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Bayesian QTL mapping for multiple families
derived from crossing a set of inbred lines
to a reference line
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In some crop species, germplasm collections consisting of a
large number of accessions that include traditional land-
races, modern cultivars and wild species have recently been
established. Such collections are regarded as useful stocks
of genes for breeding programs. However, to efficiently utilize
these collections for plant breeding, understanding genetic
variation in agronomic traits at the QTL level between the
accessions is indispensable. One effective way to extract the
actual QTL information included in these collections is to
perform QTL analysis jointly for multiple families derived from
crossing some accessions of the collection with a single
reference line such as a standard commercial variety. We

developed a Bayesian method for jointly analyzing QTL in
such interconnected multiple families derived from a set of
inbred lines crossed to the reference line, to detect QTL
segregating between any of the inbred lines and the
reference line. In this study, we considered multiple
recombinant inbred lines, each of which was derived from
crossing each of the inbred lines to the reference line. The
method was evaluated through the use of simulated data
sets for its efficiency in detecting QTL and identifying families
segregating at each QTL.
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Introduction

In some crop species such as maize, rice and wheat,
germplasm collections that include accessions consisting
of traditional landraces, modern cultivars and wild
species have recently been established (Flint-Garcia
et al., 2005; Kojima et al., 2005; Crossa et al., 2007), and
used for evaluation of the genetic diversity present in a
species. Such collections are also useful as stocks of genes
for breeding programs. Understanding the genetic
variation in agronomic traits at the QTL level in
collections is required to utilize these collections as
breeding materials. Although association studies using
some accessions sampled from a collection are a
straightforward way to evaluate QTL diversity within
the collection, whole genome association analysis re-
quires the development of high-density markers that
cover the whole genome and is generally prohibited by
the enormous cost of developing and genotyping a large
number of markers.

One effective way to extract the QTL information in a
crop collection would be to utilize the segregating
multiple families derived from crossing some accessions
sampled from the collection to a single reference line
such as a standard commercial variety for QTL mapping.

This mating design was recently adopted by Yu et al.
(2008) to reinforce the association study in founder lines
of maize, where the segregating multiple families of
recombinant inbred lines (RILs) were derived from
crosses between 25 diverse founders and a reference
founder line. They showed that, by projecting high-
density marker information from the founder lines to the
RILs, more accurate association mapping was made
possible in a cost-effective way using the RILs with a
moderate number of the selected markers genotyped.
They also showed that the effect of population structure
present in the founder lines on association mapping,
causing the frequent false positives, was minimized by
the multiple RILs because of reshuffling of genomes
between two parental lines.
This mating design is also useful for linkage-based

QTL mapping to investigate the diversity of QTL
affecting the agricultural traits in the germplasm collec-
tions of the crops for which whole genome association
studies are unrealistic at present due to the limited
availabilities of a sufficient number of SNP markers and/
or high throughput genotyping systems. For the future
association studies of such crops, the targets to be
analyzed can be specified by QTL mapping in the
multiple families and development and genotyping of
SNPs can effectively be confined to the specified regions,
not on a whole genome. Linkage-based QTL mapping
using the multiple families derived from the founder
lines can accurately identify the QTL regions with lower
false-positive rate than association mapping using the
founder lines in which the unknown population struc-
ture might be present although the specified regions are
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relatively broader. Moreover, with this mating design, we
can detect the QTL at which any accession possesses a
different allele from that of a reference line, which would
provide some useful information for breeding of the
crop. However, statistical methods of QTL mapping to
effectively analyze a large number of multiple families
with a common parental line remain to be developed.

In this paper, we develop a Bayesian method for jointly
analyzing QTL for such interconnected multiple families
with a common parental reference line; the families are
derived by crossing a set of inbred lines (referred to as
the ‘tested lines’ hereafter) sampled from a collection
with a common parent that serves as the reference line, to
detect QTL segregating between any of the tested lines
and the reference line. It would be desirable to analyze as
many tested lines as possible for understanding of QTL
diversity in the collections. Accordingly, a large number
of families, each of which is derived from each tested line
crossed to a reference line, should be treated. As the
number of families increases, however, each family
would necessarily be confined to smaller size owing to
limitations on the available space and cost, and this
might decrease the accuracy in the estimation of the
effect of the specific QTL allele derived from each tested
line. Therefore, we treated the effects of alleles from the
tested lines as random effects, but treated the effect of the
allele from the reference line as a fixed effect. Here we
discriminate ‘random effect’ and ‘fixed effect’ from a
frequentist stand point although all effects included in
the model are random in a Bayesian framework. When
an effect is treated as random in a frequentist framework,
a probability distribution is considered for the effect by a
frequentist, which can be regarded as a prior distribution
by a Bayesian. An effect with such a probability
distribution provided by frequentist consideration is
termed as ‘random effect’ whereas an effect to which no
probability distribution is assigned by a frequentist is as
‘fixed effect’ in this Bayesian study.

Information about accessions that possess QTL alleles
different from that of the reference line will be very
useful in future breeding programs. We therefore
incorporated a variable that indicates a segregation of
each QTL in each family into the statistical model to infer
which of the tested lines possess QTL alleles different
from that of the reference line.

Our consideration was confined to multiple families of
RILs derived from crosses between a considerable
number of tested lines and a common reference line.
However, the statistical model would easily be applic-
able to other families such as F2 or backcross with slight
modification. The method was then evaluated for its
efficiency in detecting QTL and identifying families that
segregate for each QTL using simulated data sets.

Materials and methods

Analyzed families
We consider multiple families of RILs derived from
crosses between a considerable number of tested lines
and a common reference line, where the tested lines are
crossed to the reference line, followed by selfing, to
generate segregating F2 populations, from each of which
RILs are derived through single-seed descent with
repeated cycles of selfing. The number of families, equal

to the number of tested lines used for crossing with the
reference line, is m and the size of the ith RIL family
derived from the ith tested line is ni.

Statistical model
We assume that observations of the phenotype of a trait
are available for individuals in the multiple families of
RILs, as is marker information, including genotypic data
at markers for the tested lines, the reference line and
individuals in the multiple families of RILs and a linkage
map of the markers, where all individuals in the RILs are
assumed to be homozygous at all QTL and markers. We
assumed that there is no epistatic interaction between
QTL in this study although this assumption can be
relaxed without difficulty. The phenotypic value of the
jth individual in the ith RIL family is denoted by yij (i¼ 1,
2,y, m; j¼ 1, 2,y, ni), for which we can apply the
following linear model,

yij ¼ mþ
XN
l¼1

fulijal þ ð1� ulijÞblig þ eij: ð1Þ

In this model, m is the intercept of the model, which is a
mean of the genotypic values obtained by omitting
segregating QTL in the multiple families and N is the
number of QTL affecting the phenotypic value. The
variable ulij indicates the genotype of the individual at
the lth QTL, where the alleles at the QTL are denoted by
Ql and qli for the reference line and the ith tested line,
respectively, and ulij¼ 1 for the genotype QlQl and 0 for
qliqli. The genotypic contributions of the QTL corre-
sponding to QlQl and qliqli are denoted by al and bli,
respectively, and eij is the residual error following a
normal distribution with mean 0 and variance se2. In
multiple families that share a single parental line (the
reference line), the effects of QTL alleles derived from the
reference line are well estimated by a large number of
degrees of freedom allocated for the estimation, but the
instability in the estimation of the effects of the alleles
from each tested line might be caused by the limited size
of each family. For the QTL effects, we thus treated al as a
fixed effect and bli as a random effect sampled from a
normal distribution with mean 0 and variance sbl2 . It is
noted that the variance of bli is indexed by ‘l’ because the
QTL effect has a specific distribution for each QTL.

Moreover, we incorporate a variable, sli, that indicates
whether each QTL is segregating or not in each family,
where sli¼ 1 if the lth QTL is segregating in the ith family
and sli¼ 0 otherwise. When sli¼ 0, the ith tested line has
the same allele at the lth QTL as the reference line;
accordingly, the genotypic values at the lth QTL are
expressed as al for all individuals in the ith family.
Denoting the genotypic contribution from the lth
QTL to the phenotypic value by Dlij, we can write
Dlij¼ sli{ulijalþ (1�ulij)bli}þ (1�sli)al. Therefore, considering
a segregation variable sli, model (1) can be modified as

yij ¼ mþ
XN
l¼1

Dlij þ eij: ð2Þ

Prior and posterior distributions of parameters

and variables
The parameters and variables included in model (2) and
the locations of N QTL, denoted as l1, l2, y, lN, are
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collectively written as h and are referred to as unobser-
vables. The observed phenotypic values are denoted by
y¼ {yij} for i¼ 1, 2,y, m and j¼ 1, 2,y, ni for each i. The
likelihood is written as

fðyjhÞ ¼
Ym
i¼1

Yni
j¼1

fðyijjhÞ / ðs2eÞ
�nT=2


 exp � 1

2s2e

Xm
i¼1

Xni
j¼1

ðyij � m�
XN
l¼1

DlijÞ2
8<
:

9=
;

where nT ¼
Pm

i¼1 ni is total number of individuals in the
whole families. Denoting the joint prior distribution and
the joint posterior distribution of hwith p(h) and a p(h|y),
respectively, we can write

pðhjyÞ / fðyjhÞpðhÞ

¼fðyjhÞpðmÞpðs2eÞ

YN
l¼1

pðalÞ

YN
l¼1

Ym
i¼1

pðblijs2bl; sliÞ



YN
l¼1

pðs2bljsl1; sl2; . . . ; slmÞ

YN
l¼1

Ym
i¼1

pðsliÞ



YN
l¼1

Ym
i¼1

Yni
j¼1

pðulijjllÞ

YN
l¼1

pðllÞ
pðNÞ

where p(m), p(se2), p(al), p(bli|sbl2 , sli), p(sbl2 |sli,sl2,y,slm),
p(sli), p(ulij|ll), p(ll) and p(N) are the priors of compo-
nents of h. For m, se2 and al, we chose the following prior
distributions, p(m)p1, p(se2)p1/se2 and p(al)p1.

It should be noted that bli is not included in the
likelihood f(y|h) when sli¼ 0, meaning that the lth QTL is
not segregating in the ith family, whereas bli is included
in the likelihood f(y|h) when sli¼ 1. Therefore, the full
conditional posterior distribution of bli is independent of
the data y and equated to the prior p(bli|sbl2 , sli) when
sli¼ 0. Such priors as p(bli|sbl2 , sli¼ 0) were referred to as
‘pseudo-priors’ by Carlin and Chib (1995) in the context
of Bayesian model choice. We assumed that p(bli|sbl2 , sli)
¼f(bli|0, sbl2 ) for both sli¼ 1 and sli¼ 0, where f(y|c,d)
denotes the normal density function with mean c and
variance d. For p(sbl2 |sli) which is also a pseudo-prior, we
assumed p(sbl2 |sli)p1/sbl2 (Xu, 2003) for both sli¼ 0 and
sli¼ 1 although this form of a prior of sbl2 leads to the
improper posteriors of sbl2 and bli (ter Braak et al., 2005).
We would give some consideration to the problem of
improper posteriors in Discussion.

As the prior distribution of ulij, we adopted the
conditional probability of a QTL genotype given linked
marker genotypes near the QTL location as described by
Jiang and Zeng (1997) for a biparental Ft population. The
prior probabilities of sli¼ 0 and 1 were given as 0.5 for
QTL segregation. The prior distribution of ll is assumed
uniform across the whole chromosomal region. The prior
probability of N was a Poisson distribution with a pre-
specified mean d. In the following simulation experi-
ments, we assumed that d¼ 2.

We estimate h by using a Markov chain Monte Carlo
(MCMC) algorithm. After the initial values are given to
h, MCMC cycles are repeated for updating the values. A
Gibbs sampling scheme is applied to the update of h
except for N and ll (l¼ 1, 2,y, N), which are updated
based on Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) including a reversible-jump

MCMC (RJ-MCMC) sampling (Green, 1995) for N.
Details of the updating process for h are given in the
Appendix A.

Simulation experiments
Simulation settings: We evaluated the proposed
Bayesian method for the efficiency of detecting QTL
segregating in any family and identifying families
segregating at each QTL with the analyses of simulated
data sets. We considered multiple F8 families, where a set
of tested lines were crossed to a reference line to generate
multiple F2 families from each of which F8 families were
derived through single-seed descent with repeated cycles
of selfing. In our simulation, we assumed that the family
size, denoted by n, is equal for all families (that is,
n¼n1¼ n2¼y¼nm). We assumed three combinations
for the number of families, m, and family size, n, as
(m,n)¼ (50,40), (100,20) and (200,10) with total number of
individuals in all families fixed as 2000.
The simulated genome consisted of four chromosomes,

Chr1, Chr2, Chr3 and Chr4, each of length 100 cM, on
which 21 markers per chromosome were located every
5 cM. We assumed that there were five alleles with equal
frequencies at each marker in the founder generation.
Accordingly, each allele was randomly allocated to each
marker of the reference line and tested lines with
probability 0.2 in our simulations. We generated three
QTL, QTL1, QTL2 and QTL3, located at 23 cM on Chr1,
72 cM on Chr2 and 12 cM on Chr3; Chr4 harbored no
QTL, and was used to investigate the false-positive rate
(FPR), which is described in more detail in the next
section. The numbers of QTL alleles existing in all tested
lines were three for QTL1, two for QTL2 and five for
QTL3. We denoted the kth allele at the lth QTL as Alk. We
assumed that the reference line had the first allele at each
QTL (that is, A11, A21 and A31). The allele frequency of
Alk was denoted by flk and the QTL effect of the
homozygote with Alk was denoted by alk, which is
referred to hereafter as the allelic effect of Alk. These
frequencies and effects were set to the values shown in
Table 1 for our simulations. The proportions of families
segregating at each QTL, which were derived from the
tested lines possessing the alleles other than Al1 at the lth
QTL (l¼ 1,2,3) were assumed as 0.3, 0.2 and 0.8 for QTL1,
QTL2 and QTL3, respectively, as shown in Table 1. When
generating each data set, the QTL alleles were randomly
allocated to m tested lines such that the allele frequencies
were those given in Table 1, where the allele allocation in
the tested lines was recorded and used for summarizing
the results of simulation analyses. In addition, we
considered 10 unlinked biallelic additive QTL, each with
equal frequency of two homozygous in founder lines and
with effects of 0.1 and �0.1 for two homozygous, to
include polygenic effects whose variances were summed
to be 0.1. The phenotypic values of individuals in the F8
generation were determined by the sum of genotypic
effects corresponding to the genotypes at the three QTL
and 10 unlinked QTL and environmental effects sampled
from a normal distribution with mean 0 and variance 1.
The proportion of phenotypic variance explained by each
QTL (referred to as PVQ) was also shown in Table 1, as
this might affect the power of detecting each QTL.
We generated 100 data sets for each of the three settings

for (m,n). The power of the QTL detection and the accuracy
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in identifying the families that were segregating at each
QTL were evaluated through analyses of the 100 data sets
for each setting of (m,n). For comparison, the same data
sets were also analyzed using a method based on interval
mapping for multiple families proposed by Xu (1998),
referred to as IM, treating QTL effect as a random effect
due to the large number of families (that is, mX50).
Moreover, to evaluate the incremental efficiency obtained
by incorporating a segregation variable, sli, we applied an
additional Bayesian method based on model (1), without
consideration of the segregation variable, to the analyses of
simulated data sets. Hereafter, the Bayesian methods
based on models (1) and (2) are referred to as Bayes1
and Bayes2, respectively. For each of the Bayesian
methods, we performed 50000 cycles of MCMC and
sampled the values of the unobservables every 20 cycles
during the last 40 000 cycles with the first 10 000 cycles
discarded as burn-in.

In our Bayesian methods, the posterior QTL intensity
(Sillanpää and Arjas, 1998) for each small interval with
1 cM length on the genome was calculated for QTL
detection. We obtained a summed QTL intensity, referred
to as SQI (Hayashi and Awata, 2008), by summing the
posterior QTL intensity over all intervals on each
chromosome, and used SQI as a test statistic for detecting
QTL on a chromosome. Thresholds of SQI were
determined from the empirical null distributions of the
maximum of SQI over all chromosomes obtained by
analyses of 100 null data sets that were generated on the
assumption of no QTL in each setting of (m,n). The
empirical null distributions of the maximum of SQI over
all chromosomes were established by analyzing 100
null data sets for Bayes1 and Bayes2. The values of
maximized SQI corresponding to 5% significant level of
the empirical null distributions were regarded as the
thresholds for SQI. When SQI exceeded the thresholds
for any chromosome, detection of a QTL on the
chromosome is declared. The Bayesian estimates of the
positions and effects of the detected QTL were given in
the analysis of each data set as described in Hayashi and
Awata (2008), where the positions and effects of the QTL
fitted in the model were averaged over the chromosome,
with the QTL intensity of intervals that harbored the
QTL used as a weight. Such a weighted average for the
posterior probabilities of QTL segregation in each family
(that is, sli¼ 1) was also considered to identify the
families that were segregating at QTL in Bayes2.

In IM, the likelihood-ratio test statistic (LRT) was
adopted for QTL detection. Thresholds for LRT were

determined similarly to the approach used for SQI. In
IM, the position of the peak of LRT was regarded as the
estimated QTL position.

Results of simulation experiments: Table 2 shows the
powers of QTL detection and the estimates of the QTL
position and effect of allele from a reference line at each
QTL for Bayes1 and Bayes2 as well as IM in which the
estimated of QTL effects were not given as variances of
QTL effects were treated in IM with a random effect
model (Xu, 1998). The averages and s.d. for the estimated
QTL positions and QTL effects were calculated over the
repetitions that successfully detected the QTL. In the
simulation, Chr4, which harbored no QTL, was used to
evaluate FPR, for QTL detection, where FPR was defined
as the number of repetitions that falsely detected a
QTL on Chr4 in the analyses of 100 data sets. For
(m,n)¼ (50,40), (100,20) and (200,10), the respective FPRs
were 1, 2 and 2 in IM; 1, 2 and 3 in Bayes1; and 2, 2 and 2
in Bayes2. Therefore, the thresholds corresponding to
the genome-wide 5% significance level empirically
determined by the analyses of 100 null data sets
appropriately controlled the FPR for all three methods,
such that the powers of these methods were suitably
compared.

The powers of QTL detection were decreased as the
number of families (m) was increased with family size (n)
decreased in all three methods. At a given (m,n), the
Bayesian methods showed higher powers of detecting
QTL than IM whereas the powers were comparable
between Bayes1 and Bayes2. The powers of detection for
QTL1 were much lower than those for QTL2 and QTL3,
which were 38 and 41% for (m,n)¼ (50,40) and decreased
to 26% for (m,n)¼ (100,20) and to 6 and 14% for
(m,n)¼ (200,10) with Bayes1 and Bayes2, respectively.
As shown in Table 1, PVQ of QTL1 was considerably
smaller than that of the other QTL, and this was
responsible for the poor powers for QTL1. For QTL2
and QTL3 with moderate PVQ values, both Bayesian
methods showed higher powers than IM; powers were
higher than 80% at (m,n)¼ (200,10) and increased to
about 95% at (m,n)¼ (50,40) with the Bayesian methods.

The estimates of the positions were slightly biased for
QTL2 and QTL3, but were noticeably biased for QTL1 at
(m,n)¼ (200,10) in the Bayesian methods. The estimates
of the effects of the alleles from the reference line
obtained with Bayesian methods were considerably
biased for QTL2 and QTL3. For example, the simulated
effect of QTL2 was �0.8 (Table 1), but the estimates were

Table 1 Summary of QTL and parameter values used to generate simulated data sets of multiple families

QTL Location Allele number Allele frequenciesa Effect PVQb

QTL1 23 cM on Chr1 3 f11¼ 0.7, f12¼ 0.1, f13¼ 0.2 a11¼ 0.0, a12¼�0.6, a13¼ 0.3 0.022
QTL2 72 cM on Chr2 2 f21¼ 0.8, f22¼ 0.2 a21¼�0.8, a22¼ 0.0 0.046
QTL3 12 cM on Chr3 5 f31¼ f32¼ f33¼ f34¼ f35¼ 0.2 a31¼�0.2, a32¼ 0.2, a33¼�0.6, a34¼ 0.0, a35¼ 0.4 0.052

At each QTL, the first allele is assumed to be derived from a reference line such that RILs from tested lines possessing the first allele are not
segregating at the QTL.
aFrequencies of alleles at the QTL in the collection of tested lines.
bProportion of phenotypic variance explained by the QTL in the whole families. The variance explained by a QTL, Var(QTL), is calculated as:
Var(QTL)¼Efamily(Var(QTL|family))+Varfamily(E(QTL|family)), where Var(QTL|family) and E(QTL|family) are the conditional variance and
expectation of QTL effect given the alleles existing in each family and Efamily(.) and Varfamily(.) indicate the expectation and variance taken
over all families.
We can calculate sbl

2 , which is the variance of the effect of the allele derived from a tested line, for QTL1, QTL2 and QTL3 as 0.054, 0.1024 and
0.1184, respectively, with the allele frequencies in the collection of tested lines and allelic effects.
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shrunk towards zero (Table 2). This shrinkage was less in
Bayes2 than in Bayes1; that is, in Bayes2, the estimated
values were closer to the simulated values given in
Table 1. Bayes2, however, provided biased estimates of
the effects of QTL3 for (m,n)¼ (50,40) and (100,20), where
the simulated effect was given as �0.2, but the respective
estimates were inflated to �0.32 and �0.37, respectively
(Table 2).

In Table 3, we have summarized the inferences about
QTL segregation in the families for the analyses with
Bayes2. In the analysis of each simulated data set, we
obtained a posterior probability of QTL segregation (i.e.,
sli¼ 1) for each family and averaged the probabilities
over the families derived from tested lines that possessed
identical alleles at each QTL. We further averaged the
probabilities over the repetitions with successful detec-
tion of the QTL in each setting of (m,n) and the results are
listed for each allele in the rows labeled ‘Probability of
segregation’ of Table 3.

In addition, to evaluate the ability of Bayes2 to identify
tested lines with alleles that differ from that of the
reference line, resulting in QTL segregation in the
families derived from the tested lines crossed with the
reference line, we investigated the proportions of the
tested lines with the posterior probabilities of QTL
segregation exceeding two pre-determined values 0.6
and 0.9 for each QTL allele in the replications with
successful QTL detection (Table 3). For example, consider
QTL1 at a setting of (m,n)¼ (50,40). There were 35 lines
with allele A11, five lines with A12 and 10 lines with A13

in each replication, given allele frequencies 0.7, 0.1 and
0.2 for A11, A12 and A13, respectively, as given in Table 1.
Therefore, the total numbers of the tested lines with A11,
A12 and A13 investigated in 41 replications that success-
fully detected QTL1 were 1435, 205 and 410, respectively,
from which we obtained the numbers of tested lines with
posterior probability for QTL segregation exceeding 0.6

as 215, 125 and 98, with proportions 15, 61 and 23%,
respectively, as listed in Table 3. Similarly, the propor-
tions of tested lines with posterior probability of QTL
segregation exceeding 0.9 were 1, 20 and 3% for the lines
with alleles A11, A12 and A13, respectively. As the first
alleles at three QTL (A11, A21 and A31) were allocated to
the reference line in our simulations, the proportions of
the tested lines possessing these QTL alleles with
posterior probabilities of QTL segregation greater than
0.6 or 0.9 were regarded as the false discovery rates for
QTL segregation in the non-segregating families derived
from the tested lines. For the tested lines with QTL alleles
that differed from those of the reference line, the
proportions indicated the capability of correct identifica-
tion for the families, derived from the tested lines, which
segregated for the QTL. The accuracies of inference for
segregating tested lines were enhanced as the effects of
alleles or the family size increased (Table 3).

Discussion

The efficiencies of the Bayesian methods in analyzing

simulated data sets
As shown in Table 2, the powers of QTL detection were
greater for both Bayesian methods than IM, indicating
the possibility that information on QTL that distin-
guishes a reference line relative to the tested lines might
be effectively elucidated by the Bayesian methods using
the experimental design adopted in this study. Espe-
cially, in a setting of (m,n)¼ (200,10), Bayes2 method
showed noticeably higher powers (X87%) for the
detection of QTL2 and QTL3 than IM (35 and 50%).
However, the estimates of the QTL effects of alleles

from the reference line were biased in the Bayesian
methods (Table 2). This might have been caused by
inaccuracies in the inference about QTL segregation in

Table 2 Results of simulation experiments

Methodsa

IM Bayes1 Bayes2

QTL1 QTL2 QTL3 QTL1 QTL2 QTL3 QTL1 QTL2 QTL3

m¼ 50, n¼ 40
Powerb 20 80 84 38 95 97 41 97 96
Positionc 21.9 (7.1) 73.2 (5.6) 12.0 (6.5) 30.3 (15.9) 71.3 (4.8) 12.9 (5.7) 28.3 (12.8) 69.3 (5.6) 14.9 (6.6)
Effectd — — — 0.01 (0.05) �0.17 (0.05) �0.17 (0.05) 0.05 (0.10) �0.42 (0.12) �0.32 (0.15)

m¼ 100, n¼ 20
Power 12 57 67 26 88 95 26 95 99
Position 25.3 (8.6) 73.6 (8.0) 12.4 (5.3) 20.1 (9.7) 71.2 (6.5) 13.1 (5.3) 22.2 (7.0) 70.3 (5.3) 15.3 (5.6)
Effect — — — �0.02 (0.06) �0.16 (0.05) �0.17 (0.05) 0.01 (0.13) �0.36 (0.11) �0.35 (0.16)

m¼ 200, n¼ 10
Power 10 35 50 9 82 90 14 88 87
Position 26.5 (13.0) 71.6 (9.2) 11.7 (4.4) 32.8 (22.4) 70.6 (6.5) 12.8 (5.1) 32.8 (15.5) 69.4 (6.2) 15.4 (8.5)
Effect — — — �0.01 (0.04) 0.01 (0.33) �0.19 (0.31) �0.03 (0.11) �0.12 (0.46) �0.26 (0.50)

In each of the settings of (m,n)¼ (50,40), (100,20) and (200,10), 100 data sets were simulated and analyzed.
aIM, interval mapping with random effect model; Bayes1, Bayesian method based on model (1) without variables indicating QTL segregation
in each family; Bayes2, Bayesian method based on model (2) taking variables for QTL segregation into consideration.
bNumber of replicates that successfully detected each QTL with a genome-wide significance level of P¼ 0.05 in a total of 100 replicates.
cAverage of the estimated QTL positions calculated over the replicates that successfully detected the QTL, with s.d. given in the parenthesis.
dAverage of the estimated QTL effects of alleles derived from a reference line over the replicates that successfully detected the QTL, with s.d.
given in the parenthesis. These estimates were not obtained in IM as the variance of QTL effects were treated by IM with a random effect
model.
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each family. In Bayes1, as the inference about QTL
segregation in each family was not incorporated to the
analyses, the estimates of alleles from the reference line
were shrunk to zero. In Bayes2 which could infer QTL
segregation in each family using a variable indicating
QTL segregation, the accuracies in the inference were
varied depending on the effects of QTL alleles and the
combinations of the number of families and each family
size (Table 3), as was the accuracies in the estimation of
QTL effects. For example, at QTL3, the QTL segregation
in the families from the tested lines with allele A33 were
frequently undiscoverable, where the posterior probabi-
lities of segregation were only 0.30, 0.33 and 0.44 for
(m,n)¼ (50,40), (100,20) and (200,10), respectively. Acco-
rdingly, allele A33 was frequently misidentified as
the allele from the reference line, A31, especially, in
(m,n)¼ (50,40) and (100,20). Therefore, the effect of A33

(a33¼�0.6, Table 1) was confounded with the effect of
A31 (a31¼�0.2, Table 1) causing considerable downward
bias in the estimates of a31 in (m,n)¼ (50,40) and (100,20),
as shown in Table 2. The accuracies in the inference about
QTL segregation decreased as the number of families
increased and each family size decreased owing to
sampling error in segregation caused by small family
size. Taking QTL2 as an example, the power of
identifying QTL segregation in the families with allele
A22 reduced as m, consequently, the estimate of a21 was
increasingly biased with increasing m (Tables 2 and 3).

The posterior probability of segregation in each family
at each QTL obtained with Bayes2 can be used to identify
the tested lines that have QTL alleles different from that
of the reference line. As shown in Table 3, at
(m,n)¼ (50,40), tested lines that had QTL alleles with
effects greatly different from the QTL alleles of the
reference line were efficiently identified. For example,
the power of correctly identifying the segregation at
QTL3 in the families derived from the tested lines having
alleles A35 was 72% based on the criterion of the
posterior probability of segregation greater than 0.6. In
this criterion, however, the false discovery of segregation
at QTL3 in non-segregating families, which were derived
from tested lines with allele A31, occurred at a rate of
14%. Increasing the threshold for the posterior prob-
ability of segregation to 0.9 decreased the power of
correct identification of segregating families to 16% for
the allele A35 at QTL3, but the rate of false discovery
of QTL segregation for non-segregating families
was negligible (Table 3). Using the threshold of 0.9 for
the posterior probability of QTL segregation in
(m,n)¼ (50,40), tested lines with A22 at QTL2 were still
correctly identified with 55% as having a different allele
from that of the reference line. Therefore, Bayes2 showed
a practical capability to identify tested lines with QTL
alleles different from that of a reference line in
(m,n)¼ (50,40) although the rates of successful identifica-
tion for the segregating families were lower at settings of
(m,n)¼ (100,20) and (200,10), as shown in Table 3.

MCMC algorithm in Bayesian model selection

for multiple families
The dimensionality of the parameters in the models for
QTL mapping changes depending on the number of QTL
included. Although effective sampling schemes based on
Gibbs sampling, such as stochastic search variableT
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selection (SSVS) (Yi et al., 2003) and Bayesian shrinkage
estimation (Xu, 2003), have recently been proposed, we
adopted RJ-MCMC for the inference of the number of
QTL, N, in this study. A Gibbs sampling scheme for
model selection can only be performed over a composite
model that is a product space of candidate models and
their parameters (Godsill, 2001). The model for multiple
families considered in the present study is determined
not only by the number of QTL but also by the
configurations of QTL alleles in the tested lines in
contrast to a model for the QTL analysis in a biparental
cross family, where the model is simply determined by
the QTL number. Accordingly, the number of possible
models becomes intractably large in the analysis of
multiple families designed in this study, in which the
composite model space is difficult to be dealt with for
Gibbs sampling schemes. Therefore, we chose the RJ-
MCMC sampling for estimation of the QTL number and
a random model approach was introduced to cope with
the enormous number of possible configurations of
alleles in the tested lines at each QTL for the Bayesian
estimation.

In the Bayesian method proposed by Xu (2003), the
effects of QTL assumed at each position in a genome
were treated as random effects, the priors of which were
normal distributions with mean zero and different
variances for different QTL. In our study, the priors of
the effects of QTL alleles from tested lines were also
assumed as normal distributions with mean zero and
different variances for different QTL. In Bayes2, in
addition, we incorporated a binary variable indicating
QTL segregation in each family at each QTL, which can
be regarded as analogous to the indicator variable for the
presence of a QTL at each genome position used by Yi
et al. (2003) for SSVS. Although Jannink and Wu (2003)
applied RJ-MCMC for the inference about allele config-
urations in multiple interconnected families, accurate
estimation of the allele configurations in a large number
of families with moderate to small family sizes would be
difficult as the number of possible configurations
becomes enormously large owing to the increase in the
number of potential alleles. Moreover, the difference in
alleles between the tested lines can only be indirectly
inferred in the multiple families, considered in the
present study, through a single reference line shared by
the families, which would make suitable configuration of
alleles in the families more difficult.

As shown in the simulation experiments (Tables 2 and
3), Bayes2 might be a practical method to detect
QTL segregating between a reference line and tested
lines and to allow the inference about QTL segregation in
each family unless the family size is too small, as in the
setting of (m,n)¼ (50,40) in simulations. Slower conver-
gence and a poorer mixing property of RJ-MCMC
compared with Gibbs sampling would be compensated
for to some extent by increasing the iterations, which is
possible for the high-performance computers that are
now available without requiring excessive computa-
tional time.

For the prior of the variance sbl2 of QTL effects bli of the
alleles from the tested lines, we adopted p(sbl2 |sli)p1/sbl2 .
As shown by ter Braak et al. (2005), this form of a prior
for sbl2 yielded the improper posteriors for sbl2 and bli,
which had infinite mass near zero, thus, if the Markov
chain truly converged, the values of sbl2 and bli should be

fixed at zero. Hobert and Casella (1996) discussed that
the MCMC procedure with improper posterior cannot
converge. They found, however, that the posterior
sample from the MCMC could show nice-looking
behavior despite the improper posterior. In our method
(Bayes2), our main concern is to detect the segregation of
QTL in each family, indicated by a binary variable sli,
rather than to estimate sbl2 and bli. Posterior samples of sli
might be robust to the impropriety of the posteriors of sbl2
and bli. Therefore, in the present analyses, we daringly
used the prior p(sbl2 |sli)p1/sbl2 and the posterior samples
of sbl2 and bli seemingly behaved well along with sli while
this problem of the improper posterior requires further
consideration.
One might be interested in the influence of a prior

mean of QTL number, N, on the power of QTL detection
for Bayesian methods. We, thus, applied additional
analyses for the same data sets used in simulations
assuming the prior means of N equal to 1 and 10. As the
results of these additional analyses, we obtained almost
the same powers as the original analyses with the prior
mean of N being 2 (results not shown).

Utility of multiple families derived from germplasm

collections
The germplasm collections that have been recently
established for some crops are useful for association
mapping of traits of economic importance. Some
statistical methods, including mixed linear model and
Bayesian method, have been devised for whole genome
association studies in such collections (Yu et al., 2006,
2008; Iwata et al., 2007). A whole genome scan with
association mapping requires a considerable number of
markers that cover the entire genome at high density,
making it both expensive and time-consuming. There-
fore, multiple populations of segregating families de-
rived by crossing some accessions in the collection with a
reference line such as a popular commercial variety, as
described here, would be valuable for obtaining pre-
liminary QTL information, including the number of QTL
and their positions for a subsequent association study, in
which the target regions can be confined to the QTL
regions estimated from the preliminary linkage QTL
analysis. The population structure present in the original
collections, which decreases the efficiencies in associa-
tion mapping, is also minimized by reshuffling the
genomes of two parents in each family to construct the
multiple families (Yu et al., 2008). Therefore, adopting a
linkage mapping strategy in the multiple families
derived from germplasm collections will improve the
power of QTL detection although the mapping resolu-
tion is inferior to association mapping approach. In
addition, in the analysis of the multiple families
described in the present study, we can select the tested
lines that will be useful for the future breeding programs.
The results of our study show that the Bayesian method
developed for analyzing such families can play a
practical role in QTL analysis in germplasm collections.
The program (written with Fortran 77) used in the

simulation experiment of this study can be applied to
actual data of multiple RILs derived from crossing a
reference line to several tested lines and a Windows
executable version of the program is available on request
to the authors.

Bayesian QTL mapping in multiple families
T Hayashi and H Iwata

503

Heredity



References

Carlin BP, Chib S (1995). Bayesian model choice via Markov
chain Monte Carlo. J R Stat Soc Ser B 57: 473–484.

Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel
SA, Lillemo M et al. (2007). Association analysis of historical
bread wheat germplasm using additive genetic covariance of
relatives and population structure. Genetics 177: 1889–1913.

Flint-Garcia SA, Thuillet A, Yu J, Pressior G, Romero SM,
Mitchell SE et al. (2005). Maize association population:
a high resolution platform for QTL dissection. Plant J 44:
1054–1064.

Green PJ (1995). Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biometrika
82: 711–732.

Godsill SJ (2001). On the relationship between MCMC model
uncertainty methods. J Comput Graph Stat 10: 230–248.

Hastings WK (1970). Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57: 98–109.

Hayashi T, Awata T (2008). A Bayesian method for simulta-
neously detecting mendelian and imprinted quantitative trait
loci in experimental crosses of outbred species. Genetics 178:
527–538.

Hobert JP, Casella G (1996). The effect of improper priors on
Gibbs sampling in hierarchical linear mixed models. J Am
Stat Assoc 91: 1461–1473.

Iwata H, Uga Y, Yoshioka Y, Ebana K, Hayashi T (2007).
Bayesian association mapping of multiple quantitative trait
loci and its application to the analysis of genetic variation
among Oryza sativa L. germplasms. Theor Appl Genet 114:
1437–1449.

Jannink JL, Fernando RL (2004). On the Metropolis-Hastings
acceptance probability to add or drop a quantitative trait
locus in Markov chain Monte Carlo-based Bayesian analysis.
Genetics 166: 641–643.

Jannink JL, Wu XL (2003). Estimating allelic number and
identity in state of QTLs in interconnected families. Genet Res
81: 133–144.

Jiang C, Zeng ZB (1997). Mapping quantitative trait loci with
dominant and missing markers in various crosses from two
inbred lines. Genetica 101: 47–58.

Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005).
Development of an RFLP-based rice diversity research set of
germplasm. Bred Sci 55: 431–440.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH,
Teller E (1953). Equation of state calculations by fast
computing machines. J Chem Phys 21: 1087–1092.
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Appendix A

MCMC sampling
The MCMC cycle to estimate each element of h consists
of the following steps:

(a) Updating the effects of allele derived from a
reference line at each QTL, al (l¼ 1, 2,y, N).

(b) Updating the effects of alleles derived from the tested
lines at each QTL, bli (l¼ 1, 2,y, N; i¼ 1, 2,y, m);

(c) Updating the variance of the effects of alleles from
the tested lines at each QTL, sbl2 (l¼ 1, 2,y, N);

(d) Updating the intercept m and the residual variance se2;
(e) Updating the variables indicating QTL genotypes for

each of the individuals in the whole families, ulij
(l¼ 1, 2,y, N; j¼ 1, 2,y,ni for i¼ 1, 2,y, m);

(f) Updating the QTL locations, ll (l¼ 1, 2,y, N);
(g) Updating the variables indicating segregation at each

QTL in each family, sli (l¼ 1, 2,y, N; i¼ 1, 2,y, m);
(h) Adding one new QTL to the model or removing one

existing QTL from the model.

Steps a, b, c, d, e and g are performed by means
of Gibbs sampling whereas steps f and h are preformed
using Metropolis–Hastings algorithm. The full condi-
tional posterior distributions of some unobservables,
from which updating values are sampled in Gibbs
sampling algorithm, can be constructed from the like-
lihood function of the phenotype yij, which is presented
as a normal distribution with mean mþ

Pm
i¼1 Dlij and

variance se2, denoted by f(yij|mþ
Pm

i¼1 Dlij , se2), and the
prior distribution of the unobservables. Here we explain
how to perform each of the MCMC steps.

Update of effects of alleles from a reference
line: Assuming the prior distribution of al as p(al)p1,
the full conditional posterior distribution of al is a normal
distribution with mean

Pm
i¼1

Pni
j¼1

fsliulij þ ð1� sliÞg yij � m�
PN
k6¼l

Dkij

 !

Pm
i¼1

Pni
j¼1

fsliulij þ ð1� sliÞg2

and variance

s2ePm
i¼1

Pni
j¼1

fsliulij þ ð1� sliÞg2

from which al is sampled.

Update of effects of alleles from the tested lines: For
both sli¼ 1 and sli¼ 0, we assumed the prior distribution
of bli as p(bli|sbl2 , sli)¼f(bli|0, sbl2 ). When sli¼ 1, the full
conditional posterior distribution of bli is a normal
distribution with mean

Pni
j¼1

ð1� ulijÞ yij � m�
PN
k6¼l

Dkij

 !

Pni
j¼1

ð1� ulijÞ2 þ s2e=s
2
bl
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and variance

1

ð1=s2eÞ
Pni
j¼1

ð1� ulijÞ2 þ ð1=s2blÞ
( ) :

When sli¼ 0, the full conditional posterior distribution of
bli is independent of the data y and given as the prior
distribution p(bli|sbl2 , sli).

Update of variances of effects of alleles from the tested
lines: Assuming that p(sbl2 )p1/sbl2 , the full conditional
posterior distribution of sbl2 is a scaled inverted w2

distribution. Updated value of sbl2 is given asPm
i¼1 b

2
li=w

2
m , where wm2 is a random number sampled

from a w2 distribution with m d.f.

Update of intercept and residual variance: Assuming
that p(m)p1 and p(se2)p1/se2, the full conditional
posterior distribution of m is a normal distribution with

mean
Pm

i¼1

Pni
j¼1 ðyij �

PN
l¼1 DlijÞ=nT and variance se2/nT

and that of se2 is a scaled inverted w2 distribution.

The updated value of se2 is obtained as
Pm

i¼1

Pni
j¼1

ðyij � m�
PN

l¼1 DlijÞ
2
=w2nT , where w2nT is a w2 variable with

nT degrees of freedom.

Update of variable indicating QTL genotype: Given the
prior probabilities for ulij¼ 1 and 0, the full conditional
posterior probability of ulij¼ k (k¼ 0 or 1) is written as

pðulij ¼ kÞf
�
yijjmþ slifkal þ ð1� kÞblig þ ð1� sliÞal þ

PN
h 6¼l

Dhil; s2e

�

pðulij ¼ 1Þf
�
yijjmþalþ

PN
h 6¼l

Dhil; s2e

�
þpðulij ¼ 0Þf

�
yijjmþslibliþð1�sliÞalþ

PN
h 6¼l

Dhil; s2e

�:

When sli¼ 0, this probability is equal to the prior
probability p(ulij¼ k).

Update of QTL location: For updating the present
location of the lth QTL ll, a new location ll* is proposed
by sampling a value from a uniform distribution over a
small interval including ll and the new genotypes
ulij* (i¼ 1, 2,y, m; j¼ 1, 2,y, ni) of all individuals in RILs
are proposed from p(ulij* |ll) corresponding to the new
QTL location to the present QTL genotypes ulij. The
proposed QTL location is accepted with probability g,
which is written as

g ¼ min 1;

Qm
i¼1

Qni
j¼1

f
�
yijjmþ slifu�lijalþ ð1� u�lijÞblig þ ð1� sliÞalþ

PN
k 6¼l

Dkij; s2e

�
Qm
i¼1

Qni
j¼1

f
�
yijjmþ slifulijalþ ð1� ulijÞblig þ ð1� sliÞalþ

PN
k6¼l

Dkij; s2e

�
8>>><
>>>:

9>>>=
>>>;
:

Then ll* is the updated QTL location and ulij* is the new
QTL genotypes. If the proposed QTL is rejected with
probability 1�g, the location and genotypes at the QTL
remain ll and ulij.

Update of variables indicating QTL segregation:
Assuming the prior probabilities of sli¼ 1 and sli¼ 0,
which were set at 0.5 for both values of sli in this study,
the full conditional posterior probability of sli¼ k (k¼ 1 or
0) is expressed as
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PN
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�
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f
�
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PN
h 6¼l

Dhij; s2e

�:

Update of QTL number: The QTL number is updated
with RJ-MCMC algorithm. The number of QTL, N, is
updated by adding one new QTL to the model with
probability pa or deleting one existing QTL from the
model with probability pd in the way described
by Jannink and Fernando (2004) and Sillanpää et al.
(2004). For a proposed QTL number, N*, there are three
possible values; N*¼Nþ 1, N*¼N�1 and N*¼N with
probabilities pa, pd and 1�pa�pd.
When attempting to add one new QTL, firstly the

location of the QTL lN* is sampled from a uniform
distribution over a whole genome region, p(lN*). Then
the segregation of the additional QTL in each family,
sN*i (i¼ 1, 2,y, m), and the QTL genotypes of each
individual, uN*ij (i¼ 1, 2,y, m; j¼ 1, 2,y, ni), are
determined by sampling from p(sN*i) and p(uN*ij|lN*),
respectively. Moreover, the QTL effects of allele from the
reference line and tested lines are sampled from p(aN*)
and p(bN*i) (i¼ 1, 2,y, m), respectively. The new QTL is
accepted with probability

where d is a mean of Poisson distribution used as the
prior for QTL number.
For deleting one existing QTL, a random choice is

made among the existing QTL. The chosen QTL is then
proposed to be deleted from the model. If the lth QTL
is proposed to be deleted, the probability for accepting
the proposal is

min 1;
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