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Correcting for relatedness in Bayesian models
for genomic data association analysis

P Pikkuhookana and MJ Sillanpää
Department of Mathematics and Statistics, Rolf Nevanlinna Institute, University of Helsinki, Helsinki, Finland

For small pedigrees, the issue of correcting for known or
estimated relatedness structure in population-based Baye-
sian multilocus association analysis is considered. Two such
relatedness corrections: [1] a random term arising from the
infinite polygenic model and [2] a fixed covariate following the
class D model of Bonney, are compared with the case of no
correction using both simulated and real marker and gene-
expression data from lymphoblastoid cell lines from four
CEPH families. This comparison is performed with clinical
quantitative trait locus (cQTL) models—multilocus associa-
tion models where marker data and expression levels of

gene transcripts as well as possible genotype� expression
interaction terms are jointly used to explain quantitative trait
variation. We found out that regardless of having a correction
term in the model, the cQTL-models fit a few extra small-
effect components (similar to finite polygenic models) which
itself serves as a relatedness correction. For small data and
small heritability one may use the covariate model, which
clearly outperforms the infinite polygenic model in small data
examples.
Heredity (2009) 103, 223–237; doi:10.1038/hdy.2009.56;
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Introduction

Population-based marker–phenotype association studies
suffer from confounding due to population structure and
cryptic relatedness (residual dependencies) that have not
been observed or accounted for among the study subjects
(Lander and Schork 1994; Yu et al., 2006; Iwata et al., 2007).
The same applies to expression–phenotype association
studies (Gibson, 2003; Kraft and Horvath, 2003) and
clinical quantitative trait locus (cQTL) studies where
genotypes and gene expressions are simultaneously used
to study the association with the phenotype (Hoti and
Sillanpää, 2006; Bhattacharjee and Sillanpää, 2009; Sillan-
pää and Noykova, 2008). The significance of this problem
in human association studies is currently a subject of
considerable debate (Marchini et al., 2004; Devlin et al.,
2004; Hinds et al., 2004; Helgason et al., 2005; Clayton et al.,
2005; Voight and Pritchard, 2005; Setakis et al., 2006;
Zhao et al., 2007). If no pedigree/ancestry information is
available, there are different approaches to estimate the
unobserved structure of population or of the pedigree
using neutral molecular markers (Pritchard et al., 2000;
Blouin, 2003; Excoffier and Heckel, 2006; Weir et al., 2006;
Gasbarra et al., 2007; Bink et al., 2008). In many cases,
however, exact information specifying the interrelations
between individuals may be available. This is so, for
example when data has been ascertained specifically from
families or from pedigrees (see Visscher et al., 2008).

Robust methods have been developed especially for
family-based association studies (Gauderman et al., 1999;
Zhao, 2000; Knapp and Becker, 2003; Chen and Abecasis,
2007) and case–control association testing with related
individuals (Thornton and McPeek, 2007). To correct for
population structure in population-based association
analyses, one can for example adjust the P-value (Devlin
and Roeder, 1999), include the population term in the
association model (Yu et al., 2006; Zhao et al., 2007) or use
a principal component approach (Price et al., 2006).
Similarly, for known or estimated relatedness, there are
many ways to include such information in the associa-
tion model. One approach to correct for cryptic related-
ness is to include relationships in the form of a
(covariance) matrix into the association model in the
studies of marker–phenotype association (see George
and Elston, 1987; Kennedy et al., 1992; Jannink et al., 2001;
Yu et al., 2006) or in the studies of expression–phenotype
association (see Lu et al., 2004). One can incorporate an
additive relationship matrix (the covariance structure of
a multivariate normal distribution) either to residuals or
use a specific random term (arising from the infinite
polygenic model) in the regression model. In linkage
studies the same term appears in the role of the genetic
background. Such covariance structure takes care of the
dependencies between the study subjects. Another
approach approximates such structure by having the
phenotype of the parents, sibs and the spouse of the
subject as covariates in the regression model and
assumes independence for residuals (Bonney, 1986). This
autoregressive structure does not model the true under-
lying dependence structure, but has been shown to
perform well and to account for confounding with single
locus models. These two (polygenic and covariate)
correction terms have been studied and used earlier
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only in a single-gene association model and the testing
framework. Thus their properties for Bayesian multi-
locus association models (for example, Kilpikari and
Sillanpää, 2003; Sillanpää and Bhattacharjee, 2005) are
largely unknown.

Modelling phenotype with both gene expression data
and marker data could be advantageous and provides
more information because marker data is stable in
comparison with time- and tissue-dependent gene
expression data (O’Hara, 2006; West et al., 2006).
Although this view has been confirmed in simulations
(Hoti and Sillanpää, 2006; Sillanpää and Noykova, 2008)
it remains arguable with real data (Bhattacharjee et al.,
2008; Bhattacharjee and Sillanpää 2009). We compare
here how these two relatedness corrections work
together with Bayesian model-based multilocus associa-
tion using both marker and gene expression data. To do
this, we have modified the cQTL-model of Hoti and
Sillanpää (2006) for SNPs and pedigree data. Our
emphasis is on a collection of small pedigrees, as cryptic
relatedness has a negligible effect in large outbred
populations, especially when the sample size increases
(Voight and Pritchard, 2005). We consider only a small
amount (B5%) of missing data here (cf. Sillanpää and
Noykova, 2008).

Model

cQTL model
Let NM be the number of SNP (single nucleotide
polymorphism) markers and NE be the number of gene
expression transcripts. Our data consists of continuous
phenotypes y¼ (y1,y, yn)t, SNP marker genotypes
m ¼ ðm1;1;m1;2; :::;mn;NM

Þ and gene expression measure-
ments x ¼ ðx1;1; x1;2; :::; xn;NEÞ

t from n individuals in the
known pedigrees collected from a single population. We
assume that each individual has its own observation
(array) on gene expression made at single time point. For
cases with multiple populations, see the Discussion
section. Here, we let yi denote the observed continuous
phenotype of the ith individual and summarize
the genotypes as zi;j;1 ¼ 1fmi;j¼AAg; zi;j;2 ¼ 1fmi;j¼ABg and
zi;j;3 ¼ 1fmi;j¼BBg , where zi,j,k denotes the indicator of kth
genotype at the SNP j for individual i. The gene
expression measurement j for the individual i will be
denoted by xi,j. We want to emphasize that we
assume that gene expression levels are available (with
some missing entries) for each study subject. We closely
follow the notation in Hoti and Sillanpää (2006) and
assume that gene expression measurements are
normalized (Quackenbush, 2001; Butte, 2002) and
transformed suitably beforehand, so that sample
distribution of the majority of the genes is approximately
standard normal. Moreover, we assume that NE and
NM are relatively small (a few hundreds at most). To
form candidates for genotype� expression interactions,
we assume that some markers are a priori associated
(that is, possibly have a regulatory effect) with some gene
expression measurements. This prior information on the
pairing of markers and expressions may be obtained
from previous, independent studies, or could be based
on known pathways or proximity of their genomic
location. We refer to them as marker–gene pairs (see
Hoti and Sillanpää, 2006). We allow multiple expressions

to be associated with a single marker, but not the other
way around. Let ~xi;j ¼ xi;gj

and ~zi;j;k ¼ zi;sj ;k be the
expression measurement and genotype indicator for
some pair (gj,sj) so that for individual i x̃i,j is the gene
expression measurement of gene gj and ~zi;j;k is the
indicator of genotype k at SNP sj. The number of these
previously assigned pairs is NME. We consider the
following linear model for a continuous phenotype

yi ¼mþ
XNM

j¼1

X3

k¼1

IM
j aj;kzi;j;k þ

XNE

j¼1

IE
j bjxi;j

þ
XNME

j¼1

X3

k¼1

IME
j gj;k~zi;j;k~xi;j þ Fi þ ei;

ð1Þ

where m is the population mean and eiBN(0, s0
2) is a

normally distributed residual term with mean zero and
variance s0

2. Fi denotes a correction term, which takes
into account the family structure and the dependence
between family members. The linear regression coeffi-
cient (effect) of genotype k at marker j is aj,k, coefficient of
expression effect is bj and coefficient of the interaction
effect is gj,k. Unlike in Hoti and Sillanpää (2006), each
genetic component, marker, expression or interaction,
has its own indicator variable, Ij

M, Ij
E or Ij

ME, respectively.
For our motivation for the use of indicators, see the
Discussion section. For indicators, the value one corre-
sponds to the inclusion and value zero to the exclusion of
the genetic component in the model. Obviously SNP
markers exhibit three genotypes and we use an over-
parameterized model, so for each marker and for each
marker–gene pair (that is, marker� expression interac-
tion), there is a single indicator variable and three effect
coefficients. (We allow the first coefficients (aj,1, gj,1) at
each locus j to be unconstrained in our model unlike that
in Hoti and Sillanpää (2006)). We can identify differences
(genotypic contrasts) as functions of posteriors after-
wards from the Markov chain Monte Carlo (MCMC)
sample or from the MCMC point estimates. As in Hoti
and Sillanpää (2006) we can write the genetic data of
individual i as the vector

Xi ¼ ðzi;1;1; :::; zi;NM;3; xi;1; :::; xi;NE ;~zi;1;1~xi;1; :::;~zi;NME;3~xi;NMEÞ;
and the vector containing N¼ 3NMþNEþ 3NME un-
known effects is denoted by

y ¼ ðy1; y2; :::; yNÞ
¼ ða1;1; :::; aNM;3; b1; :::; bNE

; g1;1; :::; gNME;3Þ:
In addition there are NMþNEþNME indicator variables.
To create the vector that contains the indicator variables
for all genetic effects, we need to arrange the indicators
into the vector containing N elements

I� ¼ðI�1 ; I�2 ; :::; I�NÞ ¼ ðIM
1 ; IM

1 ; IM
1 ; :::; IM

NM
; IM

NM
; IM

NM
; IE

1 ; :::;

IE
NE
; IME

1 ; IME
1 ; IME

1 ; :::; IME
NME

; IME
NME

; IME
NME

Þ
Now we can rewrite the linear cQTL-model (1) as

yi ¼ mþ
XN

j

I�j yjXi;j þ Fi þ ei:

Infinite polygenic model
One approach to taking family structure into account in
the model is to add a random individual effect, whose
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correlation structure would follow the degree of relation-
ship between individuals. In the cQTL-model (1), the
term Fi represents the additive effects of the polygenes
on individual i, which arise from the combined action of
infinitely many loci whose individual contributions
cannot be distinguished (Yi and Xu, 2000; Jannink et al.,
2001). The additive polygenic effects F¼ (F1,y,Fn)t are
distributed as multivariate normal with known covar-
iance structure, F � MVNð~0; 2Fs2

FÞ . Here, ~0 is a n� 1
vector of zeros and F is a n�n matrix of kinship
coefficients among individuals based on pedigree in-
formation and sF

2 is the additive variance of the
polygenes (George and Elston, 1987; Kennedy et al.,
1992; Jannink et al., 2001; Monks et al., 2004). The kinship
coefficient between two individuals is the expected
probability that homologous genes taken randomly from
their genomes are identical by descent from common
ancestors in the given pedigree (Lynch and Walsh, 1998).
In the breeding literature, Fi’s are called breeding values
and 2F the additive relationship matrix (Henderson,
1976). The structure of the matrix F is block-diagonal
once the individuals are arranged by the families and no
remote shared ancestry among the families is assumed.
For simplicity, we assume no inbreeding and omit the
dominance component.

Regression covariates
Another approach to describing family dependencies is
to add the phenotypes of the relatives as covariates (fixed
effects) into the model. Then for individual i we can
write Fi in the cQTL-model (1) as

Fi ¼ rf yfi
0 þ rmymi

0 þ rsysi

0 þ ros

X
j2osi

yj
0;

where y0denotes deviations of the phenotypes from their
empirical mean, subscript fi refers to father, mi denotes
mother, si denotes spouse if she/he appears earlier in the
data set and osi is the set of sibs of individual i appearing
earlier in the data set (Bonney, 1986; Thomas, 2004). Here,
rf, rm, rs and ros are respective regression coefficients,
which can be written in the vector form as r¼ (rf, rm, rs,
ros). Bonney (1986) referred to this as the class D model.
This kind of model structure can be seen as an
approximation of polygenic background (Thomas, 2004).

Hierarchical model

Prior distributions
We need to specify prior distributions for the unknown
parameters. We allow each genetic effect in vector (y¼ y1,
y2,y, yN) to have its own variance parameter (Xu, 2003;
Hoti and Sillanpää, 2006). For the genetic effects y, we
assign prior pðyjs2Þ ¼

QN
j¼1 pðyjjs2

j Þ, where the functional
form of p(yj|sj

2) is a normal density with the mean zero
and the effect-specific variance sj

2. We assigned to sj
2 the

Jeffreys’ prior p(sj
2)p1/sj

2, which together with effect-
specific variances induce sparseness into the model (Xu,
2003; Hoti and Sillanpää, 2006). By sparseness, we mean
that most of the effects are zero or almost zero. For
details of implementation, see the Estimation section in
Appendix A. There is also another source of sparseness
in our model—indicator variables. For indicator vari-
ables I, we assign the Bernoulli distribution with

parameter s¼P(Ij¼ 1)50.5, which is the prior selection
probability for a candidate to be included in the model
(that is, I¼ 1). For parameter s we give values 1/NM,
1/NE or 1/NME, for markers, expressions and their
interactions, respectively. This is equivalent to assuming
a priori that there is one selected effect for each type of
genetic component. We treat priors p(y) and p(I)
independently (Kuo and Mallick, 1998; Sillanpää and
Bhattacharjee, 2005; Sillanpää and Noykova, 2008). The
prior for m is p(m)p1, and prior density for s0

2 ¼var(ei) is
p(s0

2)p1/s0
2. As a prior for polygenic effects, we use the

multivariate normal density. That is

pðFjs2
FÞ ¼

1

ð2pÞn=2j2Fs2
Fj

1=2
exp �1

2F
0ð2Fs2

FÞ
�1F

h i
;

where F¼ (F1,y, Fn) is a vector of polygenic effects, F is a
matrix of kinship coefficients among individuals, sF

2 is
additive polygenic variance with prior p(sF

2)p1/sF
2 and

|2FsF
2| is the determinant of the covariance matrix.

Now, under the additive polygenic model, the joint prior
is pðy; I; F; m; s2Þ ¼ pðIÞpðyjs2ÞpðFjs2

FÞpðmÞpðs2Þ; where
pðs2Þ ¼ pðs2

FÞ
QN

j¼0 pðs2
j Þ . For the regression covariate

model we replace p(F|sF
2) with pðrÞ ¼

Q
j2ff ;m;s;osg pðrjÞ;

where p(rj) is a normal density function with the mean

zero and variance 1000, and pðs2Þ ¼
QN

j¼0 pðs2
j Þ.

Missing data model
We assume data are missing at random (Rubin, 1976) and
treat missing values as unknown random variables in
Bayesian inference. Thus, we need to specify a prior
distribution for missing observations. Denote the com-
plete genetic data with no missing values by D¼ {m, x}.
The observed genetic data with possibly some missing
values is denoted by D�¼ {m�, x�}. Recall that the gene
expression measurements were assumed to be normal-
ized beforehand. Prior distribution for missing gene
expression measurement is assumed simply to be a
standard normal distribution (cf. for a major gene model,
see Sillanpää and Noykova, 2008). Even if in this model
the polygenic basis is assumed for gene expressions, we
omit (genetic) dependencies from parents. In the prior
distribution for missing genotypes we take into account
the genotypic values of individuals’ parents, but omit the
recombination aspect because we do not utilize linkage
information in our association model here (see the
Discussion section). The joint probability distribution of
the marker j over individuals is given by

pðmjÞ ¼
Y

i2Founders

pðmi;jÞ
Y

i2non-
Founders

pðmi;jjmm;j;mf ;jÞ;

where mj¼ (m1,j,y,mn,j)t is the genotype pattern at
marker j. The first product is over the prior probabilities
of the genotypes of founders, and the second is over
transmission probabilities of genotypes of non-founders
and mm,j and mf,j are the genotypes of mother and father
of individual i, respectively. Transmission probabilities
p(mi,j|mm,j,mf,j) follow the Mendelian rules of inheritance.
Note that although it seems that there are dependencies
in transmission only downwards the pedigree, in
practise there are also upward dependencies due to total
probability. The genotypes of the founders are thought of
as being drawn from the population with uniform allele
frequencies. Then, the prior density function of the
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genetic data is

pðDÞ /
YNM

j¼1

Y
i2Founders

pðmi;jÞ
Y

i2non-
Founders

pðmi;jjmm;j;mf;jÞ

0
B@

1
CA

�
YNE

j¼1

Yn

i¼1

pðxi;jÞ
 !

:

For details of implementation, see the Estimation section
in Appendix A.

Posterior distributions
In Bayesian analysis, marginal posterior distributions for
the parameters are derived from the prior distributions
and the likelihood of the data. Using Bayes formula, the
joint posterior density of the model parameters condi-
tional on phenotypic and genetic data is given by

pðy; I; F; m; s2; Djy; D�Þ / pðy; I; F; m; s2Þ

�pðDÞpðD�jDÞpðyjy; I; F; m; s2; DÞ
where p(y, I, F, m, s2) is the density function of the joint
prior distribution of parameters {y, I, F, m, s2}, p(D) is the
prior density function of the complete genetic data,
p(D�|D) is the mass probability function of the observed
genetic data D� conditional on the complete genetic data
D (that is, is the indicator function and takes value 1 only
when D- is consistent with D and is zero otherwise) and
pðyjy; I; F; m; s2;DÞ ¼

Qn
i¼1 pðyijy; I; F; m; s2;DÞ is the like-

lihood of the phenotype data, where

pðyijy; I; F; m; s2;DÞ / 1ffiffiffiffiffi
s2

0

q

� exp � 1

2s2
0

yi � m�
XN

j¼1

I�j yjXi;j � Fi

0
@

1
A20

@
1
A:

Examples of cQTL analysis with family data

To compare corrections for family data with cQTL-model
(1), we analyse a few data sets with three-generation
pedigrees in the presence of missing data. First, we
analyse two simulated data sets with known genetic
effects and then a real CEPH family data that have been
used in previous studies (Kraft et al., 2003; Schadt et al.,
2003). We also consider average performance (assessed

by analysing 25 data replicates). The simulated data is an
example of a large data set (210 individuals) with loosely
correlated genetic components and real data is an
example of a small sample size (58 individuals) with
highly correlated genetic components. We first compare
how the two correction terms (infinite polygenic model
and covariate model) perform against no correction term
(model for unrelated individuals) with family data,
which has either single or multiple simulated trait-
influencing components and compare two correction
terms with the real CEPH data. Finally, in simulated data
replicates, we consider only marker–phenotype associa-
tion and compare three methods using 25 marker data
sets with three trait-loci.

Simulations
We simulated family data consisting of molecular
markers, gene expression level measurements and a
continuous phenotype. Our simulation procedure fol-
lows the procedure of Hoti and Sillanpää (2006), where
expression levels are first generated conditionally on
markers, and phenotypes are then generated condition-
ally on them both. The main difference is that we use real
SNP marker data on families as a starting point. We want
to emphasize that this approach is able to generate
realistic dependence structures for markers as well as
expressions. Real marker data was obtained from the
CEPH genotype database (Dausset et al., 1990). Fifteen
families from the CEPH/Utah family collection were
selected with the family identifiers 1334, 1340, 1345, 1346,
1349, 1350, 1358, 1362, 1375, 1377, 1408, 1418, 1421, 1424
and 1477. Selection criteria were large number of
children and large number of genotypes available for
all three generations (cf. Monks et al., 2004). In total, the
families represent 210 individuals. We selected 52 SNPs
from eight different chromosomes, based on the avail-
ability of genotypes (not too many missing values) and
the property that selected markers was not highly
dependent (closely linked) to one another (Table 1). We
also required that the markers are in Hardy–Weinberg
equilibrium and that minor allele frequency (MAF) was
not less than 5%.

Simulating SNP genotypes: First, we needed to complete
missing genotypes in CEPH families, as our simulation
procedure for expression and phenotype data (below)
necessitates complete SNPs. There were less than 5% of
genotypes missing among the set of selected markers.
Genotypes were missing entirely on two individuals and

Table 1 ID-numbers of SNPs selected from 8 chromosomes. There were a couple of hundreds of SNPs available on each chromosome in the
database

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 Chr. 6 Chr. 7 Chr. 8

TSC0000177 TSC0036676 TSC0234875 TSC0029679 TSC0029334 TSC0003041 TSC0100414 TSC0049269
TSC0078081 TSC0249367 TSC0303065 TSC0211587 TSC0109491 TSC0111315 TSC0230024 TSC0144304
TSC0167604 TSC0536527 TSC0787063 TSC0329568 TSC0627529 TSC0379931 TSC0355119 TSC0336892
TSC0289448 TSC0652130 TSC1051029 TSC0454238 TSC0645321 TSC0457233 TSC0846687 TSC0706315
TSC0393286 TSC0679932 TSC1588387 TSC0674462 TSC0669621 TSC0931610 TSC1057539
TSC0458980 TSC0896550 TSC1079646 TSC0746604 TSC1794266 TSC1630115
TSC0980921 TSC1202072 TSC1548043 TSC0876755
TSC1200125 TSC1766295 TSC1777520

The SNPs were selected so that none of the selected SNPs was included in the list of close markers of another selected SNP in the CEPH
genotypic database.
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some SNPs were not available for a couple of families. We
sampled the missing genotypes of the founders from the
population of equal allele frequencies conditionally on the
progeny. This allowed us to consistently fill data (missing
genotypes) downwards through the pedigree. Genotypes
were drawn according to the Mendelian transmission
probabilities. In this process, we omitted recombination
probabilities, but took fully into account that every missing
genotype depends on genotypes of the parents on the same
SNP marker.

Simulating expression levels: Conditionally on an
individual’s genotype on each marker (mj), we
simulated three gene expression measurements (x3� j�2,
x3� j�1, x3� j). The first two of these (x3� j�2, x3� j�1) had
constant probability to have in cis effect and the third
gene (x3� j) was set to have no regulatory effects with
probability one. A priori (before simulating actual values)
we divided markers into three in cis effect groups. One-
third of the markers (mj) were assigned an in cis effect on
gene expressions if the genotype was homozygote (AA),
one-third had an in cis effect if genotype was
heterozygote (AB) and final third had an in cis effect if
the genotype was homozygote (BB). The decision that the
marker actually exhibits the pre-specified in cis effect was
made with probability 0.3, which is in line with previous
estimates (Jansen and Nap, 2004; Morley et al., 2004).
Gene expression measurements (x3� j) at positions with
no in cis effect, and gene expression measurements
(x3� j�2 and x3� j�1), in absence of in cis effect, were

simulated from the distribution N(0,1). In presence of
in cis effect, the expression value of the one (in cis) gene
(x3� j�2) assigned on current marker j was simulated
from the distribution N(2,1) and expression value of
another gene (x3� j�1) assigned on the same marker was
simulated from the distribution N(�2,1) (see Figure 1).

Simulating phenotypes: Excluding simultaneously
active components at each marker–gene pair, genetic
components can be divided into six subtypes, depending
on their effect on phenotype and whether an in cis effect
is present or absent in marker–gene pairs. Following
Hoti and Sillanpää (2006), we denote these subtypes as
genotype effect without in cis effect (G), genotype effect
with in cis effect (iG), gene expression effect without in cis
effect (E), gene expression effect with in cis effect (iE),
genotype�gene expression effect without in cis effect
(GE) and genotype�gene expression effect with in cis
effect (iGE). Continuous phenotypes are constructed as a
linear combination of six underlying genetic components
and the polygene.

yi ¼
X3

k¼1

a1;kzi;S1;k þ
X3

k¼1

a2;kzi;S2;k þ a3xi;S3
þ a4;xi;S4

þ
X3

k¼1

a5;kxi;S5 zi;S5;k þ
X3

k¼1

a6;kxi;S6 zi;S6;k þ gi þ ei;

where s1,y, s6 are indexes of influential marker–gene
pairs of types G, iG, E, iE, GE and iGE, respectively, zi,j,k is

expression x3×j−2 P(in cis effect)=0.3

P(in cis effect)=0.3

P(in cis effect)=0.3

N(2,1)

marker mj

marker mj

marker mj

N(0,1)

N(0,1)

( in group 1, where in cis effect)
is attached to genotype AA)

( in group 2, where in cis effect) 

is attached to genotype AB)

( in group 3, where in cis effect)

is attached to genotype BB)

expression x3×j−1 P(in cis effect)=0.3 N(−2,1)

expression x3×j

expression x3×j−2

P(in cis effect)=0.3expression x3×j−2

expression x3×j−1

expression x3×j

P(no in cis effect)=1.0

P(no in cis effect)=1.0

P(in cis effect)=0.3expression x3×j−1

expression x3×j P(no in cis effect)=1.0

N(0,1)

N(2,1)

N(0,1)

N(0,1)

N(−2,1)

N(0,1)

N(2,1)

N(0,1)

N(0,1)

N(−2,1)

N(0,1)

Figure 1 Distributions from which the gene expression measurements for different genotypic groups were generated. Probability of in cis
effect is 0.3.
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the indicator of genotype k at the marker j for the
individual i, xi,l is the gene expression value of gene l for
the individual i, and the environmental residual ei is
assumed to be normally distributed with mean 0 and
variance 1. Polygenic terms gi are simulated jointly from
the multivariate normal distribution with zero mean
vector and covariance–variance structure 2Fs2, where
2F describes the additive relationships between CEPH
family members and s2 is the additive polygenic
variance. Here, s2 is fixed to some value for the desired
degree of heritability due to polygenes. See Table 2 for
details of the simulation including values of the
coefficients (a1,k, a2,k, a3, a4, a5,k, a6,k) and variability due
to given effects and the polygene. To test how well our
method behaves in case of missing data, we randomly
discarded 5% of the data on phenotypes, genotypes and
expressions.

We also simulated phenotypic data with one under-
lying genetic component and the polygene. The starting
point for the phenotypic simulation was that the
genotypic data was identical with the earlier data set
and expression levels were simulated similarly. The only
influential genetic component was SNP marker s1¼ 36
without in cis effect. Simulated effects were a1,1¼�2 and
a1,3¼ 6 for the homozygotes and a1,2¼ 2 for the hetero-
zygote. The simulated polygenic component explained
approximately 7% and the simulated SNP effects
approximately 24% of the phenotypic variance. We also
randomly discarded 5% of the phenotypes, genotypes
and expression measurements in this data set.

Simulating replicated data sets: To evaluate the average
performance of the methods, we simulated 25
phenotypic data sets with the same marker effects and
the polygene in each. The genotypic family data was the
same as in earlier simulations (210 individuals and 52
SNP markers) and was kept unchanged in all
simulations. We simulated three trait loci (SNPs 7, 29
and 36) with their own effect sizes. For SNP s1¼ 7, we
simulated effects a1,1¼1 and a1,3¼ 9 for the homozygotes
and a1,2¼ 5 for the heterozygote, for SNP s2¼ 29 we
simulated effects a2,1¼�3, a2,3¼ 1 and a2,2¼�1 and for
SNP s1¼ 36 we simulated effects a3,1¼�2, a3,3¼ 4 and
a3,2¼ 1. The simulated polygenic component was
approximately 17% of the phenotypic variance but
varied due to sampling variation in different
realizations. Simulated overall heritability varied
equally from 0.34 to 0.52 in replicates. Replicated
analyses were done for the complete data sets with no
missing values.

Real data
We analysed gene expression data of the lymphoblastoid
cell lines of 58 individuals from four CEPH families
(CEPH/Utah pedigrees 1362, 1375, 1377 and 1408). The
original article about the data set is Schadt et al. (2003).
The sibship data from the same families has been used
earlier in Kraft et al. (2003) as test data to examine the
performance of the FEXAT statistic, which represents a
sort of correlation coefficient for family data. Technical
details about measuring gene expression in this data set
can be found in Schadt et al. (2003). CEPH lymphoblas-
toid cell lines had been cultured and maintained in the
log phase of cell growth at least 2 days before harvest
(Schadt et al., 2003). At the time of measuring the
expression, it would be expected that the WNT pathway
would be active, because the WNT pathway has been
shown to regulate B lymphocyte proliferation (Reya
et al., 2000). Following Kraft et al. (2003), we chose
the expression of b-catenin (CTNNB1NM_001904) as a
clinical quantitative trait, and expect that in the presence
of WNT, levels of the b-catenin (trait) will be associated
with factors that can lead to the formation and stabiliza-
tion of the b-catenin/TCF complex. On the other hand, in
the absence of WNT, b-catenin levels will be associated
with genes making up the b-catenin destruction complex
(Seidensticker and Behrens, 2000).

Gene expression measurements were obtained from
the NCBI GenBank. Locations of genes are based on
reference assembly. For every gene, we additionally
searched the closest available SNP, which is genotyped
for these same four CEPH families, using the same
criteria as in the simulation analysis. Genotypes were
obtained from the CEPH genotype database. Maximum
distance between a gene and the closest SNP was
2 361 528 bp, whereas there was no minimum distance,
because one SNP was found inside the gene region
(Table 3). We omitted individuals who did not have
expression measurements at all.

Results

Simulated data
Analysis details and effect summaries: For data sets
with 5% of the data missing, we run our models with
WinBUGS 1.4.1 using four separate MCMC chains each
of length 10 000. For each chain, burn-in was 1000 and
thinning 10 (that is, only every 10th MCMC sample was
stored), and samples from all chains were combined in
MCMC estimation of the parameters. For checking the
convergence of each chain, we visually inspected MCMC
paths of several parameters. We summarize our results
as posterior genetic occupancy probabilities for genetic
component j, P(occupancy at location j|data), obtained as
the proportion of MCMC rounds where the indicator
variable Ij is 1, indicating that genetic component
j is included in the model. Note that there are as
many indicator variables as genetic components
(NMþNEþNME) with continuous indexing. We also
calculated conditional probabilities Qj,k¼P(IJ¼ 1|Ik¼ 1,
data) for all pairs (j,k) of indicator variables, which
showed elevated posterior probabilities (cf. Hoti and
Sillanpää, 2006). Qj,k is the posterior probability that
the genetic component j is included in the model on the
condition that the genetic component k is included in the

Table 2 Simulated genetic components and their effect sizes

Marker/gene Simulated effects

S1¼ 9 a1,1¼�2, a1,2¼ 2, a1,3¼ 6
S2¼ 52 a2,1¼�4, a2,2¼ 1, a2,3¼ 4
S3¼ 86 a3¼ 2
S4¼ 167 a4¼ 5
S5¼ 274 a5,1¼�2, a5,2¼ 1, a5,3¼ 5
S6¼ 215 a6,1¼ 3, a6,2¼�1, a6,3¼�5

Approximately 9% of phenotypic variance was thought to result
from the polygenic component and approximately 60% was due
to simulated genetic components, so heritability of the phenotype
was E0.72.
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model. In our preliminary analysis (results not shown),
we have found that sometimes the expression effect may
be captured by the interaction term where the same
expression measurement is involved. Same kind of
complementary behaviour of the effects was present
also in Hoti and Sillanpää (2006) and in Sillanpää and
Noykova (2008). So, we calculated Q summaries also for
expression components, which corresponds to elevated
interaction terms and vice versa. The number of genetic
components in the model was summarized (in each
MCMC round) as the number of indicator variables,
which were simultaneously 1. Heritability was estimated
by using the formula

h2 � 1
r

Xr

t¼1

s2ðtÞ
y �s2ðtÞ

e

s2ðtÞ
y

;

where sy
2(t) is phenotypic variance and sy

2(t) se
2(t) is residual

variance at round t, and r is total number of MCMC
rounds after burn-in. Note that the estimated phenotypic
variance depends on imputed values.

Analysis results: Throughout the paper, we used the
threshold 0.1 to determine significant components. For
the data with six simulated effects, the model with
infinite polygenic correction term found five and the
covariate model found six genetic components with
elevated posterior occupancy probabilities (Figure 2).
One of these (j¼ 31), which was found with both models,
was actually a false positive, which cannot be explained,
with any simulated effects. The expression effects
were partly captured by interaction terms so that the
expression effect was rarely in the model at the same
time as the corresponding interaction term. This can
be seen from the Q summaries (Table 4) where the
conditional probabilities were less than 0.07 and 0.04 (for
an infinite polygenic model and a covariate model,
respectively) for all such cases. The same can be seen also
from the MCMC paths of the indicator times the effect
(Figure 3). Here, Ij*� yj (product of the indicator and

effect size) shows, that the expression effect (j¼ 167) and
the genotype� expression interaction (j¼ 323) are clearly
complementary, indicating that only one of them
contributes to the model at a time. Even though the
occupancy probabilities for the simulated components
of the type E and GE were both smaller than 0.1, they
are clearly higher than the occupancy probabilities of
the other similar type of components (Figure 2). As
illustrated in the Table 5, the highest posterior
probability was obtained for the correct number of
genetic components in both the infinite polygenic
model P(nc¼ 6|data)E0.22 and in the covariate model
P(nc¼ 6|data)E0.23. However, posterior support was
obtained for a wide range of values varying from 2 to 11
and 3 to 11 components in the infinite polygenic model
and in the covariate model, respectively. When 5% of the
data was artificially coded as missing, run time was
approximately 15 h (4 chains) for every 1000 rounds of
iterations for both models.

The same data was also analysed with the model
which did not include any correction term for the
pedigree structure (that is, Fi¼ 0 for all i). Surprisingly,
the same six effects with elevated occupancy probabil-
ities were found here as in the covariate model analysis.
The false positive (j¼ 31) showed slightly higher
probability in this analysis than with the other two
models (Table 6). Again the highest posterior probability
was obtained for the correct number of simulated genetic
components (P(nc¼ 6|data)E0.24). The mean posterior
estimated number of genetic components included
simultaneously in the model was slightly higher for this
model than for the other two models (Table 7).

In the infinite polygenic model analysis of data with
one simulated effect, the true simulated component was
always captured correctly in the model. However, the
number of genetic components in the model was clearly
overestimated, even though there was no strong
evidence for any false positives. There were only two
genetic components with occupancy probabilities larger
than 0.1 and one of them was false positive, although

Table 3 List of putative genes and their closest available SNP markers

Genes expected to be associated with the b-catenin destruction complex Genes expected to be associated with b-catenin/TCF complex

Gene GenBank accession
number for gene

Probe name in
CEPH database
for SNP

Distance between
gene and SNP

Gene GenBank accession
number for gene

Probe name in
CEPH database

for SNP

Distance between
gene and SNP

GSK3B NM_002093 TSC1051029 2 245 085 LEF1 NM_016269 TSC0281761 1 838 287
AXIN1 AF009674 TSC0201072 — TCF4 NM_003199 TSC0540674 992 877
AXIN2 NM_004655 TSC0143579 851 543 CTBP2 NM_001329 TSC0203917 1154 067
APC NM_000038 TSC0379412 462 122 WNT11 NM_004626 TSC1012488 1 872 550
DVL1 NM_004421 TSC0903069 2 361 528 WISP2 NM_003881 TSC0417608 118 009
DVL2 NM_004422 TSC0457749 629 621 MAP3K1 AF042838 TSC0362155 226 479
DVL3 NM_004423 TSC1079572 494 783 MAP3K2 NM_006609 TSC0652130 1 888 200

MAP3K5 NM_005923 TSC0803320 221 290
MAP3K7 NM_003188 TSC0926016 1195 963
MAP3K13 NM_004721 TSC0493500 624 274
MAP3K8 NM_005204 TSC1055614 1 295 333
MAP3K6 NM_004672 TSC0110133 1 497 052
MAP3K14 NM_003954 TSC0031889 2 702 808
MAP3K4 NM_005922 TSC0919533 738 460
MAP3K12 NM_006301 TSC0796032 199 773
MAP3K3 NM_002401 TSC0143579 976 195
MAP3K11 NM_002419 TSC0919351 2 823 474

Table includes accession numbers of genes and probe names of SNPs. Genes on the left (right) are associated with b-catenin degradation
(stabilization), respectively.
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there was some probability mass for as many as nine
influential components (Table 5). The covariate model
performed slightly better than the infinite polygenic

model and was able to include the true simulated
component in the model with probability one, whereas
there were no other components with occupancy
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Figure 2 A summary of analysis with the covariate model. The panels contain the estimated posterior occupancy probability for the genotype
effects (top), gene expression effects (middle) and genotype� expression effects (bottom). The positions of simulated effects are indicated by a
shortcut notation of the effect subtype. The corresponding genetic components are vertically levelled.

Table 4 Pairwise conditional summaries

J P(Ij¼ 1|data) k

9 31 52 59 86 118 167 215 242 274 323

9 1.0 0.99 1.0 1.0 1.0 0.97 1.0 1.0 1.0 1.0 1.0
31 0.12 0.11 0.12 0.17 0.12 0.09 0.12 0.06 0.13 0.14 0.09
52 0.97 0.97 0.99 1.0 0.98 0.94 0.97 0.99 0.96 0.99 0.99
59 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00
86 0.05 0.05 0.05 0.05 0.11 0.06 0.05 0.07 0.02 0.02 0.04
118 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
167 0.79 0.79 0.83 0.79 0.89 0.83 0.82 0.85 0.88 0.76 0.04
215 0.18 0.18 0.10 0.18 0.17 0.26 0.12 0.19 0.16 0.21 0.13
242 0.03 0.03 0.03 0.03 0.00 0.01 0.03 0.03 0.03 0.01 0.02
274 0.04 0.04 0.05 0.04 0.06 0.02 0.03 0.04 0.05 0.02 0.04
323 0.21 0.21 0.17 0.22 0.11 0.17 0.18 0.01 0.16 0.12 0.24

The Q-summaries for covariate model. The first column contains indexes j of the genetic components. The second column contains their
posterior occupancy probabilities and remaining matrix contains the pairwise conditional probabilities Qj,k¼P(IJ¼ 1|Ik¼ 1, data) where k is
given in the top row. Values indicating complementary components are highlighted in bold.
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Figure 3 The MCMC paths of the effect� I for the expression component 167 (top) and the interaction component 323 corresponding to
genotype AB (bottom). The burn-in period is 1000 with thinning 10 and has been removed from the MCMC sample before drawing the figure.

Table 5 Number of components

Analysis nc

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Six simulated effects
Polygenic model 0.00 0.00 0.01 0.05 0.13 0.21 0.22 0.17 0.11 0.06 0.02 0.01 0.00 0.00
Covariate model 0.00 0.00 0.00 0.04 0.13 0.21 0.23 0.18 0.11 0.05 0.02 0.01 0.00 0.00
No correction 0.00 0.00 0.00 0.03 0.13 0.20 0.24 0.19 0.11 0.06 0.02 0.01 0.00 0.00

One simulated effect
Polygenic model 0.00 0.05 0.16 0.23 0.23 0.16 0.10 0.05 0.02 0.01 0.00 0.00 0.00 0.00
Covariate model 0.00 0.06 0.15 0.23 0.24 0.16 0.10 0.03 0.01 0.01 0.00 0.00 0.00 0.00
No correction 0.00 0.05 0.16 0.23 0.23 0.17 0.09 0.04 0.02 0.01 0.00 0.00 0.00 0.00

The posterior probabilities of the different number of genetic components in the model (the number of indicator variables being
simultaneously 1) estimated from the two simulated data sets.

Table 6 Effect estimates and occupancy probabilities

Location Type of
effect

Genotype Simulated
value

Polygenic model Covariate model No correction

Effect � I
estimate

P(Ij¼ 1|data) Effect � I
estimate

P(Ij¼ 1|data) Effect � I
estimate

P(Ij¼ 1|data)

9 G AB 4 0.12 [�0.55, 1.81] 0.97 0.17 [�0.45, 2.20] 1.00 0.15 [�0.54, 2.15] 1.00
BB 8 7.02 [0, 10.13] 7.51 [4.49, 10.58] 7.32 [4.23, 10.31]

31 AB 0 �0.92 [�9.71, 0] 0.14 �0.75 [�9.10, 0] 0.11 �1.26 [�9.82, 0] 0.18
BB 0 �0.92 [�9.71, 0] �0.75 [�9.13, 0] �1.27 [19.84, 0]

52 iG AB 5 5.41 [0,9.53] 0.82 6.88 [0, 10.08] 0.97 6.47 [0, 9.62] 0.96
BB 8 5.71 [0, 10.12] 7.19 [0, 10.55] 6.76 [0, 10.04]

86 E 2 0.03 [0, 0] 0.03 0.08 [0, 1.77] 0.05 0.04 [0, 0] 0.03
167 iE 5 4,41 [0, 5.54] 0.94 3.69 [0, 5.46] 0.79 3.52 [0, 5.43] 0.75
215 iGE AB �4 �0.85 [�4.84, 0] 0.32 �0.38 [�3.85, 0] 0.18 �0.69 [�4.58, 0] 0.30

BB �8 �1.68 [�7.53, 0] �0.81 [�6.69, 0] �1.48 [�7.34, 0]
242 AB 0 0.03 [0, 0] 0.02 �0.06 [0, 0.08] 0.03 0.03 [0, 0] 0.02

BB 0 0.01 [0, 0] �0.01 [0, 0] 0.01 [0, 0]
274 GE AB 3 0.01 [0, 0] 0.04 0.01 [0, 0] 0.04 0.01 [0, 0] 0.04

BB 6 0.13 [0, 2.69] 0.14 [0, 3.39] 0.14 [0, 3.01]
323 AB 0 0.19 [0, 4.10] 0.07 0.62 [�0.09, 5.44] 0.21 0.70 [�0.34, 5.25] 0.25

BB 0 0.20 [0, 4.39] 0.63 [0, 4.94] 0.75 [�0.06, 5.01]

Simulated and estimated effects (posterior mean and 95% credible interval) under three competing models when constraining the effect of the
genotype AA to zero. Here, ‘Effect� I’ refers to P(effect� Ij|data).
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probabilities larger than 0.1. The model without correc-
tion term found the true simulated genotypic component
and one genotypic component with occupancy prob-
ability 0.1 and one interaction component with occu-
pancy probability 0.098.

Heritability and effect estimates: For the data with six
simulated effects the infinite polygenic model
underestimated the heritability in its posterior point-
estimate whereas the similar estimate from the covariate
model was even smaller (Table 8). The 95% Credibility
Interval for infinite polygenic model included the true
simulated heritability but the CI was wider than for the
covariate model or for the model with no correction. The
estimates of the effect sizes were also underestimated.
It turned out that there was a clear dependence, as
expected: the higher the posterior occupancy probability
was for the genetic component the more accurate the
estimate for the effect was. This was true especially for
the expression effects. Table 6 presents the comparison
between simulated and estimated genetic effects.
For effects, we show only the model-averaged estimate
I� y, because it is more robust (Ball, 2001) and
I appears always together with y in the model
(cf. Sillanpää and Bhattacharjee, 2005). In the table the
effect of the genotype AA is constrained to zero to
make values more comparable. Posterior estimate for the
additive polygenic variance was much smaller than the
true simulated value and it seemed in the trace plot
nearly zero for most of the MCMC iterations. It is likely
that other genetic components (SNPs, expressions and
their interactions) captured some of the polygenic
variance by subdividing a small amount of variance to
be explained by each component. Thus correction term
estimates were relatively modest (Table 9). Also, it is
likely that the heritability estimate suffered from the fact
that some simulated components stayed unselected for
most of the MCMC iterations.

Analyses with all three models for the data with
one simulated effect also underestimated heritability
(Table 8), but the 95% CI included the true simulated
value in all models. The estimated polygenic variance
behaved the same way as in the data with six simulated
effects. The effect estimates were slightly better with the
covariate model though the infinite polygenic model and
the model without correction also gave good estimates.
In general, these estimates were more accurate here than
for the data with six simulated components (results not
shown).

Simulated data replicates
Analysis results: Replicated analysis of marker data sets
gave quite similar results with all three methods. All

methods found the same trait loci in almost every data
set, but their degree of evidence (the magnitude of
signals) was slightly different. The infinite polygenic
model underestimated polygenic variance and for some
data sets it had difficulties of finding a single mode
(converging value) and thus had identifiability problems.
As a whole, the infinite polygenic model estimated
heritability better than the other two models, but still it
underestimated the true heritability almost every time.
The model without the correction term found simulated
effects more frequently (that is, had better power) than
the other two models and the infinite polygenic model
had the lowest false-positive rate and false-discovery rate
but FPR and FDR were quite similar with all three
models (Table 10). The performance of the covariate
model was not superior with respect to any summary
statistic but performance was still comparable to the
other models. As earlier, the higher the posterior
occupancy probability was for the genetic component,
the more accurate the estimate for the effect was.

Real data
Analysis details: When analysing the real data from the
CEPH families, we ran four MCMC chains each of length
50 000 and we allowed only the closest marker to have
an interaction with corresponding gene expression in
the model. In the prior, we restricted all variance
components to be less than our empirically estimated
phenotypic variance (ŝ2E0.007). The MCMC sampler
under the infinite polygenic model showed poor mixing,
which resulted in unreliable (non-converged) estimates.

Table 7 Point estimates of the number of components

No. of effects Mean s.d. 2.5% Median 97.5%

Polygenic model 6.03 1.83 3 6 10
Covariate model 6.09 1.71 3 6 10
No correction 6.20 1.72 3 6 10

Posterior estimated number of influential components for the data
with six simulated components using the three models.

Table 8 Heritability estimates and the 95% credible intervals
around the posterior mean for two simulated data set with three
competing models

Simulation analysis Mean 95% CI

Six effects h2E0.72
Polygenic model 0.552 [0.387, 0.809]
Covariate model 0.501 [0.369, 0.618]
No correction 0.500 [0.364, 0.617]

One effect h2E0.31
Polygenic model 0.247 [0.071, 0.410]
Covariate model 0.237 [0.061, 0.381]
No correction 0.238 [0.061, 0.384]

The true heritability of data with six simulated genetic effects was
approximately 0.72 and heritability of one simulated effect was
approximately 0.31.

Table 9 Correction term estimates

Mean 95% CI

Polygenic variance 2.078 [0.2663, 10.02]

Covariates
Father �0.006 [�0.132, 0.125]
Mother �0.040 [�0.181, 0.105]
Spouse 0.295 [0.057, 0.529]
Sibs �0.001 [�0.062, 0.057]

Posterior estimates (mean and 95% credible interval) of polygenic
variance and covariate coefficients (father, mother, spouse and sibs)
from data with six simulated effects.
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The MCMC chains of several parameters were stuck in
some parts of the parameter space for many iterations
and posterior estimates were different and depended
on the initial values of the different MCMC runs.
In addition, the infinite polygenic model had clear
difficulties in separating (identifying) the polygenic
variance and the residual variance from each other.
During MCMC iterations, most of the time the value of
the polygenic variance dominated that of the residual
variance which was zero or almost zero, but sometimes
this was swapped the other way round. Both these issues
probably arise due to the small number of individuals in
the data and therefore it is safest not to estimate the
variance components from such small data sets (see
Misztal, 1996; Burton et al., 1999).

Analysis results: The MCMC estimation under the
covariate model did not show any problems with
mixing, but could not capture any significant genetic
effects either. Every genetic effect occurs in the model
with almost equal probability, the largest probability
(E0.068) was found for the SNP close to gene GSK3B.

In a roundtable discussion (Kass et al., 1998) Neal
stated that prior constraints may cause convergence
problems for Markov chains, so we loosened our prior
restriction with genetic variance components in MCMC
estimation and allowed them also to have values larger
than the phenotypic variance. After this change the
covariate model produced slightly elevated posterior
probability (E0.130) for the effect of marker�gene
expression interaction for gene LEF1. Probabilities for
the rest of the effects varied in range (0.019, 0.072). In
earlier studies (Behrens et al., 1996; Huber et al., 1996)
LEF1 has been shown to interact with b-catenin, which is
an important effector of the WNT-signaling pathway.
Together these two proteins mediate a transcriptional
response to WNT signalling (Reya et al., 2000).

Discussion

In the population-based association analysis of quantita-
tive traits, the use of relatives provides a competitive

alternative for a sample of unrelated individuals
(Visscher et al., 2008). In such cases, the use of a
correction term is important in single-gene models to
avoid false positives due to the resemblance of indivi-
duals (Yu et al., 2006; Iwata et al., 2007). Two approaches
for taking the pedigree structure into account in a model-
based multilocus association were presented and com-
pared here with the approach of no correction. In
principle, one can easily include a large pedigree in a
covariate model. To allow larger pedigrees in the infinite
polygenic model, Damgaard (2007) has suggested prior
transformation of the kinship matrix to improve the
mixing properties of the WinBUGS sampler. However,
because we have concentrated on reasonably small
pedigrees, we did not apply such a transformation here.
Also application of Lin (1999) and Thomas (1992)
provide natural samplers for larger pedigrees (see
Waldmann, 2009).

Use of indicator variables
Initially, we began by adding a correction term which
takes into account the pedigree structure to the model of
Hoti and Sillanpää (2006), which does not include any
indicator variables. Generally, the model found genetic
components quite well, but the heritability estimate had
a tendency to become highly inflated (being almost one).
We found out that this overestimation was due to the
cumulative effect of many negligible genetic effects (at
insignificant components) which each contributed very
little to the cumulative variance of genetic effects (results
not shown). When we added indicator variables into the
model (as explained in the Model section), the herit-
ability estimate was affected only by the genetic
variances of significant components, whereas the other
variances were truly zero (cf. method BayesB in
Meuwissen et al., 2001). This change in the model
structure brought the heritability estimates down from
one. It is important to note that Hoti and Sillanpää (2006)
obtained good estimates for heritability with their model
even without indicators. One reason for different
behaviour in Hoti and Sillanpää (2006) and in our

Table 10 Averaged effect estimates and occupancy probabilities of replicated data analysis: Simulated and estimated effects (posterior
means) of trait loci under three competing models when constraining the effect of the genotype AA to zero

Location Genotype Simulated
value

Polygenic model Covariate model No correction

Effect� I estimate P(Ij¼ 1|data) Effect� I estimate P(Ij¼ 1|data) Effect� I estimate P(Ij ¼ 1|data)

7 AB 4 3.29 0.86 2.97 0.81 3.14 0.90
BB 8 6.73 6.03 6.71

29 AB 2 0.14 0.07 0.18 0.07 0.24 0.09
BB 4 0.25 0.25 0.37

36 AB 3 0.91 0.46 0.93 0.43 1.18 0.54
BB 6 2.31 2.12 2.74

Average FNR (%) 34.7 33.3 30.7
Average FPR (%) 0.4 0.6 0.5
Average FDR (%) 6.7 9.0 8.0

Average Heritability 0.43 0.29 [0.07, 0.50] 0.19 [0.01, 0.34] 0.19 [0.01, 0.34]

Here ‘Effect� I’ refers to P(effect� Ij|data). False-negative rate FNR¼nfn/(ntp+nfn), false-positive rate FPR¼nfp/(nfp+ntn), false-discovery rate
FDR¼nfp/(nfp+ntp), and heritability estimate were averaged over analyses of 25 simulated data sets. Here, ntp and nfp are numbers of true and
false positives and ntn and nfn are numbers of true and false negatives, respectively.
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implementation here might be that we made our analysis
with WinBUGS, where we had to restrict our flat priors
to certain region, which had to be narrow to prevent
computational overflows and maintain numerical stabi-
lity (see Appendix A). This restriction led to the situation
where the variance parameters cannot be exactly zero.

Analyses of simulated data
When analysing data with six simulated effects using the
infinite polygenic model, our estimate for additive
polygenic variance was much smaller than the true
simulated value. On the other hand, the estimated
number of influential genetic components had some
support for being larger than the true number of
simulated effects. We found out that these additional
effects were all small in size. We suppose that this
phenomenon occurs because our model approximates
polygenic variance in a similar way as the finite
polygenic model (FPM). FPM was first proposed by
Thompson and Skolnick (1977) and it describes the
genetic (polygenic) covariance among pedigree members
by a finite number of unlinked small-effect quantitative
trait loci (Du et al., 1999; Du and Hoeschele, 2000). Briefly,
the correctly identified genetic components and a few
extra components together seem to fit (explain) most of
the polygenic structure of the data leaving only a small
amount of polygenic variance to be explained by the
infinite polygenic component. Our model is more flexible
than FPM, because FPM assumes a constant number of
equal-sized genetic effects when approximating the
polygenic structure, whereas our model estimates the
number of components and their effects simultaneously
from the data. The running of the covariate model with
the same data led to the slightly smaller heritability
estimate and the same amount of significant genetic
effects. Like the infinite polygenic model, also here the
multiple markers (and expressions) took the role of
polygenic inheritance. Moreover, this performance of the
marker effects here is also closely related to the genomic
selection (see Meuwissen et al., 2001; Calus and Veer-
kamp, 2007) where the sum of the marker effects is used
to model polygenic variation.

In the data with one simulated effect, both the infinite
polygenic model and the covariate model favoured more
than one influential component in each MCMC iteration.
However, these additional components had negligible
effects, which were very small in size. This gave further
support to the fact that the polygenic inheritance is
captured mostly by extra loci in multilocus association
models where the effects of multiple loci/components
are considered in the model simultaneously.

Analysis of simulated data replicates
These replicated marker data analyses showed us that
the infinite polygenic model is very sensitive (in the
sense of sometimes providing good estimates and
sometimes poor estimates) on particular data in estimat-
ing several variance components. All models provided
quite similar results, which makes the definition of the
best performing method difficult. However, the unpre-
dictable performance of the infinite polygenic model
makes it less attractable.

Analysis of real data
Real data analysis with the infinite polygenic model had
difficulties in separating polygenic and residual variance

during the estimation. This may imply that individual
components here also explain/approximate polygenic
variance quite well and that the remaining variability
cannot be partitioned into two distinct variance compo-
nents. Also the amount of the data was rather small, so
estimating the variance components is not reliable (see
Burton et al., 1999; Misztal, 1996).

There are several reasons why our approach did not
lead to any significant genetic effects on the real data
analysis. One is the amount of the data (four families),
which was quite small. In addition, it is likely that the
heritability of the expression trait is also small. Usually,
small amount of data does not matter if (1) heritability is
large enough, and vice versa, and if (2) components/
candidates are independent. Here, the candidates were
especially selected as members from the single WNT
pathway, in which case they are evidently highly
correlated, which again makes it difficult to do model
selection among them using multilocus association
models. Our method tries to find a sparse set of trait-
associated components at the same time, whereas due to
correlatedness, selected components may vary at each
MCMC iteration. This may have been the cause of almost
equal posterior probabilities for all genetic effects.

In contrast, Kraft et al. (2003) used a single-gene test,
where the association of a single-gene was tested at a
time. The high correlation between candidates in such
circumstances could mean that one being significant is
the same as them all being significant which may explain
the differences between the results. On the other hand,
group-based testing would have provided an interesting
alternative (Goeman et al., 2004).

Model extensions and MCMC estimation
The linkage information of SNPs provided by the
pedigree was omitted in our model for the missing data.
Linkage can be added into our model so that genotypes
of the closely linked loci have dependency structure, by
modelling haplotypes and their recombinations as in
oligogenic analysis (for example, Heath, 1997; Uimari
and Sillanpää, 2001). In principle, the pedigree informa-
tion also allows an extension to models with combined
association and linkage (Fulker et al., 1999; George et al.,
1999; Abecasis et al., 2000; Perez-Enciso, 2003). In the case
with many missing genotypes in a single family, one
must keep in mind that WinBUGS uses the single-site
Gibbs sampler in updating missing genotypes. Missing
genotypes in consecutive generations can cause the
single-site Gibbs sampler to be reducible (Cannings
and Sheehan, 2002). In that case one configuration can
never be reached, once the other configuration has been
assigned earlier. Our model for missing expressions
could be extended by utilizing information on cis- and
trans-acting markers (Sillanpää and Noykova, 2008) or by
assuming correlated expressions among related indivi-
duals to an extent that reflects the heritability. Our model
could also be extended to include the correction term for
population structure as in Yu et al. (2006). However,
WinBUGS analysis with multiple populations may be too
demanding so that other implementations need to be
considered. On the other hand, in light of our results, it is
likely that multilocus association models can self-correct
population structure similarly as they did for family
structure here. Actually, Setakis et al. (2006) found this to
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234

Heredity



be true for population structure in their study by using
the binary phenotype and logistic regression, and Iwata
et al. (2007) for the multilocus association analysis of
quantitative traits, see also Iwata et al. (2009). In any case,
further inspection is needed on the role (importance) of
the correction terms in multilocus association models.

There are two sources of sparseness in our model. One
results from using Jeffreys’ prior and the other from the
use of indicator variables (see O’Hara and Sillanpää,
2009). Based on our experiments, Jeffreys’ prior dom-
inates the other source of sparseness. It seems that the
prior selection probability s has only modest influence on
the posterior and that the degree of sparseness here is
similar to that which would be obtained from Jeffreys’
prior alone. The great benefit of using indicator variables
is that they can produce occupancy probabilities directly.
Xu (2003) also used Jeffreys’ prior to induce sparseness in
his model, which did not produce occupancy probabil-
ities for the components. In the model of Hoti and
Sillanpää (2006) occupancy probabilities were calculated
afterwards for standardized effects using a pre-specified
threshold value.

Based on our limited experiments carried out here,
Bayesian multilocus models without correction seem to
be a flexible tool in association analysis even if there are
dependencies among study individuals. When there are
many candidate components, they can automatically
take residual dependencies into account without produ-
cing a large amount of false positives. However, further
inspection is needed to clarify when there are enough
candidates and data, for it to be safe to leave out the
correction term from the cQTL-model. For population
structure, Iwata et al. (2007) found that use of a correction
term (in two-genotype data) systematically seemed to
provide some additional advantages over self-correction
(the use of a multilocus model without a correction
term). It seems that the model without the correction
term performs quite similarly with the models, which
take into account the pedigree structure. If one, however,
wants to use the model with correction we found that if
the heritability or the number of individuals is quite
small, the use of a covariate model is then preferable. In
addition, the covariate model provides a framework to
include phenotype information from ungenotyped par-
ents to the analysis (cf. Purcell et al., 2005). Nevertheless,
the use of the model without the correction term gives
satisfactory results when several candidate components
are studied in the model simultaneously.

The model specification codes (written in WinBUGS)
used in this article are freely available for research
purposes from the authors upon request.
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Appendix A

Estimation
To induce sparseness into a model, we are using Jeffreys’
prior p(s2)p1/s2 for variances. This however, is an
improper prior (does not integrate to a finite value)
which can lead to an improper posterior (for example,
Hopert and Casella, 1996; ter Braak et al., 2005). As we
are using WinBUGS software (Gilks et al., 1994; Spiegel-
halter et al., 1999) for implementation, we need to do
some adjustments. WinBUGS uses nonstandard para-
meterization of distributions in terms of their precision
(that is, precision¼ t¼ 1/variance). We make transfor-
mation f¼ log(t) for the precision parameters. Note that
the transformation applies equivalently for both variance
and precision. Equivalent to the prior p(t)p1/t, the prior
for transformed parameter can be derived as
pðfÞ ¼ pðtÞjqtqfj / 1

t t ¼ 1 (see Gelman et al., 2004, p. 65).
However, the flat prior p(f) is also improper, but when it
is restricted to some finite range, it will give us proper
prior. We restricted the precision to the range ½1

b̂
; 1

a�, where
b̂ is empirical approximation of phenotypic variance and
a is very close to zero (10�18). For the precision parameter
we also tried a Gamma prior with certain shape
parameters which has similar shape as Jeffreys’ prior
(see Cemgil et al., 2007). We found out that such a prior
was sensitive to shape parameters and it also easily
produced numerical instability (‘trap messages’) in
WinBUGS. Thus, we decided to use a restricted Jeffreys’
prior in our examples. The prior for m is also an improper
flat prior. An approximation for that is flat normal
density with zero mean and large enough variance.

The prior for the missing data of founders is
constructed in the following way: we create two
hypothetical extra individuals, which are the parents of
all the founders. These artificial individuals are hetero-
zygotes in all their markers. Thus, we can give the same
prior p(mi,j|mm,j,mf,j) for all the individuals regardless of
them being founders or non-founders, which allow us to
use WinBUGS. In this way, we could keep the data
structured by the pedigrees and this procedure is
equivalent to the assumption of uniform allele frequen-
cies. We assume that also phenotypic data is missing at
random (Rubin, 1976). WinBUGS follows this assump-
tion and thus, the posterior distributions of the para-
meters are influenced only by the observed records of the
outcome variable.

For the infinite polygenic model, we tested both the
multivariate normal distribution and the conditional
factorization of Lin (1999) and Thomas (1992) as a prior
for ‘breeding values’. In WinBUGS, our experience
confirmed the expectation that both of these methods
are practically equally efficient than a block updating of
‘breeding values’ which maintain well mixing samplers.
Faster computational speed favors the use of conditional
factorization.
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