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Recently, an effective Bayesian shrinkage estimation
method has been proposed for mapping QTL in inbred line
crosses. However, with regard to outbred populations, such
as half-sib populations with maternal information unavailable,
it is not straightforward to utilize such a shrinkage estimation
for QTL mapping. The reasons are: (1) the linkage phase of
markers in the outbred population is usually unknown; and
(2) only paternal genotypes can be used for inferring QTL
genotypes of offspring. In this article, a novel Bayesian
shrinkage method was proposed for mapping QTL under the
half-sib design using a mixed model. A simulation study
clearly demonstrated that the proposed method was powerful

for detecting multiple QTL. In addition, we applied the
proposed method to map QTL for economic traits in the
Chinese dairy cattle population. Two or more novel QTL
harbored in the chromosomal region were detected for each
trait of interest, whereas only one QTL was found using
traditional maximum likelihood analyses in our earlier
studies. This further validated that our shrinkage estimation
method could perform well in empirical data analyses and
had practical significance in the field of linkage studies for
outbred populations.
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Introduction

Many economically important traits and disease-resis-
tant traits in animals are controlled by multiple genes,
and the locations of these genes on the chromosomes are
called quantitative-trait loci (QTL). With the develop-
ment of molecular technology, these QTL can be
localized and eventually the actual genes within these
QTL can be cloned. Outbred populations are very
ubiquitous in domestic animals; moreover, paternal
half-sib families are quite often used for mapping QTL
in such populations, in which the phenotypes of the
offspring and genotypes of paternal parents and off-
spring are used in the analysis.

Numerous QTL mapping methods for half-sib design
have been proposed. Georges et al. (1995) developed a
maximum likelihood method for single-family analysis
and implemented it to map QTL of milk production
traits in the US Holstein population. The regression
method of interval mapping proposed by Knott et al.
(1996) is a common method used to map QTL in half-sib
families, particularly in dairy cattle (Fulker and Cardon,
1994; Spelman et al., 1996; Zhang et al., 1998; Velmala
et al., 1999; Heyen et al., 1999; de Koning et al., 2001;
Nadesalingam et al., 2001; Ron et al., 2001; Plante et al.,

2001; Freyer et al., 2002; Rodriguez-Zas et al., 2002; Viitala
et al., 2003). Grignola et al. (1996a, b) proposed a restricted
maximum likelihood method and it was used by Zhang
et al. (1998); Freyer et al. (2002) and Liu et al. (2004) to map
QTL in Holstein populations in America, Germany and
Canada, respectively. All these methods are based on
models of a single QTL, and are hard to be extended to
handle multiple QTL. If the trait is controlled by multiple
QTL, the single QTL model-based estimation of QTL
position and effect may be biased because of the presence
of multiple linked QTL on the same chromosome. In the
situation where the effects of two-linked QTL are in the
opposite direction, the QTL effects may cancel out each
other and none of them can be detected. On the other
hand, if their effects are in the same direction, a ‘ghost’
QTL may be mapped between the two real QTLs. To
overcome the above problems, Jansen (1993) and Zeng
(1994) independently proposed a composite interval
mapping (CIM) method. The major problem in the CIM
method is that it is difficult to determine the number of
markers as cofactors, because too many nuisance
markers will decrease the detection power and too few
markers cannot control the genetic background. Kao et al.
(1999) proposed a multiple interval mapping (MIM)
approach that took multiple QTL simultaneously into
consideration. However, MIM only detects epistasis
between main-effect QTL and cannot identify QTL with
small effects. Furthermore, the CIM and MIM methods
were originally developed for QTL mapping in inbred
populations rather than outbred populations.

Recently, Bayesian approach has been developed for
mapping multiple QTLs, in which the number of QTL is

Received 1 December 2008; revised 11 May 2009; accepted 15 May
2009; published online 15 July 2009

Correspondence: Professor Q Zhang, College of Animal Science and
Technology, China Agricultural University, Beijing, 100094, People0s
Republic of China.
E-mail: qzhang @ cau.edu.cn

Heredity (2009) 103, 368–376
& 2009 Macmillan Publishers Limited All rights reserved 0018-067X/09 $32.00

www.nature.com/hdy

http://dx.doi.org/10.1038/hdy.2009.71
mailto:qzhang @ cau.edu.cn
http://www.nature.com/hdy


considered as a parameter to be estimated. Within the
Bayesian multiple QTL mapping framework, several
algorithms have been proposed, such as the reversible
jump Markov chain Monte Carlo (RJMCMC) (Sillanpää
and Arjas, 1998; Stephens and Fisch, 1998), the stochastic
search variable selection (SSVS) (Yi, 2004) and the
Bayesian shrinkage method (Xu, 2003; Wang et al., 2005;
Xu, 2007). The key feature of the RJMCMC algorithm is
that the number of QTL is treated as an unknown model
parameter and is estimated through Bayesian model
selection. A shortcoming of RJMCMC is that the Markov
chain may converge slowly and have a poor mixing
character due to model dimension changing with the
number of QTL (Satagopan and Yandell, 1996; Yi and Xu,
2002; Liu et al., 2007; Yi et al., 2007). Compared with
RJMCMC, SSVS and the Bayesian shrinkage estimation
can overcome this issue to some extent. In SSVS, a
previous mixture is adopted to explicitly make a
probabilistic statement about the inclusion of a QTL,
and the markers with significant effects can be identified
as those with higher posterior probabilities involved in
the model (Yi, 2004). In the Bayesian shrinkage analysis,
each marker or marker interval is assumed to be
associated with one QTL. If a marker or a marker
interval is not associated with any QTL, the correspond-
ing QTL effect will be shrunk toward zero. Accordingly,
both SSVS and the Bayesian shrinkage estimation can
largely avoid the problems existing in RJMCMC (Xu
et al., 2005; Yang et al., 2006, 2007). A specific advantage
of the Bayesian shrinkage estimation is that it can handle
the situation where the number of unknown parameters
is more than the number of observations. Recently,
the Bayesian shrinkage estimation has been proposed
to map multiple QTLs and epistatic QTLs in inbred line
crosses (Xu and Jia, 2007). Compared with the Bayesian
shrinkage method, SSVS is not optimal for QTL
parameter estimation because the previous variance of
QTL is ascertained arbitrarily to some extent (Wang et al.,
2005). The results from simulations and real experiments
also clearly showed that the Bayesian shrinkage estima-
tion outperforms SSVS (Wang et al., 2005), that is, it could
expedite the convergence process of the Markov chain
and decrease the chance of missing QTL.

Although the Bayesian shrinkage method is effective
for mapping QTL in inbred line crosses, it is not
straightforward to be extended for use in outbred
populations. The difficulty of mapping QTL in outbred
populations is that the marker linkage phases are usually
unknown and need to be inferred using the marker
information of the offspring and their parents, and then
the probability of each QTL genotype can be estimated
using the reconstructed linkage phases. Motivated by the
obvious advantages of the Bayesian shrinkage mapping
over other existing methods, we proposed a novel
Bayesian shrinkage method to map multiple QTLs in
half-sib families in this study. Meanwhile, the perfor-
mance of the proposed method was demonstrated using
simulated data and a real data set of dairy cattle.

Methods

The multiple QTL model
A specific paternal half-sib population was taken into
consideration in this study, where the maternal informa-

tion on phenotypes and genotypes was not available.
According to the feature of half-sib population,
the phenotypic observation of each individual is
modeled as:

yi ¼ mþ
Xq
k¼1

xikgk þ ui þ ei ð1Þ

where yi is the phenotypic observation of individual i, m
is the overall mean, gk is the substitution effect of QTL k,
q is the number of QTL, xik is an indicator variable of
QTL k with value 1 or �1 corresponding to the two
paternal QTL alleles Q and q carried by individual i, uj is
the residual polygenic effect following the distribution
N(0, As2

u ) with A being additive genetic relationship
matrix and su2 the variance of the polygenic effect,
and ei is the residual error following the distribution
N(0, Ise

2).

The posterior and previous distributions
In multiple QTL mapping, the estimation of the number
of QTL is an important aspect. In the Bayesian shrinkage
analysis, the number of QTL can be estimated through
shrinking the predefined maximum number of QTL to
the true number of QTL in a natural way instead of
estimating it directly. The parameters of direct interest in
model (1) are the QTL position vector k¼ ðl1 l2 � � � lqÞ0
and the QTL effect vector g ¼ ðg1 g2 � � � gqÞ0 . The whole
set of unknown parameters in model (1) is
h0 ¼ ðm; k0; g0; s2

1; s
2
2; � � � ; s2

q;X;u
0; s2

u; s
2
e Þ, here X is the

vector of the indicator variables of QTL genotypes of
all individuals, and u is the vector of the residual
polygenic effects of all individuals. The posterior
distribution of h given the observed data D is

pðhjDÞ / pðDjh0Þpðh0jYÞ ð2Þ
where p(D|h) is the likelihood of the data given h, and
p(h|H) is the previous density of h with hyper parameter
vector H.

In this study, we assume that the overall mean m has a
uniform previous distribution, the QTL effect gk (k¼ 1,
2,y, q) has a normal previous distribution gk � Nð0; s2

kÞ
with pðs2

kÞ / 1=s2
k , the residual polygenic effects have a

multivariate normal previous distribution u � Nð0; As2
uÞ

with pðs2
uÞ / 1=s2

u , the residual error effects follow
a normal previous distribution e � Nð0; I s2

e Þ with
pðs2

e Þ / 1=s2
e, and the previous probability of the position

of QTL k is pðlkÞ / 1=dk with dk being the length of the
marker interval that QTL k falls in.

For QTL mapping, there are two sources of observed
data, the phenotypic data y and the marker data M,
which are conditionally independent. Therefore, the
likelihood in (2) can be written as

pðDjhÞ ¼ pðy;MjhÞ ¼ pðyjhÞpðMjhÞ
¼ pðyjhÞpðMjX; kÞ ð3Þ

Assuming normal distribution of y, the likelihood of y
given h is

pðyjhÞ ¼
YN
i¼1

fðyiÞ

/ s�2N
e exp

1

2s2
e

XN
i¼1

yj � m�
Xq
k¼1

xikgk � ui

 !" # ð4Þ
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where N is the total number of individuals in all of the
half-sib families.

pðM X; kj Þ ¼
YN
i¼1

pðM;Xi�jkÞ
pðXi�jkÞ

where Xi� ¼ ðxi1 xi2 � � � xiqÞ0. Both pðM;Xi�jkÞ and pðXi�jkÞ
can be derived from a Markov model under the
assumption of no segregation interference. For ease of
illustration, three neighboring markers are used as an
example to explain the specific expression of pðM;Xi�jkÞ
and pðXi�jkÞÞ as below:

pðmi1; xi1;mi2; xi2;mi3jkÞ
¼ pðmi1Þpðxi1jmi1; kÞpðmi2jxi1; kÞpðxi2jmi2; kÞpðmi3jxi2; kÞ
pðxi1; xi2jkÞ ¼ pðxi1Þpðxi2jxi1; kÞ;

where p (mi1)¼ 1/2

The full conditional posterior distributions and MCMC

sampling
To implement the Bayesian estimation via the MCMC
algorithm, the full conditional posterior distributions of
each parameter need to be derived from the joint
posterior density by fixing all other parameters. Based
on these full conditional posterior distributions, the
MCMC can be implemented with the following steps:

(1) Initialize all variables with some legal values, which
can be randomly assigned within their respective
sample spaces;

(2) Update the overall mean m using A (1);
(3) Update the QTL effects gk (k¼ 1, 2y, q) using A (2);
(4) Update the residual polygenic effects ui (i¼ 1, 2y,

N) using A(3);
(5) Update the QTL variances sk

2 (k¼ 1, 2y, q) using A
(4);

(6) Update the residual polygenic variance su
2 using A

(5);
(7) Update the residual error variance se

2 using A (6);
(8) Impute the genotypes of missing markers using the

approach originally proposed by Wang et al. (2005).
The genotypes of missing markers are sampled
sequentially along the genome individual by in-
dividual in each family because the missing marker
information of different individuals is independent.

(9) Update the QTL genotype indicator variables xik
(i¼ 1, 2y, N) and QTL positions lk (k¼ 1, 2y, q);

(10) Repeat steps (2)–(9) until the Markov chain reaches a
desirable length. The details of A (1)–A (6) are given
in the Appendix.

The detailed algorithm for step (9) is described below.
To sample the QTL genotypes, the marker linkage phases
should be available. In the outbred population, the
marker linkage phases are usually unknown, so they
have to be inferred according to the marker information
of the offspring and their parents. Sampling QTL
genotype posterior samples can be achieved according
to the QTL Identity-By-Descent (IBD) probabilities
among two generations of the half-sib families. The
approach of inferring QTL IBD probability was pre-
sented by Haley and Knott (1992) and Knott et al. (1996).
Three steps are involved in this approach: (1) infer the
marker–marker linkage phases within each family

according to marker genotypes of all members in the
family; (2) infer the marker–QTL linkage phases given
the position of the putative QTL and the inferred
marker–marker linkage phases and (3) calculate the
QTL genotypic transmission probabilities in the two
generations of half-sib families using the inferred
marker-QTL linkage phases. The conditional probabil-
ities of QTL genotypes depend on the alleles inherited at
the two nearest informative markers flanking the QTL
and the recombination rates between the markers and
the QTL. As the conditional probabilities sum to unity,
only the probability for the first sire gamete need to be
calculated. For any position, the flanking markers used to
calculate these probabilities will vary from sire to sire
and from progeny to progeny within a sire. It should be
noted that for some individuals, a chosen position may
be outside the last informative marker in the linkage
group. In such cases the conditional probabilities depend
on the single nearest informative marker. For an extreme
situation where all markers in a linkage group are non-
informative, the probabilities are set to be 0.5 for both
gametes at all positions within the linkage group.

In step (9), QTL genotypes and QTL positions are
updated jointly using information of all families simul-
taneously. As the genotype of QTL depends on the
QTL position, so lk;X�kf g are sampled jointly using the
Metropolis–Hastings algorithm. Each locus is sampled
from a variable interval (Wang et al., 2005; Zhang and Xu,
2005) between the positions of the adjacent QTL. First a
novel position is proposed, and then the QTL genotypes
are sampled with the conditional probabilities of the QTL
genotypes calculated at this position. The proposed QTL
position is accepted with probability of min(1,a) (see also
Wang et al., 2005; Zhang and Xu, 2005) with

a ¼
pðlð�Þk jy;Xð�Þ

�k ; � � �Þ
pðl 0ð Þ

k jy;Xð0Þ
�k ; � � �Þ

�
qðl 0ð Þ

k Þ
qðl �ð Þ

k Þ
�
qðX 0ð Þ

�k Þ
qðX �ð Þ

�k Þ
ð5Þ

where the superscripts (*) and (0) denote the new and the
old sampled values, respectively.

The first term in (5) is the posterior ratio of the new to
the old positions and can be calculated as

pðlð�Þk jy;X �ð Þ; � � �Þ
pðl 0ð Þ

k jy;X 0ð Þ; � � �Þ
¼

Q
i

pðyijX 0ð Þ; l 0ð Þ
k ; � � �Þ:pðxð�Þik jlð�Þk ;MÞPðlð�Þk Þ

Q
i

pðyijXð�Þ; lð�Þk ; � � �Þ:pðx 0ð Þ
ik jl 0ð Þ

k ;MÞPðl 0ð Þ
k Þ

ð6Þ

where Pðlð�Þk Þ and Pðl 0ð Þ
k Þ are the previous probabilities of

the new and the old position, respectively, and

Pðlð�Þk Þ=Pðl 0ð Þ
k Þ ¼ 1 under uniform previous distribution.

The second term in (5) qðlð0Þk Þ=qðlð�Þk Þ ¼ 1 is
the proposal ratio of the new to old position and the

third term
qðX 0ð Þ

�k Þ
qðX �ð Þ

�k Þ
¼
Q

i
pðxð0Þ

ik
jyi;���ÞQ

i
pðxð�Þ

ik
jyi;���Þ

is the proposal ratio of the

QTL genotypes corresponding to the new and old positions.
In the above MCMC process, the shrinkage for QTL

parameters is achieved through step (5). Specifically, in
the absence of a QTL, the estimate of the posterior mean
for QTL effect inclines to zero so that the sampled
observations of QTL effect are close to zero, whereas a
‘true’ QTL with large effects are estimated with virtually
no shrinkage. To achieve this objective under the frame-
work of Bayesian shrinkage estimation, we allow each
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QTL effect to have its own variance parameter with a
specific previous distribution so that the variance can be
estimated through the combined information of the
observed data and its previous distribution under the
framework of Bayesian estimation.

Post-MCMC analysis
In the Bayesian shrinkage analyses, QTL detection at a
given position can be performed through the estimated
QTL effect at that position weighted by the relative
frequency of that position hit by the QTL (Wang et al.,
2005). Although this method can give a clear signal for
detecting QTL, it cannot provide a threshold level for
declaring the significance of the existence of QTL.
To overcome this limitation, a t-statistic is constructed
for declaring the significance of the QTL, which is a
special case of the Z-statistic that has been used in
multivariate mapping of QTL (Yang and Xu, 2007).
Specifically, we first divide the genome into m bins. For
each bin, the t-statistic can be expressed as

tðxlÞ ¼
bðxlÞ

sðxlÞ=
ffiffiffiffiffiffiffiffiffiffiffi
Nsam

p

where Nsam is the number of the poster samples, b(xl) and
s(xl) are the average and s.d. of the QTL effect at position
xl, respectively. Under the null hypothesis of no existence
of any QTL, t(xl) follows a standard normal distribution.
The critical value is 1.96 at the significant level of 0.05,
and 2.58 at the significant level of 0.01 for declaring
statistical significance at position xl.

Application

Simulation study
A half-sib population with 20 sire families and 800
offspring in total was simulated here. A chromosomal
region with the length of 250 cM was simulated, which
was covered by 26 evenly placed markers (10 cM per
marker interval), each with five alleles. With the
assumption of linkage equilibrium among all loci and
equal allele frequencies in the parental population, all
parents’ genotypes at each marker locus were generated
independently from the five alleles with equal prob-
ability. The genotypes of the offspring were generated
based on Mendel’s independent segregation rule and
recombination rates (calculated using the Haldane’s
mapping function) between two adjacent loci according
to the marker linkage phases in the parents.

The quantitative trait was assumed to be controlled by
five QTL. The positions and effects of these QTL are

given in Table 1. The overall mean m was set to be 0. The
residual polygenic variance and the residual error
variance were set to be 0.1 and 0.2, respectively. The
phenotypic values of the trait were simulated according
to model (1).

In the MCMC analysis, the initial values of all
unknown parameters were randomly assigned within
the respective sample spaces. A single long chain with
55 000 cycles was generated. The burn-in period was set
to be 5000 cycles, and one sample value was taken in
every 20 cycles from the remaining 50 000 cycles. The
total number of samples used for the post-MCMC
analysis was 50 000/20¼ 2500. The simulation experi-
ment was replicated 10 times.

As the results of the 10 replicates were very similar to
each other, results for only one replicate were presented
here. Figures 1 and 2 show the profiles of the weighted
QTL effects and the QTL intensities, respectively. Here,
the definition of QTL intensity was similar to that of
Sillanpää and Arjas (1998) and Yi and Xu (2000), that is,
the frequency of hits by the QTL in a sufficient small
interval (for example, 1 cM) around a particular position
against that of the whole region covered by the markers.
As expected, both profiles show five sharp peaks at the
positions of the five simulated QTLs. The role of
shrinkage is obvious: effects of intervals without QTL
shrunk to zero and thus no variable selection was
needed. The t-statistic profile (Figure 3) also shows
significant signals at the positions of the simulated QTL.
All of the five peaks of the t-statistic profile exceed the
critical value (t¼ 1.96) and no peaks elsewhere are higher
than the critical value. The estimated QTL positions and
effects (posterior means) from the 10 replicates are

Table 1 QTL parameters and their estimates for the simulated data

QTL no. Simulated QTL parameters Estimates of QTL parametersa

h2 Position Effect Bayesian shrinkage RJMCMC

h2 Position Effect h2 Position Effect

G1 0.278 27 0.5 0.261 27.6 (1.1) 0.48 (0.16) 0.253 28.6 (1.8) 0.48 (0.15)
G2 0.017 64 0.122 0.008 67.2 (4.5) 0.08 (0.15) 0.008 66.8 (6.1) 0.10 (0.38)
G3 0.166 136 0.387 0.131 137.2 (2.3) 0.334 (0.19) 0.126 138.7 (3.1) 0.312 (0.18)
g4 0.095 164 0.292 0.131 167.4 (2.8) 0.334 (0.20) 0.121 166.2 (3.3) 0.318 (0.20)
g5 0.111 206 0.316 0.106 207.3 (2.2) 0.300 (0.19) 0.096 207.5 (3.1) 0.305 (0.18)

aAverages and s.e. (in parentheses) from 10 replicates.

0.00

0.02

0.04

0.06

0.08

Chromosome (cM)

W
ei

gh
te

d 
Q

T
L

 e
ff

ec
t 

0 50 100 150 200 250

Figure 1 Posterior profile of the weighted QTL effects from the
simulation study. The arrows indicate the true QTL-simulated
positions (25, 64, 136, 164 and 206 cM, respectively).
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summarized in Table 1, showing that the Bayesian
shrinkage analysis provides quite accurate estimates of
QTL positions and effects. For further investigating the
performance of the proposed method, we set the effects
of the simulated QTL as zero, and ran the MCMC again.
It turned out that the estimates of the QTL effects were
close to zero (Figures 4 and 5), indicating that the
Bayesian shrinkage estimation method did not tend to
produce ‘pseudo QTL’.

For further validation of our proposed Bayesian
shrinkage method, we compared our method with the
common RJMCMC approach. Specifically, the RJMCMC
method was employed to analyze the same simulated
data as used for our method. In the RJMCMC process,
the complete length of the MCMC chain was 205 000, the
burn-in length was 5000 and the thinning interval was
20. The parameter estimates are summarized in Table 1
and the position estimates for the second simulated QTL
from the 10 replicates by the two methods are also
presented in Figure 6. These results show that there are
no obvious differences in the estimates of QTL effects,
their s.d. and QTL positions between the two methods.
However, the s.d. of QTL position from our method are
much smaller than that of the RJMCMC method,
indicating that our method tends to give a more precise

estimate for QTL position. In addition, although
RJMCMC can detect similar QTL signals as those
detected by our method, the estimate of the number of
QTL (estimated as the posterior mode) given by
RJMCMC is obviously biased. Specifically, the estimated
number of QTL by RJMCMC from the 10 replicates all
equal three, whereas the simulated ‘true’ number of
QTL is five.
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Figure 2 Posterior profile of the QTL intensities from the simulation
study. The arrows indicate the true QTL-simulated positions (25, 64,
136, 164 and 206 cM, respectively).
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Figure 3 Posterior profiles of the t-statistic from the simulation
study. The arrows indicate the true simulated QTL positions (25, 64,
136, 164 and 206 cM, respectively). The two straight lines represent
the 1% (solid) and 5% (dotted) significance levels, respectively.
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Figure 5 Posterior profile of the t-statistic from the simulation study
under the null hypothesis, that is, not any QTL located on the
simulated chromosome.
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Figure 6 QTL position estimates for the simulated QTL located at
64 cM in the 10 simulation replicates using the Bayesian shrinkage
and RJMCMC methods, respectively.
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Figure 4 Posterior profile of the weighted QTL effects from the
simulation study under the null hypothesis, that is, not any QTL
located on the simulated chromosome.
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Real data analysis
The data came from a Chinese Hostein population with a
daughter design and has been used by Chen et al. (2006)
for mapping QTL for milk production traits using the
regression method of interval mapping proposed by
Knott et al. (1996). Briefly, there were 26 bulls and their
2260 daughters with phenotypes on five milk production
traits (milk yield, fat yield, protein yield, fat percentage
and protein percentage). The bulls and daughters were
genotyped for 14 marker loci on chromosome 6 covering
a total distance of 55.7 cM.

Separate MCMC analyses for the five traits were
performed. In each MCMC process, Markov chain was
run with 110 000 cycles, of which the first 10 000 cycles
were discarded as burn-in. The estimates of the QTL
positions and effects are given in Table 2. Figure 7 shows
the t-statistic profile resulted from the analysis. There are
two peaks for both milk yield and protein yield, one
located at 55.7 cM between markers BM1329 and
BMS2508 and the other at 9 cM close to BMS470. The
peaks for fat yield and fat percentage are located at 18 cM
between markers BMS1242 and BMS518 and 38 cM
closed to marker RM028, respectively. In addition, there
is another peak at 11 cM for fat percentage. The peaks for
protein percentage are located at 7 cM close to marker
BMS2508 and 50 cM close to BMS2460. All of these peaks
exceed the significant level of P¼ 0.01.

Discussion

The Bayesian shrinkage approach was originally devel-
oped for multiple QTL mapping for inbred line crosses

(Xu, 2003; Wang et al., 2005) and has been proved
effective and powerful. However, the inbred line cross is
seldom used for QTL mapping in domestic animals,
because it is extremely difficult to construct and maintain
inbred lines for such populations. Furthermore, making a
cross between outbred lines (breeds) is not feasible for
some large animals such as dairy cattle because it is too
time consuming and very expensive. We successfully
extended the original Bayesian shrinkage method to
map QTL in half-sib families. Both the simulation study
and the real data analysis showed that the proposed
method worked well and was powerful for detecting
multiple QTL.

We compared the proposed Bayesian shrinkage meth-
od with the RJMCMC method through simulation with
half-sib design. Besides the gain in precision of QTL
position estimation, our method showed obvious ad-
vantage over RJMCMC in estimation of the number of
QTL, the key parameter in multiple QTL mapping.
Furthermore, we found that the RJMCMC method
converged slower than our Bayesian shrinkage method
and a longer Markov chain (200 000 iterations after burn-
in period) was needed to the characteristics of low
sampling efficiency in the RJMCMC. Wang et al. (2005)
has also pointed out that RJMCMC for model selection
was usually subject to poor mixing, that is, slow
convergence, and demonstrated that the MCMC shrink-
age analysis converged faster than RJMCMC via simula-
tion with backcross design. Our findings herein were in
accordance with those of Wang et al. (2005). Results from
the simulation study clearly demonstrated that the
Bayesian shrinkage approach had similar advantages in
the half-sib design as in the backcross design over the
RJMCMC approach.

Evidences for QTL on BTA6 affecting milk production
traits have been reported by our earlier studies (Chen
et al., 2006) and many other investigators (for example,
Kuhn et al., 1999; Ron et al., 2001; Olsen et al., 2002; Freyer
et al., 2003; Szyda et al., 2005). For further validating our
method, we analyzed the same data set of Chen et al.
(2006) using the proposed Bayesian shrinkage method. It
is notable that the findings of Chen et al. (2006) were
obtained based on a single-QTL model. On the contrary,
our Bayesian shrinkage method was based on a multi-
QTL model. In theory, the multi-QTL model should be
superiors to the single-QTL model, since it is unreason-
able and seldom true to assume that there exists only one
QTL within the chromosomal region investigated. This
aspect has been further confirmed via the real data
analyses. Specifically, using the multi-QTL model-based
Bayesian shrinkage method, we not only confirmed the
QTL identified by Chen et al. (2006), but also identified
some novel QTL. For example, for fat yield, in addition
to the QTL found by Chen et al. (2006), two additional
QTL at 18 cM and 38 cM, respectively, were identified.
For these two additional QTL, one (at 8 cM) was
previously reported by Kuhn et al. (1999), Szyda et al.
(2005) and Freyer et al. (2003), the other (at 38 cM) was
also detected by Szyda et al. (2005). Furthermore, a novel
QTL affecting fat percentage beyond the findings of
Chen et al. (2006) was identified at 18 cM, which was also
reported by Ron et al. (2001) and Olsen et al. (2002).
Comparisons among the findings in this study, by Chen
et al. (2006), and by other investigators clearly demon-
strate that our Bayesian multi-QTL model is more

Table 2 Estimates of the QTL positions and effects for milk
production traits in the Chinese dairy cattle population

Trait Position (cM) Effect

Milk yield 4 �5.200
29 7.196

Fat yield 18 �0.123
38 0.258

Protein yield 4 �0.041
29 0.218

Fat percentage 11 �0.0008
18 �0.0009
38 0.0013

Protein percentage 7 0.0009
50 0.0007
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Figure 7 t-statistic profiles from the real data analysis of the
Chinese dairy cattle population. The two straight lines represent the
1% (solid) and 5% (dotted) significance levels, respectively.
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powerful and robust in QTL mapping than the single-
QTL model. This also shows that our method proposed
here has practical significance.

The approach presented in this paper is focused on
half-sib families. It is straightforward to extend it to
complex pedigrees by using a general approach to infer
marker–QTL linkage phases. Such a general approach
has been developed by many investigators (Vogl and Xu,
2002). In addition, although our proposed method is
focused on linkage analyses, it can be naturally extended
to fine mapping by using both linkage and linkage
disequilibrium (LD) information if highly dense markers
are available. Generally, combining linkage and LD
information can significantly improve the precision of
QTL mapping. For this situation, the marker–QTL
linkage phases in the founders can be inferred through
the existing well-developed methods (Meuwissen and
Goddard, 2000, 2001; Meuwissen et al., 2002; Meuwissen
and Goddard, 2004; Lee and Van der Werf, 2006).
However, extra effort is needed to remove the limitation
of the original assumption that the QTL are in linkage
equilibrium in the parental generation.

The approach presented here can be easily modified to
handle categorical traits with discrete phenotypes.
Specifically, the categorical traits can be modeled using
a threshold model with a normal underline liability. In
Bayesian estimation framework, the liability ‘phenotypic
value’ can be treated as unknown and can be sampled
from their conditional posterior distribution (Yi and Xu,
2000; Hoti and Sillanpaa, 2006; Huang et al., 2007). The
efficiencies of our approach for categorical traits will be
investigated in our future endeavors.

Based on the framework of a mixed model, the
proposed method can be also extended for multi-trait
QTL mapping. Multi-trait analysis has been studied
substantially both in inbred line crosses (Jiang and Zeng,
1995; Knott and Haley, 2000; Xu et al., 2005; Fang et al.,
2008) and in outbred populations (Korol et al., 2001;
Mangin et al., 1998; Eaves et al., 1996; Liu et al., 2007). The
advantage of multi-trait analysis is that it is more
powerful to detect QTL. Yang and Xu (2007) recently
developed an approach of Bayesian shrinkage mapping
of QTL for dynamic trait, and they also discussed how to
extend their method to multivariate analysis. Their
method can be incorporated into the Bayesian shrinkage
approach for multi-trait QTL mapping with some
modification in sampling QTL genotypes.
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Appendix: Full conditional posterior
distributions used in the MCMC sampling

1. Overall mean: normal distribution

mjy; � � � � N
1

N

Xs
i¼1

yi � ui �
Xq
k¼1

xikgk

 !
;

1

N
s2
e

 !
ðA1Þ

2. QTL effects: normal distribution
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3. Residual polygene effects: normal distribution
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5. Residual polygenic variance: inverted chi-square
distribution

s2
A � Inv� w2ðN; SSA=NÞ ðA5Þ

where SSA ¼ u0A�1u.
6. Residual error variance: inverted w2 distribution
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7. QTL variance: inverted w2 distribution
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