPs, except that the ascertainment subsample was 5.

Table 2 The effect of sampling from an admixed population on inferred ancestry and the power to detect two populations

Admixture proportion, P Divergence time¼ 0.15 Ne generations Divergence time¼ 0.4 Ne generations

100-SNP 10-STRP 100-SNP 10-STRP

0.1 Power 0.56 0.24 0.90 0.93
MAPo0.05 0.508 0.01 0.699 0.324
MAP40.4 0.347 0.596 0.041 0.085

0.5 Power 0.07 0.0 0.39 0.01
MAPo0.05 0.035 0.029 0.047 0.023
MAP40.4 0.823 0.947 0.516 0.850

Abbreviations: SNP, single nucleotide polymorphisms, STRP, short tandem repeat polymorphisms
Divergence time refers to the time since the divergence of the parent populations contributing to the admixed population. MAP abbreviates the
minor ancestry proportion, which is the proportion of individuals in all 100 simulated data sets with a minor ancestry either o0.05 or 40.4.
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SMARTPCA (Patterson et al., 2006). PCA offers several
advantages, including the capacity to analyze variation
at several hundred thousand SNPs in less than a minute
and produce graphically intuitive output. The ability
to efficiently analyze thousands of SNPs is especially
attractive, as large data sets take hours if not days to
analyze in STRUCTURE. We stress that the restriction of
our simulation study to primarily STRUCTURE analysis
is not meant to recommend its use over other methods.
Below, we include several suggestions for empirical
studies of population structure based on our results.

Time scale
When a panmictic population splits into two isolated
populations, all genetic diversity found within these
daughter populations is initially descended from the
parent population. Unless the daughter populations
sample diversity from the parent population unevenly
(due to a small parent population or other biological/
ecological factors), genetic data will fail to distinguish the
daughter populations from one another for some period
of post-divergence time. In other words, spatial but not
genetic structure exists. As long as gene flow is limited,
genetic structure eventually arises through changes in
allele frequencies due to drift and the emergence of
derived alleles in one population or another.

STRP loci in the parent population should show
greater allelic diversity than SNP loci, thereby providing
greater opportunity for early genetic differentiation of
the daughter populations due to random drift. In
addition, the high rate of STRP mutation suggests private
STRP variants should appear and accumulate more
quickly than new SNPs. Our results support the general
expectation that the greatest power gap between SNPs
and STRPs is found when divergence times are small.
For divergence times o0.24 Ne generations, detection of
population structure with 40.95 power requires 5–15
times as many SNPs as STRPs (Figure 1). If gene flow
and other complicating factors are ignored, the superior
efficiency of STRP data decays rapidly as divergence
time increases; marker choice becomes nearly irrelevant
for divergence times 40.40 Ne generations. Indeed, o50
SNPs are needed to detect structure with 40.95 power
for divergence times 40.32 Ne generations. For popula-
tions with small Ne and short generation time, 0.32 Ne

generations represent a relatively small number of years.
Even for non-model organisms, the development of 50
unlinked SNP markers is a realistic objective.

Levels of homoplasy at STRP loci accumulate quickly
(o0.1 Ne generations) and then do not increase greatly
with divergence time for a given value of y (Figure 5b;
SMM). If the number of homoplastic alleles did increase
significantly with divergence time, the number of STRP
loci needed to attain high power might begin to increase
at higher divergence times following the decline at
intermediate time points. Instead, STRP power at
divergence times greater than 0.20 Ne generations
remains constant (for example, Figure 1).

The gap between the number of SNPs and STRPs
needed to detect genetic structure in populations that
diverged o0.1 Ne generations ago could soon become
irrelevant due to advances in sequencing technology that
make developing and genotyping large numbers of SNPs
routine (Mardis, 2008). However, it is worth remember-

ing that divergence times less than those sampled in
our simulations (o0.02 Ne generations) are relevant
to populations with large Ne or generation time
(for example, 0.01 Ne generations is equivalent to 100
years for a univoltine organism with Ne¼ 10 000). The
exponential form of the SNP curves in Figure 1 suggests
that detection of such recent population structure may
require very large (perhaps impossible) numbers of
unlinked SNPs. This corroborates a recent empirical
result in maize (Hamblin et al., 2007) as well as the ‘phase
change’—a threshold FST level, below which even tens of
thousands SNPs are unable to detect differentiation—
shown by Patterson et al. (2006).

Finding the true number of populations
Analysis of the ability of SNPs and STRPs to detect a
specific number of populations at a divergence time of
0.16 Ne generations revealed a remarkable disparity.
Whereas 100-STRP data sets unambiguously identified
five populations (the true, simulated number), 10 000
SNP data sets still called the wrong number of popula-
tions with appreciable frequency (Figure 2). The high
proportion of simulated SNP loci with low minor allele
frequencies (B20% singletons) contributed to this per-
formance gap. However, we note that SNP data sets
generated in two-population simulations possessed the
same proportion of low frequency alleles. Yet, the
discrepancy in performance between SNPs and STRPs
was much smaller in magnitude in these cases (Figure 1:
35 STRPs vs 200 SNPs to obtain 40.95 power at the same
divergence time of 0.16 Ne generations). SNP data sets in
which singletons were eliminated during ascertainment
(Figure 2b: 1000 SNPs, MAF40.1) did much better at
identifying the number of populations. Nevertheless,
1000 ascertained SNPs were required to equal the
performance of 100 non-ascertained STRPs.
To explain the greater disparity between SNP and

STRP power associated with increased population
number, consider the probabilities that two populations
isolated for x generations are differentiated to a degree
detectable by some number of SNPs or STRPs, psnp(x) and
pstrp(x). Next, consider the ratio R2¼ psnp(x)/pstrp(x),
which assesses the relative abilities of SNP and STRP
data sets to detect two populations. If we consider five
isolated populations (10 pairwise comparisons) and
make the simplifying assumption that differentiation of
each population pair is independent of every other pair,
the relative ability of SNP and STRP data sets to detect
differentiation between all populations is: R5¼ psnp(x)10/
pstrp(x)10. For psnp(x)¼ 0.4 and pstrp(x)¼ 0.5, R2¼ 0.8 and
R5¼ 0.107. This thought experiment illustrates the
compound effect of each additional population on the
disparity between SNP and STRP power.

The power of individual SNPs and STRPs
Comparison of the power of individual SNPs and STRPs
to detect genetic differentiation was performed using an
exact probability test (Raymond and Rousset, 1995).
Interestingly, while the power of an individual SNP
never approaches that of an individual STRP (Figure 3),
multi-locus SNP and STRP data sets show roughly
equal power for divergence times 40.3 Ne generations
(Figure 1). This finding indicates that some SNP loci
outperform the average SNP by a large margin, which is
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in agreement with previous studies (Rosenberg et al.,
2003; Turakulov and Easteal, 2003; Liu et al., 2005).

Gene flow
As gene flow increases, subpopulations become less
genetically distinct from one another, which should
make it more difficult to detect the presence of two
populations. We simulated gene flow at the level of
Nem¼ 1 and quantified the effect on power to detect
structure for both marker types. Declines in power
associated with gene flow (B30–50% less power;
Figure 4) were reduced by modestly larger data sets (25
vs 10 STRPs and 200 vs 100 SNPs). These results support
three related points: (1) at least for modest levels of gene
flow (Nemo¼ 1), adding markers reduces the negative
effects of gene flow on power to detect structure; (2)
power curves in Figure 1, based on completely isolated
populations would shift up and to the right in response
to gene flow; and (3) when certain that recently separated
study populations are connected by appreciable gene
flow and additional samples are not available, it is worth
the effort to develop and use at least twice as many
markers as suggested by Figure 1.

It may seem difficult to distinguish the degree to
which declines in power are due to gene flow eroding the
signal of two populations and the degree to which gene
flow actually causes the null hypothesis of panmixia to
become true. After all, at some threshold value of Nem,
the divergent populations truly become a single, ran-
domly mating population. However, the recovery of
Nem¼ 1 power curves in Figure 4 (25 STRP and 200 SNP)
indicates that, for this level of gene flow, objective
population structure still exists. The reduction in power
shown by the 100 SNP and 10 STRP data sets in response
to one migrant reflects the relative ineffectiveness of data
sets with these sizes to detect the existing structure.

STRP mutation rate and model
STRPs show high mutation rates, frequent recurrent
mutational events and potentially high levels of homo-
plasy. The first of these characteristics makes STRP loci
attractive candidates for population structure analysis,
whereas the latter two suggest caution. Although high
STRP mutation rates increase expected levels of varia-
tion, the emergence of homoplastic alleles constrains
variation from reaching maximum levels (Rousset, 1996).
Understanding the mutation-rate-dependent effect of
homoplasy on variation is of great importance to
population structure analysis, since novel variation and
homoplasy have opposite effects on the power of a data
set to detect population structure.

Our results suggest a complicated interaction between
the creation of novel variation and the generation of
homoplasy. Not surprisingly, increasing y from 10 to 100
roughly triples levels of homoplasy (Figure 5b) and
decreases the power to detect population structure
(Figure 5a). Unexpectedly, however, elimination of
homoplasy from the data (IAM simulations) increases
power when y¼ 10, yet causes power to crash when
y¼ 100 (Figure 5a). Although a full understanding of this
seeming paradox will require further research, we sug-
gest one potential solution. First, consider the difference
between y¼ 10 IAM and SMM curves. With sufficiently
low mutation rates (for example, yp10), the short,

terminal branches of genealogies will often lack muta-
tional events. In this case, the majority of mutations fall
on long, internal branches; the absence of homoplasy
(IAM) ensures that these mutations mark true relation-
ships between samples and thereby increases power to
detect relationships resulting from spatial population
structure. Now, consider the difference between y¼ 100
IAM and SMM curves. If mutation is sufficiently
common, a majority of terminal branches will bear
mutations. This makes it nearly impossible to detect
structure under the IAM, because terminal branch
mutations will differentiate all samples from one another.

An interesting consequence of this interpretation is
that homoplasy actually increases the power of y¼ 100
data sets. For an STRP evolving in the absence of
homoplasy (IAM), a single mutation erases the connec-
tion of a lineage to all its ancestors. Each of the numerous
terminal branch mutations in y¼ 100, IAM simulations
dispossesses a lineage from the rest of the genealogy.
Under the SMM, on the other hand, evolution of allele
size is a random walk that oscillates about the ancestral
allele size. Although mutation rate impacts the variance
of changes in allele size over time in a structured
population, the expected change in allele size is 0
(Moran, 1975; Pritchard and Feldman, 1996). In the short
term, even high mutation rates are unlikely to allow
allele state to wander too far from that of ancestral allele
size. Alleles that share recent ancestors therefore have an
appreciable probability of occupying the same state
when finally sampled.

Empirical data suggest that STRP loci do not neatly
conform to an SMM (Di Rienzo et al., 1994; Ellegren,
2000). We investigated the effect of multi-step mutation
on STRP evolution and the consequences for population
structure analysis. We simulated a GSM with parameters
that ensured frequent multi-step mutations (P¼ 0.42).
This extreme value was used because we reasoned that
any differences due to a mutational model would rarely
be more severe than those observed using this value.
Despite doubling the number of alleles, GSM-modeled
loci showed homoplasy roughly equal to that of SMM-
modeled loci (Figure 5b) and did not outperform SMM-
modeled data sets by a wide margin (Figure 5c). These
results are in agreement with a previous study that
showed rough agreement between SMM- and GSM-
derived data (Estoup et al., 2002).

SNP haplotypes
SNP haplotypes provide high variation (by summing
per-site y over many sites) with little or no homoplasy.
SNP haplotypes provided power roughly comparable
with that of STRP loci (Figure 6a), despite a simulated 10-
fold greater mutational pressure at STRP loci (y¼ 10 vs
y¼ 1). This result provides further evidence for the large
negative influence of STRP homoplasy on the ability to
detect structure.

The synergistic effect of combining SNPs into haplo-
types is evident in Figure 6b. However, some qualifying
statements are warranted. Recombination disrupts the
shared genealogical history of a sequence and should
therefore decrease the power of haplotypes to detect
structure. Because we were focused on the role of
mutation in detecting population structure, we did not
model recombination. Nevertheless, the negative effect
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of recombination on power to detect structure must be
considered if longer haplotypes are used or if the species
in question is known to have a small y:r ratio. In such
cases, the negative influence of recombination on the
power of longer SNP haplotypes to detect population
structure may be quite significant. Our simulations also
assumed that haplotype phase was known, thereby
ignoring the error associated with assigning phase
probabilistically. In this sense, our assessment of SNP
haplotype power is also an overestimate. On the other
hand, we coded SNP haplotypes for STRUCTURE
analysis by characterizing each unique haplotype as a
distinct allele. Thus, the relationships between haplo-
types that differ at only one segregating site were treated
the same as those between haplotypes that differ at every
segregating site. Analyses that consider the distance
between haplotypes (for example, haplotype networks)
are likely to extract greater power from SNP haplotype
data.

Ascertainment bias
Ascertainment of SNPs and STRPs for use in detection of
population structure is generally biased (Rosenblum and
Novembre, 2007; Vali et al., 2008). Specifically, highly
heterozygous loci are expected to increase the ability to
detect structure (Rosenberg et al., 2003). Our results
support the practice of selecting loci with high hetero-
zygosity for the purpose of population structure analysis. The
power of SNP and STRP data sets increases dramatically
when only loci with heterozygosity X0.2 (SNPs) or
X0.85 (STRPs) are used (Figures 7a and b). Size of the
ascertainment sample matters relatively little, though a
small ascertainment sample may be preferable. In the
case of SNPs, for example, ascertainment based on a
sample of only three diploid individuals is likely to
improve power to a greater degree than a sample of 10 or
more individuals (Figure 7b). At least in the case of SNP
data, the improvement in power largely results from the
elimination of singletons, which are seldom uncovered in
an ascertainment sample of 2 or 3 individuals.

An important caution regarding an intentionally
biased ascertainment process is that the resultant data
set may seriously compromise its use in estimating
population size or the timing/size of demographic
change (Wakeley et al., 2001). For example, drawing an
ascertainment sample from a single subpopulation can
result in the selection of loci that are highly variable in
this population but not in others. In this regard, we
observed a dramatic difference between SNP and STRP
loci. Heterozygosities of the reference population (from
which the ascertainment sample was drawn) and non-
reference population differed by only B7% at STRP loci
at a divergence time of 0.32 Ne generations (Figure 7c).
On the other hand, the difference was B35% at SNP loci
(Figure 7d). One interpretation of this result is that STRP
loci highly heterozygous in the ascertainment sample
indicate a high mutation rate at the locus, which will
affect variability at the locus regardless of population. On
the other hand, the variability showed by an SNP locus is
more likely to result from a mutation that took place
within the reference population in post-divergence time.
Although this bias is advantageous with regard to
population structure analysis, it frequently leads to the
use of loci that are invariant in the non-reference

population and decidedly uninformative with regards
to demographic history. As most studies of population
biology use genotype data for multiple forms of infer-
ence, it is important to remember this consequence of
SNP ascertainment bias.

Admixture
Sampling from an admixed population is potentially
misleading. For example, might we mistake a sample
taken from an admixed population and one of its parent
populations for one or three populations rather than
two? A chief attraction of STRUCTURE analysis is that
ancestry proportions of individuals are estimated. These
ancestry proportions may provide clues as to whether
admixture has taken place. For example, if we sample
100 individuals from a contiguous ‘population’, run
STRUCUTRE with K¼ 2, and find that the inferred
ancestries of most individuals lean heavily towards one
inferred cluster or the other, this suggests that our
sample covered two genetically distinct populations. On
the other hand, if the inferred ancestries of most
individuals are evenly distributed between both inferred
clusters, this suggests we have sampled a single, recently
admixed population. The latter scenario is exactly what
we observed when we simulated a sample drawn from a
very recently admixed population. Regardless of marker
type, age of the divergence between parent populations,
or admixture proportions, we were never misled into
concluding that we had sampled from two populations.
Next, we simulated a sample consisting of the same

number of individuals from the admixed population and
one parent population. In these simulations, the parent
populations had diverged from one another either 0.15 or
0.40 Ne generations ago. In the two-population simula-
tions detailed above, 10-SNP and 100-STRP data sets
were equally powered to detect two populations: B0.68
and 1.0 at these divergence times, respectively. Here, we
are dealing with a more nuanced situation than the
straightforward population split. One population result-
ing from the parent divergence is directly sampled,
whereas the other parent population is only represented
to a partial degree in samples from the admixed
population. How does this affect power to detect two
populations?
We found that the power to detect two populations is

negatively impacted, sometimes dramatically so. In
particular, when admixture proportion P¼ 0.5 (equal
contributions from both parent populations), 10 STRPs
have no power to detect two populations (Table 2).
Decreasing P to 0.1, thereby dramatically increasing the
genetic contribution of the parent population not
sampled, improves power to detect two populations,
but it is still depressed for both SNPs and STRPs. When
sampling populations from nature with little to no
knowledge of recent admixture history, this may be a
serious impediment to successful population structure
analysis.
Why might the decline in power associated with

sampling an admixed population be more severe for
STRPs than SNPs? The higher variation at STRP loci may
be to blame. Consider a SNP locus fixed for A in one
parent population and G in the other. All members of the
admixed population will initially be heterozygous A/G.
If we sample from the A parent population and the
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admixed population, a random rise in frequency of G in
the admixed population distinguishes the two popula-
tions. On the other hand, consider a STRP locus, where
multiple alleles are contributed from each parent
population. Here, a larger number of specific allele
frequency changes are required for differentiation of the
admixed population and sampled parent population.
Namely, within the admixed population, alleles specific
to the sampled parent population must decline in
frequency whereas alleles specific to the unsampled
parent population must rise in frequency. The chance
that neutral evolution will by chance lead to this
dichotomy of allele frequency changes is lower than in
the SNP case, where a single frequency shift is required
for differentiation.
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Appendix

The details of many studies of population structure will
not overlap with the specific evolutionary and experi-
mental scenarios reported here. To aid researchers in
assessing the power of a proposed or existing data set
under scenarios of specific interest, we provide the Cþþ
programMARKSIM. MARKSIM extends MS by enabling
the user to simulate microsatellite data sets under all
mutational models presented here. Simulated data sets
are in output in STRUCTURE or whitespace-delimited
format. SNP-based data sets—consisting of SNPs, SNP
haplotypes or SNPSTRs (a composite marker consisting
of a linked SNP and microsatellite)—may also be
produced. In the case of SNP data, the user may also
choose to output the simulated data in SMARTPCA
format. MARKSIM has been tested on Mac OS X and a
number of Linux distributions and is available at our
laboratory website at: http://payseur.genetics.wisc.edu/
resources.htm.
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