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An agglomerative hierarchical approach to
visualization in Bayesian clustering problems
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Clustering problems (including the clustering of individuals into
outcrossing populations, hybrid generations, full-sib families and
selfing lines) have recently received much attention in popula-
tion genetics. In these clustering problems, the parameter of
interest is a partition of the set of sampled individuals—the
sample partition. In a fully Bayesian approach to clustering
problems of this type, our knowledge about the sample partition
is represented by a probability distribution on the space of
possible sample partitions. As the number of possible partitions
grows very rapidly with the sample size, we cannot visualize this
probability distribution in its entirety, unless the sample is very
small. As a solution to this visualization problem, we recom-
mend using an agglomerative hierarchical clustering algorithm,
which we call the exact linkage algorithm. This algorithm is a

special case of the maximin clustering algorithm that we
introduced previously. The exact linkage algorithm is now
implemented in our software package PartitionView. The exact
linkage algorithm takes the posterior co-assignment probabilities
as input and yields as output a rooted binary tree, or more
generally, a forest of such trees. Each node of this forest defines
a set of individuals, and the node height is the posterior co-
assignment probability of this set. This provides a useful visual
representation of the uncertainty associated with the assign-
ment of individuals to categories. It is also a useful starting point
for a more detailed exploration of the posterior distribution in
terms of the co-assignment probabilities.
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Introduction

In a clustering problem we have a collection of
individuals (the sample), which must be classified into
mutually exclusive categories. In general the number of
categories represented in the sample, and the character-
istics of these categories, are uncertain. Problems of this
type have recently received much attention in population
genetics, where the data available from the sampled
individuals include their genotypes at a number of
marker loci. (Other types of data, which may be available
include the spatial positions of individuals, and observa-
tions of their behaviour.) Examples include the follow-
ing. (i) Clustering individuals from an outcrossing
species into putative populations (represented approxi-
mately as panmictic populations). These putative popu-
lations may correspond to subspecies, or even individual
spawning grounds or breeding sites (for example, in
phylopatric species of fish, amphibians or marine
turtles). For Bayesian approaches to these problems,
see Pritchard et al. (2000); Dawson and Belkhir (2001);
Falush et al. (2003); Corander et al. (2003, 2004, 2006);
Corander and Marttinen (2006); Pella and Masuda
(2006); Huelsenbeck and Andolfatto (2007); Guillot et al.
(2008). Methods are also available which make use of

spatial position data in addition to genotype data from
the sampled individuals (Guillot et al., 2005; François
et al., 2006; Chen et al., 2007; Corander et al., 2008). (In the
earlier work of Wasser et al. (2004), individuals were not
classified into discrete populations.) (ii) The more
general problem of clustering individuals from an
outcrossing species into hybrid generations, including
F1, F2 and B1 crosses, as well as parental populations
has been addressed by Anderson and Thompson
(2002). Falush et al. (2003) also allow for the possibility
that the sample contains individuals of hybrid origin.
(iii) Clustering individuals into (full-sib) families
(Painter, 1997; Almudevar and Field, 1999; Thomas
and Hill, 2000, 2002; Emery et al., 2001; Wang, 2004;
Hadfield et al., 2006). Painter (1997); Thomas and Hill
(2000); Smith et al. (2001) assumed that the separate full-
sib families do not share any parents in common.
Thomas and Hill (2002) and Wang (2004) imposed the
weaker constraint that parents of only one sex are
permitted to have multiple mates. Emery et al. (2001)
imposed no constraints on the matings among parents.
Hadfield et al. (2006) incorporated spatial information on
the territories occupied by individuals. (iv) Clustering
individuals from a partially selfing population into
selfing lines (Wilson and Dawson, 2007), or individuals
from a partially asexual population into clonal lineages.

In a clustering problem, the parameter of interest is a
partition of the label set S of the sample. We refer to this
parameter as the sample partition. A partition of a set S is
a set of non-empty disjoint subsets of S, the union of
which is the set S itself.
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From a Bayesian point of view, inferences about the
sample partition should be based on the (marginal)
posterior distribution of the sample partition. An MCMC
sampler can be used to generate a large sample of
observations from the posterior distribution of the
sample partition—or at least a distribution, which is an
adequate approximation to this posterior distribution.
This is the approach taken in many of the papers cited
above. Here, we are concerned with the treatment of the
output from the Markov chain sampler.

The visualization problem

Bayesian clustering problems of this type have certain
features which have proved to be challenging. The
number of ways of partitioning a set of n distinct
elements into k non-empty disjoint (and unlabelled)
subsets is equal to the Stirling number of the second
kind, denoted by fnkg. These numbers grow very rapidly
with n. The total number of ways of partitioning a set of
n distinct elements into non-empty disjoint (and un-
labelled) subsets, is given by the sum

BðnÞ ¼
Xn
k¼1

n
k

� �
:

This is the nth Bell number. (For further information see
for example, Aigner (1979).) As these numbers grow very
rapidly with n, it is only in cases where n is small, that a
probability distribution over the space of partitions of the
set can be visualized in its entirety. This is what we mean
by a visualization problem. There need not be a problem
if there are only a small number of partitions which have
an appreciable share of the posterior probability—as
these partitions can easily be identified and listed along
with their individual posterior probabilities. However, if
many of the individuals in the sample are difficult to
classify, then there will be many plausible partitions,
each one having an individually low posterior prob-
ability. Under these circumstances those regions where
the probability is elevated will be difficult to identify.

In addition to this visualization problem, there is also a
computational problem. The Monte Carlo method will
not provide an accurate estimate of very low probabil-
ities (because these will necessarily be based on a small
number of observations). Therefore, in situations where
there are a large number of plausible partitions, there is a
need to collapse this marginal posterior distribution
further, to obtain marginal posterior probabilities of more
probable events.

Some authors, using Bayesian methodology, have
avoided the visualization problem by considering only
point estimation of the sample partition (Corander et al.,
2003; Huelsenbeck and Andolfatto, 2007; Coulon et al.,
2008). Corander et al. (2003) used a maximum a posteriori
probability estimate. However, maximum a posteriori
probability estimates are vulnerable to the computational
problem which arises when there are many plausible
partitions, each one having an individually low posterior
probability.

The Bayesian framework provides us with a general
strategy for overcoming visualization problems. We
compute marginal distributions (possibly many different
marginals), which can be visualized individually, each of
which provides some information about the parameter of

interest. We can also estimate the posterior probability
that the sample partition satisfies a chosen condition.
This is equivalent to the (marginal) posterior distribution
of an indicator function corresponding to the chosen
condition. We can compute these posterior probabilities
for as many different conditions as we find helpful.
Dawson and Belkhir (2001) made use of the posterior

co-assignment probabilities of sets of individuals. Let S
denote the label set of the sample. The co-assignment
probability of a set UDS is the probability that the set of
individuals, U, all belong to the same category (or
element of the partition). A co-assignment probability
can also be interpreted as the probability that the sample
partition satisfies a condition. In this case, the condition
is that the chosen set U is a subset of (or is equal to) an
element of the sample partition. Here, we denote the
posterior co-assignment probability of the set U by P(U).

The label-switching problem

In the past, Bayesian clustering methods have been beset
by the so-called label switching problem described by
Richardson and Green (1997). These are problems that
can arise in Bayesian inference about any model having a
set partition (such as a sample partition) as a parameter,
when we try to compute marginal distributions for
parameters, which depend upon an arbitrary labelling of
the elements of the partition. The labelling of the
elements is arbitrary whenever the prior and the
likelihood function are both invariant under permutation
of the component labels—in which case the posterior
distribution is also invariant under permutation of the
component labels. For example, one might be tempted to
compute what we refer to here as the posterior assign-
ment probability of individual i to a particular category a
(conditional on there being K categories, say). This is the
posterior probability that individual i belongs to category
a, conditional on there being K categories. However, a is
an arbitrary label, which does not refer to any fixed
entity. A category is characterized by the individuals
assigned to it, and by the value of some category-specific
parameter, all of which are uncertain. In fact, Pritchard
et al. (2000) recommended assigning individuals to
discrete clusters using these posterior assignment prob-
abilities, which they refer to as membership coefficients,
and which are an output of their widely used software
package (STRUCTURE).
In the case of STRUCTURE, this label-switching

problem is obscured by the poor mixing of the Markov
chain sampler. (According to Pritchard et al. (2000), their
Markov chain samples in the vicinity of a single mode of
the posterior distribution.) It is only as a consequence of
poor mixing that a set of individuals, which have a high
posterior co-assignment probability, also tend to remain
associated with the same label over many iterations of
the Markov chain sampler. In the model which underlies
STRUCTURE, the parameter K is the number of potential
populations. For each run of the Markov chain sampler,
K is held fixed. The potential populations are labelled
a¼ 1,y,K. One of the outputs from a run of the Markov
chain sampler is an n�K matrix of posterior assignment
probabilities. This output is referred to as a Q-matrix. If
the Markov chain sampler mixed well, then each of these
assignment probabilities would be equal to 1/K, and so
would be completely uninformative.
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Recently (Jakobsson and Rosenberg, 2007) the software
package CLUMPP has been developed to process the
output from STRUCTURE. This program takes as its
input the Q-matrices computed from r runs of the
Markov chain sampler. It then searches for the sequence
of r�1 permutations of the set {1,y,K} (and hence
permutations of the columns of the Q-matrix), which
maximizes a measure of similarity for the sequence of
r Q-matrices. Once the required sequences of permuta-
tions have been found, it is applied to the sequence of
Q-matrices. The resulting sequence of (column per-
muted) Q-matrices can then be passed as input to the
visualization software package DISTRUCT (Rosenberg,
2004). It seems to us that CLUMPP does not address the
label-switching problem. If the Markov chain sampler
mixed well, then each of the Q-matrices (which CLUMPP
takes as its input), would have every entry equal to 1/K,
in which case the output from CLUMPP would be as
uninformative as the input. If on the other hand
the Markov chain sampler mixes poorly, then we cannot
rely on it to make accurate estimates of posterior
probabilities.

Label-switching problems can also arise in Bayesian
inference about mixture models, whenever we try to
compute marginal distributions for parameters which
depend upon an arbitrary labelling of the component
populations of the mixture. Richardson and Green (1997)
drew attention to the label-switching problem in the
context of their attempt to compute the marginal poster-
ior distribution of component-specific parameters. For
example, in the case of a population genetic model,
where the components correspond to distinct panmictic
populations, we might want to compute the marginal
posterior distribution of the frequency of a particular
allele type in each population. The solution to the label-
switching problem offered by Richardson and Green
(1997) was to rank the components of the partition with
respect to the value of one of the component-specific
parameters. It is then possible to compute the marginal
posterior distribution for any component-specific para-
meter in the first component, the second component, and
so on. Such an ordering of the components has been
referred to as an identifiability constraint (Celeux et al.,
2000; Hurn et al., 2003; Jasra et al., 2005). These are
certainly well-defined marginals of the posterior dis-
tribution. However, there is no guarantee that any of
these marginals will correspond to a unique component
of the true mixture. We may also have to choose from a
bewildering array of possible identifiability constraints.
For example, in the case of a population genetic model,
where the components correspond to distinct panmictic
populations, we could choose to order the components
with respect to the frequency of any allele type, at any
locus, which is represented in the genotype data. An
identifiability constraint of this type was used by Guillot
et al. (2005).

When the number of potential components in the
mixture is a constant K, the posterior distribution can be
represented as a symmetric mixture of K! copies of a
single joint distribution, each with a different permuta-
tion of the component labels. This observation is the
starting point for an alternative approach proposed by
Stephens (1997, 2000), where the aim is to assign each
observation from the posterior distribution to one of the
K! permutation. This is achieved by applying a k–means

type clustering algorithm to the sample of observation
from the posterior distribution, to assign each observa-
tion to one of the K! clusters. (For an alternative
algorithm, see Celeux et al. (2000)) Jasra et al. (2005)
referred to this method as a relabelling algorithm. This
may prove to be a very difficult clustering problem
when the K! components in the symmetric mixture
overlap too much.

Jasra et al. (2005) favoured a third approach to the
label-switching problem, originally advocated by Celeux
et al. (2000) and Hurn et al. (2003). These authors
proposed that the label-switching problem be solved
within the framework of decision theory, by introducing
a label-invariant loss function. The loss function is a
function of parameter values of the model (the sample
partition, and the component-specific parameters), and
an action. (For an introduction to decision theory, see
Berger (1985)) In Celeux et al. (2000) and Hurn et al.
(2003), the action is simply a point estimate, of either the
sample partition, or a sequence of component-specific
parameters. (In principle, the action could also be the
choice of a credible set, rather than the choice of a point
estimate. However, in the case of the sample partition,
this would take us back to the visualization problem.)
Having introduced a loss function, we are in a position to
compute the posterior expected loss for each possible
action. In principle, we can search for the action that
minimizes the posterior expected loss. However, this
minimization procedure is computationally costly. Note
that the choice of a loss function introduces further
subjectivity, in addition to the subjectivity inherent in the
choice of prior.

A solution

In contrast to Stephens (2000) and Jasra et al. (2005), we
strongly recommend avoiding the label-switching pro-
blem by restricting attention to marginal distributions of
only those parameters which are invariant under
permutations of the labels of the categories. This point
of view was expressed by Gilks (1997) in a contribution
to the discussion of Richardson and Green (1997), from
which we now quote.

‘I am not convinced by the authors’ desire to produce
a unique labelling of the groups. It is unnecessary for
valid Bayesian inference concerning identifiable quan-
tities; y it is only the group members which lend
meaning to the individual clusters.’

Unlike assignment probabilities, co-assignment prob-
abilities are invariant under permutations of the labels of
the categories. This was one reason why Dawson and
Belkhir (2001, 2002) proposed using the posterior co-
assignment probabilities as a basis for inferences about
the sample partition. Furthermore, in situations where
the posterior probabilities of individual partitions are too
small (relative to Monte Carlo error) to be estimated
reliably, the posterior co-assignment probabilities of
many subsets of the label set can be estimated accurately,
using a large sample of observations from the posterior
distribution.

The availability of posterior co-assignment probabil-
ities for sets of individuals suggests a solution to the
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visualization problem. If we have a rooted binary tree
with n terminal nodes (external nodes, tips or leaves),
each of which is labelled with a distinct element of the
label set S of the sample, then each of the n�1 internal
nodes of this tree specifies a subset (containing two or
more elements) of the label set S. Included among these
subsets is the set S itself, which is the set specified by the
root node. By making the height of each node equal to
the posterior co-assignment probability of the set of
individuals defined by that node (the individuals whose
labels occupy the terminal nodes that can be reached by
ascending the tree from that node), we can present the
posterior co-assignment probabilities of n�1 sets in a
format which is easy to view and interpret.

Before proceeding, we need to clarify what is meant by
a rooted binary tree, a terminal node and an internal
node. A tree consists of nodes and edges (branches). (A
tree is a graph.) It is possible to walk on a tree (stepping
from one node to the next only when they are joined by
an edge) from any node to every other node. (A tree is a
connected graph.) When walking on a tree, it is
impossible to return to the original node without
travelling back along at least one of the same edges. (A
tree is an acyclic-connected graph. This can be taken as
the definition of a tree.) Every node of a tree is connected
to at least one edge. A node which is connected to only
one edge is called a terminal node (external node, tip or
leaf). A node which is connected to more than one edge
is called an internal node. In a rooted tree, one of the
internal nodes is designated the root node. A rooted
binary (bifurcating or fully resolved) tree is one in which
the root node is connected to exactly two edges, and
every other internal node is connected to exactly three
edges.

We are now faced with the problem of choosing
a rooted binary tree, and hence choosing which subsets
of S are to be specified, together with their posterior
co-assignment probabilities. Any hierarchical clustering
algorithm will automatically pick out one particular
hierarchy of sets, which can be represented in the form of
a (rooted) binary tree. The computational time required
for a divisive hierarchical clustering algorithm (where
we begin by assigning all individuals to a single
category) grows exponentially with the sample size n,
because there are 2n�1�1 distinct bipartitions of a set of n
elements Edwards and Cavalli-Sforza, 1965). In contrast,
the computational time required for an agglomerative
hierarchical clustering algorithm (where we begin by
assigning each individual to a separate category) is only
of order n2. For these computational reasons an agglom-
erative hierarchical clustering algorithm is preferable.
But which agglomerative hierarchical clustering algo-
rithm should we use? Dawson and Belkhir (2001)
introduced the maximin agglomerative algorithm for
this purpose. More recently, Corander et al. (2004)
applied the complete linkage algorithm to the output
from their MCMC sampler (the software package BAPS).
The complete linkage algorithm is a special case of the
maximin agglomerative algorithm.

Here, we recommend an agglomerative hierarchical
clustering algorithm which we refer to as the exact
linkage algorithm. The exact linkage algorithm is also a
special case of the maximin agglomerative algorithm of
Dawson and Belkhir (2001). In the next section, we
describe the exact linkage algorithm.

We end this section by noting that, in general, the
output from the exact linkage algorithm may be a rooted
binary tree in which some internal nodes have height
zero—represented co-assignment probabilities of zero. It
is more natural to interpret a rooted binary tree having k
nodes at height zero (1pkon) as a rooted binary forest
made up of kþ 1 separate trees. A forest is a graph in
which every connected subgraph is a tree. In other
words, a forest is composed of one or more trees.

The exact linkage algorithm

As with any agglomerative hierarchical clustering algo-
rithm, the exact linkage algorithm begins with n terminal
nodes, each of which is labelled with a distinct element
of the label set S of the sample. (So the set of terminal
nodes can be equated with the label set S.) At each
subsequent iteration (t¼ 1, 2, y), a new internal node is
created, having two existing nodes (terminal or internal)
as descendants. In this way, we build up a forest of
rooted binary trees. (This rooted binary forest may
include trivial trees consisting of a single terminal node.)
This process of adding internal nodes can continue
for a maximum of n�1 iterations (in which case we
have, at the end of iteration n�1, a single-rooted binary
tree having n terminal nodes and n�1 internal nodes).
See Figure 1, where we illustrate the exact linkage
algorithm with an example for a sample of five
individuals.
Each internal node is labelled with an integer t

(¼ 1, 2, y, n�1), according to the iteration t at which it
was created. Each node of this forest defines a set of
individuals from the sample. A terminal node defines a
set containing only one individual. Every internal node t,
defines a set S(t)DS. This is the set of terminal nodes
that can be reached by ascending the tree, starting from
node t.
At any iteration t, a node is said to be a root node if it

has not yet become the descendent of another node. Let
R(t) denote the set of root nodes at the end of iteration t.
At the end of iteration t, every root node in R(t) belongs
to a distinct tree in the associated forest, and every tree in
the forest has a unique root node which belongs to R(t).
In the case of a trivial tree, consisting of a single terminal
node, this terminal node is also the unique root node of
the tree.
We now state the exact linkage algorithm.

The exact linkage algorithm
We begin with an initialization step.
(0) Set the iteration number to be t¼ 0. Set the height of

each terminal node to 1. Set R(0)¼S (the set of terminal
nodes).
To construct the internal nodes, at each subsequent

iteration we repeat the following three steps.

(1) Increase the iteration number by one (from t�1 to t),
then construct a set Q(t) of proposed nodes. This is
the set of the nodes which can be constructed by
taking a pair (i,j) of (distinct) existing root nodes
(i,jAR(t�1), iaj), and joining them together to create
a new root node having these two nodes as its
descendants.

(2) Calculate the node height p(i,j) associated with each
proposed node (i,j)AQ(t).
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(3) Find the proposed node which is highest, and add
this node to the forest. Label this new node t. So we
have

pðtÞ ¼ max
ði;jÞ:i;j2Rðt�1Þ

i 6¼j

fpði; jÞg: ð1Þ

Repeat steps 1–3 until either p(t)¼ 0, or (at the end of
iteration t¼ n�1) only one root node remains.

In the event of ties (multiple proposed nodes having
the same height) occurring at step 3, we simply choose
one of these highest nodes at random and accept it.

Notice that at each iteration the number of root nodes
(and hence trees in the forest) is reduced by one. So, at
the end of iteration t we have |R(t)|¼ n�t root nodes.
At the start of iteration t, the number of proposed
nodes is

QðtÞj j ¼ n� tþ 1
2

� �
:

The node height p(i,j) of a proposed node (i,j) is a Monte
Carlo estimate of the co-assignment probability P(S(i,j))
of the set S(i,j)¼S(i),S(j) defined by this proposed node.
The Monte Carlo estimate is obtained from the sample
of N observations of the sample partition. The sample
is stored as an n�N array, where each line is an
observation of the sample partition, represented as a
vector of n integer values. Each position i in the vector of
n integer values represents an individual (iAS), and the

integer value at position i is an arbitrary label a,
indicating the element of the partition (a subset of S) to
which that individual is assigned. To estimate the co-
assignment probability P(S(i,j)), we count the number of
observations where the set S(i,j) is a subset of an element
of the sample partition, and divide this count by the total
number of observations N. We indicate this approximate
relationship by writing

pði; jÞ � P Sði; jÞð Þ; for i; j 2 R t� 1ð Þ; i 6¼ j; ð2Þ
and

pðtÞ � P SðtÞð Þ; for t ¼ 1; 2; . . . ; n� 1; ð3Þ
where S(t) is the set defined by the accepted node t.

Notice that we can construct the set of proposed nodes
Q(t) at step 1 of iteration t (X2), by updating the set of
proposed nodes Q(t�1) from the previous iteration (t�1),
as follows. Suppose that the most recent accepted node
(labelled t�1) has descendants d1 and d2. First, delete the
proposed node (d1,d2), along with all proposed nodes
(d1,j), (j,d2), where jAR(t�2) and jad1,d2. (The total
number of nodes to be deleted is 2(n�t)þ 1.) Second,
insert the nodes (t�1,j), where jAR(t�2) and jat�1. (The
total number of nodes to be inserted is n�t.) As a
consequence, at step 2 of interaction t, we only need to
compute the node heights of the n�t new proposed
nodes created at step 1.

In Figure 1, steps 1 and 2 taken together, are referred to
as the update step, because the proposed nodes are

Iteration 1 update

5 4 3 2 1

(4,5)

(1,2)

(3,5)
(3,4)

(1,3)(2,4)

(1,4)(2,3)(2,5)

(1,5)

Iteration 1  accept

5 4 3 2 1

−1
(4,5)

(1,2)

(3,5)
(3,4)

(1,3)(2,4)

(1,4)(2,3)(2,5)

(1,5)

Iteration 2 update

5 4 3 2 1

−1

(1,2)

(1,3)

(2,3)

(−1,3)

(−1,1)(−1,2)

Iteration 2 accept

5 4 3 2 1

−1

−2
(1,2)

(1,3)

(2,3)

(−1,3)

(−1,1)(−1,2)

Iteration 3  update

5 4 3 2 1

−1

−2

(−1,3)

(−2,3)(−2,−1)

Iteration 3  accept

5 4 3 2 1

−3

−1

−2

(−1,3)

(−2,3)(−2,−1)

Iteration 4  update

5 4 3 2 1

−3

−1

−2

(−3,−2)

Iteration 4  accept

5 4 3 2 1

−4

−3

−1

−2

(−3,−2)

Figure 1 The exact linkage algorithm. Here, we illustrate the exact linkage algorithm with an example for a sample of five individuals. At the
initialization step (iteration t¼ 0) we create five terminal nodes, labelled respectively 1, 2, 3, 4 and 5. This is followed by iterations t¼ 1, 2, 3, 4.
At each iteration t (X1) we begin with an update step. This is followed by an acceptance step at which we create a new internal node, labelled
�t (where t is the iteration at which it is created). At the update step we update the set of proposed nodes. This updated set of proposed
nodes is formed from all possible pairs of the root nodes available at the start of the present iteration. In this figure, every node (proposed
node or accepted node) is positioned at a height equal to the co-assignment probability of the set defined by that node. The proposed nodes
are arranged on the vertical axis to the right of the forest. Notice that it is always the highest proposed node, which is accepted. At iteration
t¼ 1 the proposed node (4, 5) is accepted and added to the tree, where it is labelled �1. At iteration t¼ 2 the proposed node (1, 2) is accepted
and added to the tree, where it is labelled �2. At iteration t¼ 3 the proposed node (�1, 3) is accepted and added to the tree, where it is
labelled �3. At iteration t¼ 4 the proposed node (�3, �2) is accepted and added to the tree, where it is labelled �4.
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updated as described above. Step 3 is referred to as the
acceptance step in Figure 1, because a proposed node is
accepted and added to the forest.

It is possible to improve on this version of the exact
linkage algorithm by ruling out certain proposed nodes
right from the start. The version of the exact linkage
algorithm which has now been implemented in the
PartitionView software package, has been optimized
along these lines.

The maximin agglomerative algorithm
As already mentioned, the exact linkage algorithm is a
special case of the maximin agglomerative algorithm
Dawson and Belkhir (2001). The maximin agglomerative
algorithm is also described in Appendix A (see Supple-
mentary information).

In the maximin agglomerative algorithm, clusters are
constructed so as to maximize the minimum co-assign-
ment probability of subsets of size d within clusters. This
is why we have called this algorithm the maximin
agglomerative algorithm. In fact, it is a generalization of
the classical complete linkage (or furthest neighbour)
algorithm (S�rensen, 1948; McQuitty, 1960; Defays,
1977)—to which it reduces in the case d¼ 2.

The exact linkage algorithm includes a maximization
step, but no minimization. So, the name maximin
agglomerative algorithm is no longer appropriate. In
the complete linkage algorithm the heights of nodes are
upper bounds on the co-assignment probabilities for the
sets they define, when these contain more than two
individuals. This is in contrast to the exact linkage
algorithm where the heights of nodes are exact (up to
Monte Carlo sampling error) co-assignment probabilities
for the sets they define (regardless of how many
individuals they contain)—hence its name. An alter-
native more descriptive name for this algorithm is the
most probable cluster agglomerative algorithm. This
name reflects the fact that at each iteration of the
algorithm, we accept that proposed node, which defines
the cluster having the highest co-assignment probability,
out of all the proposed nodes at the iteration in question.

As recognized in Dawson and Belkhir (2001), the tree
or forest generated by the exact linkage algorithm
captures more of the information from the posterior
distribution than any other version of the maximin
agglomerative algorithm. However, in our earlier work
we implemented the maximin agglomerative algorithm,
with dimension d¼ 2, 3 or 4, for computational reasons.
See Appendix B (Supplementary information) for details.

The exact linkage algorithm is implemented in
PartitionView. The maximin agglomerative algorithm
(with dimension d¼ 2, 3 or 4) was implemented in the
earlier companion programme, called Analyse.exe,
which PartitionView.exe replaces. (Analyse.exe was an
unfortunate choice of name (as it has already been used
in population genetics, and no doubt elsewhere). It might
be best to rename this programme posthumously as
PartitionView0.exe.)

Interpretation of the forests generated by the
exact linkage algorithm

As we descend the forest (from the terminal nodes
towards the root node), passing successively through the

nodes t¼ 1, 2, y, n�1, the set S(t) defined by each node
has a lower posterior co-assignment probability than the
set defined by the preceding nodes. This brings us to the
question of how to decide when a node t is sufficiently
low that we can confidently reject the claim that all
individuals in the set S(t) defined by this node belong to
the same category. Perhaps, the most obvious method
is for the user to choose a threshold value p for
the probability of co-assignment. So, for every node
t defining a set of individuals S(t) with co-assignment
probability p(t)Xp, we accept the co-assignment of all the
individuals in the set S(t) defined by that node; while for
nodes t having p(t)op, we do not accept the correspond-
ing co-assignments. Ideally, each user would choose a
value for the threshold which corresponds to how averse
they are to the risk of making false co-assignments. For
example, a particularly cautious user might want to
choose a threshold of P¼ 0.9, or P¼ 0.95, whereas a less
cautious user might be content with a threshold of
P¼ 0.5. If we apply a rule of the above type, with any
threshold p, to the sets defined by the nodes of a forest
(with terminal nodes corresponding to the elements of
the set S), then we can only accept the assignment of
an individual i to a sequence of sets A, B, C, y

(|A|o|B|o|C|oyon) if these sets form a nested
sequence (iAACBCCCyCS).

Examples

In this section, we illustrate the performance of the exact
linkage algorithm for classifying individuals into cate-
gories, by applying it to the output from Markov chain
samplers applied to simulated data sets—where the
correct classification is known to us. The software
package PartitionView (version 0 and now version 1.0)
was originally developed as a companion programme to
the MCMC sampler program Partition (Dawson and
Belkhir, 2001). However, PartitionView can be used to
process the output from a Monte Carlo sampler for any
probability distribution which has, as a marginal, a
probability distribution on the space of partitions of a set
(with the obvious proviso that observations of the set
partition can be recovered from the output of the Monte
carlo sampler). To emphasize this fact, our first example
is the classification of 100 individuals into selfing lines,
on the basis of output from the Markov chain sampler
program IMPPS (Wilson and Dawson, 2007). In this
example, the true sample partition has a large number of
small elements (many sets of size 1 or 2).
In our second example the simulated data set is a

sample of 80 individuals drawn from two source
populations (40 individuals from each population). The
Markov chain sampler program HWLER Pella and
Masuda (2006) was applied to this data set. We use this
relatively simple example to illustrate how the rooted
binary forests generated by the exact linkage algorithm
may differ from those generated by the maximin
agglomerative algorithm (with d¼ 2, 3 and 4).
The rooted binary forest, or tree, generated by

PartitionView is encoded in the ‘Newick 8:45’ format
adopted by PHYLIP Felsenstein (2004). In the current
version of PartitionView, a rooted binary forest consist-
ing of multiple separate trees, is represented as a single-
rooted tree, where the separate root nodes of the forest
are joined together by a sequence of internal nodes which
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Figure 2 Example 1. The true matrilineal pedigree of the simulated data set. The true matrilineal pedigree of the exhaustive sample of all n¼N¼ 100 individuals from a single local population.
Outcrossing events are indicated by diamonds. Those selfing lines which are represented in the sample by more than two individuals are colour-coded.
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all have height zero. The root node of the resulting tree is
also at height zero.

Example 1
Recently, Wilson and Dawson (2007) used the exact
linkage algorithm (as implemented in PartitionView
version 1.0) to process the output from the Markov
chain sampler program IMPPS (Inference of Matrilineal
Pedigrees under Partial Selfing). This is a Markov chain
sampler for the joint posterior distribution of the
pedigree of a sample from a partially selfing population,
and the parameters of the population genetic model
(including the selfing rate), given the genotypes of the

sampled individuals at unlinked marker loci. The
population genetic model is appropriate for a hermaph-
rodite annual species, allowing both selfing and out-
crossing. Generations are discrete and non-overlapping,
as is appropriate for an annual species. The local
population or deme was founded in the recent past
(T generations in the past), and the founders were drawn
from an infinitely large unstructured source population.
Throughout its existence, this deme has remained at a
constant size of N diploid individuals. The N founders
(the seed immigrants) are sampled independently from
the source population. In the current version of IMPPS it
is assumed that no seed immigration into the local deme
has occurred since the founder generation. The efficient
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Figure 3 Example 1. Output from the exact linkage algorithm. The rooted binary forest generated by applying the exact linkage algorithm to
the output from the IMPPS Markov chain sampler (a pooled sample of 60 000 observations).
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Markov chain Monte carlo strategy employed in the
IMPPS program relies on the rather artificial assumption
that, for every outcrossing event which occurs within the
local deme, the pollen grain is drawn directly from the
large source population.

The aspect of the pedigree that we are interested in
here is the classification of individuals into selfing lines.
Each selfing line is founded by an outcrossed ancestor:
the most recent outcrossed ancestor (MROA) of the
individuals belonging to that selfing line. The MROAs of
a sample are the ancestors of the sample that we
encounter if we trace the line of descent of each
individual from the sample back up the pedigree until
we encounter the first ancestor which is a product of
outcrossing. If an individual in the sample is itself a
product of outcrossing then that individual is an MROA,
and we have no need to trace its ancestry back any
further. The classification of individuals into selfing
lines induces a partition of the label set of the sample.
We refer to this sample partition as the selfing line
partition. It is this partition which we want to infer from
the genotype data.

The output from the IMPPS Markov chain sampler
includes observations of the selfing line partition. From a
large sample of such observations we can estimate the co-
assignment probability of any set of individuals. Here, the

relevant co-assignment probability is the posterior prob-
ability that all individuals in the set belong to the same
selfing line (in other words, they share the same MROA).

A simulated data set was generated by a genealogical
(reverse time) simulation of the model outlined above.
The selfing rate was s¼ 0.8, the local population was
of size N¼ 100, and age T¼ 5 generations. The local
population was exhaustively sampled (sample size
n¼ 100), and the individuals were genotyped at six
polymorphic marker loci. This simulated data set was
one of those analysed in Wilson and Dawson (2007),
using the IMPPS Markov chain sampler. The true
matrilineal pedigree of this exhaustive sample
of n¼ 100 individuals is represented in Figure 2.
Outcrossing events are indicated by diamonds.

Every partition of a set S induces an integer partition
of |S|. The true selfing line partition in our example
induces an integer partition of the sample size 100. This
integer partition can be written as 14021432415262—mean-
ing that there are 40 sets of size 1, 14 sets of size 2 and so
on, in the original set partition. This notation for an
integer partition is referred to as the frequency repre-
sentation of the integer partition.

We have colour-coded those true selfing lines, which
are of size greater than two, and coloured each node of
the forest according to the true selfing line of the set of

Figure 4 Example 2. Output from the maximin agglomerative algorithm with d¼ 2. The rooted binary forest generated by applying the
maximin agglomerative algorithm, with d¼ 2, to the output from the HWLER Markov chain sampler.
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individuals defined by the node. (All the branches in the
clade defined by a node are similarly coloured according
to the true selfing line of this set of individuals.) The true
selfing lines are colour-coded as follows. The two distinct
selfing lines of size 6 are designated the Red and the
Orange line, respectively; the two distinct lines of size 5
are designated, the Green and the Blue lines, respec-
tively; the selfing line of size 4 is the Violet line; and the
two distinct lines of size 3 are the Purple and the Sienna
line, respectively. The 14 selfing lines of size 2, and the 40
selfing lines of size 1, are assigned the colour black. Black
is also used as the default colour for any internal nodes
that define sets of individuals from multiple selfing lines.

A sample of 60 000 observations of the selfing line
partition was generated by pooling three independent
runs of the Markov chain sampler. Each run provided
20 000 observations, from the 20 000 iterations (without
thinning) following a burn-in of 1000 iterations.

Figure 3 shows the rooted binary forest generated by
applying the exact linkage algorithm to the pooled
sample of 60 000 observations. To illustrate how success-
fully the true selfing lines have been identified, we have
applied the same colour coding to this rooted binary
forest as we applied to the true pedigree (in Figure 2).

If we choose a threshold of P¼ 0.75 (so that we accept
the co-assignment of all the individuals in the set defined

by any node t having p(t)X0.75), then we obtain a selfing
line partition which induces an integer partition (of the
sample size 100) having the frequency representation
1382143241516271.
The small number of errors in the inferred partition

can be summarized as follows. The Blue line (of size 5) is
erroneously fused with a set of size 2. In addition, one
individual from a set of size 2 has been removed and
placed erroneously with an individual from a set of size
1, and two sets of size 1 have been erroneously fused to
form a set of size 2. The Red line (of size 6), the Orange
line (of size 6), the Green line (of size 5), the Violet line
(of size 4), the Purple line (of size 3) and the Sienna line
(of size 3), are all present in the inferred partition, as are
12 out of the 14 selfing lines of size 2, and 37 out of the 40
selfing lines of size 1. Note that if we choose a lower
threshold, of P¼ 0.5 for example, only a few additional
erroneous agglomerations of selfing lines are accepted.

Example 2
Our second example illustrates how the rooted binary
forests generated by the exact linkage algorithm may
differ from those generated by the maximin agglomera-
tive algorithm (with d¼ 2, 3 and 4). For this purpose we
have chosen a simpler example. We reanalyse one data

Figure 5 Example 2. Output from the maximin agglomerative algorithm with d¼ 3. The rooted binary forest generated by applying the
maximin agglomerative algorithm, with d¼ 3, to the output from the HWLER Markov chain sampler.
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set (data set 4) out of the five simulated data sets
reported in Dawson and Belkhir (2001). In our earlier
publication, these five data sets were analysed by first
using a Markov chain sampler (Partition) to generate a
sample of observations from the posterior distribution of
the sample partition, and then applying the maximin
agglomerative algorithm (with d¼ 2 and 3) to the output
form this Markov chain sampler. These five data sets
were reanalysed recently by Pella and Masuda (2006),
who applied their Markov chain sampler (HWLER),
followed by our maximin agglomerative algorithm (with
d¼ 2), and obtained rooted binary forests having more
clearly defined clusters. Recall that the maximin agglom-
erative algorithm with d¼ 2 is identical to the complete
linkage algorithm (a classical distance-based method).

Data set 4 consists of the genotypes (at 10 unlinked
marker loci) of 80 diploid individuals, sampled from a
pair of populations (40 individuals from each popula-
tion) which have diverged under random drift during a
period of isolation following the fission of a common
ancestral population. (For the details of the weak
divergence scenario, see Dawson and Belkhir (2001).)
For the true bipartition of the sample (the bipartition of
the pooled sample induced by assigning each individual
to its true population of origin), we have FST¼ 0.065
(using the multi-locus estimator of Weir and Cockerham

(1984)). Here, we designate the two populations Grey
and Black, respectively. Pella and Masuda (2006) applied
their HWLER program to data set 4, and generated a
sample of 20 160 observations (with a period of five
iterations) from the posterior distribution of the sample
partition. They discarded the first 10 080 observations
(half of the original sample) as burn-in. Here we have
discarded the first 10 000 observations as burn-in, leaving
a sample of 10 160 observations.

We applied the maximin agglomerative algorithm,
with d¼ 2, 3 and 4 (Figures 4–6, respectively) to this
sample, and used it to generate rooted binary forests.
Using the PartitionView software, we also applied the
exact linkage algorithm to this same sample, to generate
another rooted binary forest (Figure 7).

In the analysis reported by Pella and Masuda (2006),
using the maximin agglomerative algorithm with d¼ 2,
the rooted binary forest consisted of two separate trees,
defining two well-supported clusters, corresponding to
the two populations (Grey and Black respectively), with
only one individual (a Grey individual, labelled 27 in the
original analysis of Dawson and Belkhir (2001)) belong-
ing to the wrong cluster. (Note that for this bipartition of
the sample, we have FST¼ 0.066 for the multi-locus
estimator of Weir and Cockerham (1984)—a slight
increase from the value obtained for the true bipartition.)

Figure 6 Example 2. Output from the maximin agglomerative algorithm with d¼ 4. The rooted binary forest generated by applying the
maximin agglomerative algorithm, with d¼ 4, to the output from the HWLER Markov chain sampler.
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We obtained similar results using the maximin agglom-
erative algorithm, with d¼ 2, 3 and 4 and with the exact
linkage algorithm (and burn-in¼ 10 000).

The forests represented in Figures 5–7, each consist of
two separate trees, whereas the forest represented by
Figure 4 consists of a single tree, but one whose root node
is very close to zero. All these trees contain a node, which
pairs the same Grey individual (labelled 27) with the
same Black individual (labelled and 74 in the original
analysis). As d is increased from 2 to 3, and then to 4, the
height of the node which defines the cluster correspond-
ing to the Grey population (excluding individual 23)
falls, as does the height of the node which defines the
cluster corresponding to the Black population (but also
including individual 23). In the case of the forests
generated by the maximin agglomerative algorithm,
with d¼ 4, and by the exact linkage algorithm, these
two nodes are lower still, and there is a particularly
sharp drop in node height when we reach the node
where the pair of individuals 23 (Grey) and 74 (Black) are
joined with the rest of the individuals from the second
population. At least in the case of individual 23, the
increased skepticism represented by this fall in node
height, is a more accurate representation of the true
situation. At the same time this forest indicates a greater
reluctance to assign two Grey individuals (labelled 11

and 24) with the rest of the Grey population, and this is
not so easily justified.
When we apply the maximin agglomerative algorithm,

with different values for the dimension d, to the same
sample of observations from a posterior distribution of
partitions, we often obtain rooted binary forests having
similar topologies (sharing many of the same internal
nodes) as here. In such cases, we expect the heights of
the internal nodes tend to fall as the dimension d is
increased, as we can observe in Figures 4–7. In particular,
the forests generated by the exact linkage algorithm
(Figure 7) tend to have the lowest nodes—thus favouring
more cautious co-assignment.

Discussion

We were not the first to use (posterior) co-assignment
probabilities in the context of Bayesian clustering
(Dawson and Belkhir, 2001). In a contribution to
the discussion of Richardson and Green (1997), O’Hagan
(1997) suggested computing pairwise posterior co-
assignment probabilities. Painter (1997) recommended
using posterior co-assignment probabilities in an
early paper on Bayesian discovery of full-sib families.
Emery et al. (2001) also used posterior co-assignment
probabilities in Bayesian discovery of full-sib and half-

Figure 7 Example 2. Output from the exact linkage algorithm. The rooted binary forest generated by applying the exact linkage algorithm to
the output from the HWLER Markov chain sampler.
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sib families. However, Painter (1997) and Emery et al.
(2001) only made use of pairwise co-assignment prob-
abilities, and the visualization problem, which can arise
with large samples of individuals was not addressed. In
Dawson and Belkhir (2001) we offered a solution to the
visualization problem. We also indicated how to make
use of the co-assignment probabilities for sets of any size.
However, in practice we only made use of co-assignment
probabilities for sets of sizes 2, 3 and 4.

The exact linkage algorithm recommended here has
two obvious advantages over classical hierarchical
clustering algorithms. Firstly, the node heights in the
resulting rooted binary forests have a direct Bayesian
interpretation. This is not the case for the node heights
which would result from applying various classical
hierarchical clustering algorithms, for example, the
average linkage algorithm ((Sokal and Michener (1958)
and Sokal and Sneath (1963), pages 182–185) to the
(symmetric) matrix of pairwise co-assignment probabil-
ities (as the similarity matrix). Secondly, the exact linkage
algorithm can make use of the additional information
which the posterior distribution (of the sample partition)
provides about the support for the co-assignment of sets
of more than two individuals.

The PartitionView software package can now compute
the posterior co-assignment probability of any set of
individuals, regardless of whether or not it corresponds
to a node of the rooted binary forest, so that the rooted
binary forest can be used as a starting point for a more
detailed exploration of the posterior distribution of the
sample partition. We have also provided an R script for
viewing, labelling and colouring the rooted binary
forests in the output files (in ‘Newick 8:45’ format)
generated by PartitonView.

The pairwise posterior co-assignment probabilities for
all pairs of individuals are also provided in an output
file. So any user who wants to use these probabilities as
measures of similarity, and apply a classical hierarchical
clustering algorithm (such as single linkage Florek et al.
(1951); Sibson (1973), complete linkage S�rensen (1948);
McQuitty (1960); Defays (1977), or average linkage Sokal
and Michener (1958) and Sokal and Sneath (1963), pages
182–185) is free to do so.

PartitionView was originally designed to be a compa-
nion program to the Markov chain sampler program—
Partition. (For more information about the Markov
chain sampler implemented in the Partition software,
see Dawson and Belkhir (2001).) Because the output file
from Partition contains observations of the sample
partition, users are free to design their own software
for the visual representation of any chosen marginals of
the posterior distribution of the sample partition. We
would also like to make a plea to others who have
developed (or may be planning to develop) their own
software for sampling from the posterior distribution of
the sample partition, to generate output files which
contain complete observations of this type. This would
mean that our visualization software (PartitionView)
could be modified to process the output file. More
generally, we recommend, as a general design principal
for Bayesian inference software, that Monte Carlo
samplers should provide output files which contain
complete observations from the posterior distribution,
and that the visualization software should be a separate
module, which can take such a file as input.

PartitionView1.0 is freely available from the Partition
web page: http://www.genetix.univ-montp2.fr/partition/
partition.htm.
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