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An expectation–maximization algorithm for the
Lasso estimation of quantitative trait locus effects

S Xu
Department of Botany and Plant Sciences, University of California, Riverside, CA, USA

The least absolute shrinkage and selection operator (Lasso)
estimation of regression coefficients can be expressed as
Bayesian posterior mode estimation of the regression
coefficients under various hierarchical modeling schemes.
A Bayesian hierarchical model requires hyper prior distribu-
tions. The regression coefficients are parameters of interest.
The normal distribution assigned to each regression coeffi-
cient is a prior distribution. The variance parameter in the
normal prior distribution is further assigned a hyper prior
distribution so that the variance parameter can be estimated
from the data. We developed an expectation–maximization
(EM) algorithm to estimate the variance parameter of the
prior distribution for each regression coefficient. Performance

of the EM algorithm was evaluated through simulation study
and real data analysis. We found that the Jeffreys’ hyper
prior for the variance component usually performs well with
regard to generating the desired sparseness of the regres-
sion model. The EM algorithm can handle not only the usual
regression models but it also conveniently deals with linear
models in which predictors are defined as classification
variables. In the context of quantitative trait loci (QTL) map-
ping, this new EM algorithm can estimate both genotypic
values and QTL effects expressed as linear contrasts of the
genotypic values.
Heredity (2010) 105, 483–494; doi:10.1038/hdy.2009.180;
published online 6 January 2010
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Introduction

Mapping quantitative trait loci (QTLs) has long been
treated as a variable selection problem (Broman and
Speed, 2002; Manichaikul et al., 2009) because the
number of markers (predictors) can be larger than the
sample size, making ordinary least square method
infeasible. Ridge regression (Hoerl and Kennard, 1970)
is one of the solutions to handle relatively large
regression models and has been applied to QTL mapping
(Whittaker et al., 2000). However, the results of the usual
ridge regression are not satisfactory because all regres-
sion coefficients are shrunken by the same shrinkage
factor. Xu (2003) developed a Bayesian shrinkage method
to estimate QTL effects, in which different regression
coefficients are shrunken using different shrinkage
factors. This kind of selective shrinkage analysis dis-
criminates against small regression coefficients and
favors for large regression coefficients. As a result, it
performs far better than the classical ridge regression.
The original Bayesian shrinkage analysis of Xu (2003)
was implemented through the Markov chain Monte
Carlo sampling algorithm, which is time consuming for
large models coupled with large sample sizes. Xu (2007)
recently proposed an empirical Bayesian method to
improve the computational efficiency, while still preser-
ving the desired sparseness of the final model.

In the empirical Bayesian method of Xu (2007),
estimation of variance components is achieved by

repeated callings of the Nelder and Mead (1965) simplex
algorithm. This method only applies to numerically coded
predictors. In many situations, in which the predictors are
discrete classification variables, the special algorithm of Xu
(2007) that only applies to numerically coded predictors
cannot be used. For example, in QTL mapping of F2
populations that are derived from the cross of two inbred
lines, there are three possible genotypes at each locus. We
have to code the three genotypes numerically as 1, 0 and
�1, to capture the additive effect (a), and as 0, 1 and 0, to
capture the dominance (d) effect. With other mapping
populations, for example, four-way cross (Xu, 1998), the
numerical coding is more complicated. In association
mapping, in which the number of genotypes may vary
from one locus to another, an optimal numerical coding
system may not even exist. Therefore, a method that can
handle classification predictor variables is more general
than the simplex algorithm adopted by Xu (2007). With the
general method, we can directly estimate the genotypic
values and their variances, and then convert the genotypic
values into additive effect, dominance effect and whatever
effect of interest. Whereas the simplex algorithm in the
empirical Bayesian method of Xu (2007) cannot handle
classification predictor variables, the expectation–maximi-
zation (EM) algorithm (Dempster et al., 1977) can do it in a
straightforward manner. Therefore, we propose an EM
algorithm to estimate the variance components under this
general setting of the predictors.
It is well known that the least absolute shrinkage and

selection operator (Lasso, Tibshirani, 1996) estimation of
regression coefficients has a Bayesian interpretation.
When the variance parameter in the normal prior of
each regression coefficient is assigned an exponential
prior, the Bayesian posterior mode estimate of the
regression coefficient is the Lasso estimate (Tibshirani,
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1996; Park and Casella, 2008; Yi and Xu, 2008). With the
simplex algorithm adopted by Xu (2007), extension to the
Lasso estimate is not obvious. But such an extension is
straightforward when an EM algorithm is applied.
Similar EM algorithm has been proposed by Figueiredo
(2003) and Yi and Banerjee (2009), who treated the
variance components as missing values. In the proposed
EM algorithm, we will treat the regression coefficients as
missing values when we estimate the variance para-
meters. This makes the estimates of regression coeffi-
cients empirical Bayesian estimates. As a result, theory
and method of classical mixed-effect model apply to the
empirical Bayesian estimation of QTL effects.

Theory and methods

Model
Let y be an n� 1 vector for the phenotypic values of a
quantitative trait, where n is the number of individuals in
the mapping population. The linear model for y is

y ¼
Xq
j¼1

Xjbj þ
Xp
k¼1

Zkgk þ e: ð1Þ

where bj is the jth non-QTL effect (for example, the year
effect), Xj is the corresponding design matrix, gk is a
vector of genotypic values for locus k and Zk is the
corresponding incidence matrix determined by the
genotypes of locus k. The dimensions of gk and Zk

depend on the number of genotypes for locus k. The
residual error vector e is assumed to be distributed as
eBN(0, s2In), where In is an n�n identity matrix and s2 is
an unknown residual error variance. We are interested in
estimating all the nuisance parameters (b), the genotypic
values for all QTLs (g) and the prior variances of all QTL
effects simultaneously from the same model. If we
evaluate markers of the entire genome, p can be very
large and sometimes may be even larger than the sample
size, although q can be relatively small. In this case, we
need to adopt a shrinkage method to estimate g, which
are the most important parameters in QTL analysis.

Prior distribution
Let mk be the number of genotypes at locus k. For
example, in a F2 population, each locus has three possible
genotypes, and thus, mk¼ 3 for all k¼ 1,y, p. The
dimension of Zk is n�mk and the dimension of gk is
mk� 1. We adopt the normal prior for gk, for example,

pðgkjs2kÞ ¼ Nðgkj0; s2kImk
Þ ð2Þ

Under this prior, model (1) becomes a typical mixed
model so that y has a multivariate normal distribution
with mean m and variance–covariance matrix V, where

m ¼
Xq
j¼1

Xjbj ð3Þ

and

V ¼
Xp
k¼1

ZkZ
T
k s

2
k þ Is2 ð4Þ

Following Yi and Xu (2008), we consider two classes of
prior for sk2. The first class is the scaled inverse w2 prior,

whose density is

pðs2k jt;oÞ ¼ Inv� w2ðs2k jt;oÞ

/ ðs2kÞ
�1

2ðtþ2Þ exp � o
2s2k

 !
ð5Þ

In the scaled inverse w2 distribution, t and o are
hyperparameters representing the degree of prior belief
and the scale. Two special cases of the scaled inverse w2
distribution are particularly interesting, because they
represent priors commonly used in data analysis. One
special case is x¼ (t, o)¼ (�2, 0), which is equivalent to
the uniform prior P(sk2)p1. This uniform prior leads to
the usual maximum likelihood estimate of the variance
component. The other special case is x¼ (t, o)¼ (0, 0),
which represents the Jeffreys’ prior (Figueiredo, 2003),
that is, P(sk2)¼ 1/sk2. This prior does not have hyperpara-
meters at all, and thus, is extremely convenient to use in
real data analysis (Figueiredo, 2003).

The second class of prior is the exponential prior,

pðs2k jlÞ ¼ Expon s2k
l2

2

����
� �

¼ l2

2
exp � l2

2
s2k

� �
ð6Þ

where l2 is the shrinkage factor (hyperparameter). This
exponential prior will generate the Lasso estimation
(Tibshirani, 1996; Park and Casella, 2008; Yi and Xu,
2008) of the QTL effects.

Posterior mode
Our EM algorithm treats g as the missing value. This is
different from the EM algorithm of Figueiredo (2003) and
Yi and Banerjee (2009), who treated sk2 as the missing
value. The EM steps will be given after we describe the
formulas for the maximization steps and the expectation
steps. The target function for maximization in our EM
algorithm is the expected complete-data log likelihood
function, in which the regression coefficients are treated
as missing values. For the scaled inverse w2 prior, the part
of the expected complete-data log likelihood function
relevant to sk2 is

Lðs2k jt;oÞ ¼ � tþ 2þmk

2
lnðs2kÞ �

1

2s2k
½EðgTk gkÞ þ o� ð7Þ

where E(gkTgk)¼E(gkTgk|y, y) is a short notation for the
conditional expectation of the quadratic term of gk, given
the current values of parameters (y) and the data (y).
Setting q

qs2
k

L ðs2k jt;oÞ ¼ 0 and solving for sk2, we obtain

s2k ¼
EðgTk gkÞ þ o
tþ 2þmk

ð8Þ

When x¼ (t, o)¼ (�2, 0), we have sk2¼E(gkTgk)/mk,
equivalent to the solution when a uniform prior is used
(typical mixed model solution for a variance compo-
nent). When x¼ (t, o)¼ (0, 0), we get sk2¼E(gkTgk)/
(2þmk), a stronger shrinkage than the uniform prior.

For the exponential (Lasso) prior, the part of the
expected complete-data log likelihood function relevant
to sk2 is

Lðs2k jlÞ ¼ �mk

2
lnðs2kÞ �

EðgTk gkÞ
2s2k

� 1

2
l2s2k ð9Þ

EM Algorithm for Lasso Estimation
S Xu

484

Heredity



Setting q
qs2

k

L(sk2|l2)¼ 0 and solving for sk2 leads to two
solutions, with the positive one being

s2k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ 4l2EðgTk gkÞ
q

�mk

2l2
ð10Þ

Formulas for the fixed effects and residual variances
follow the standard procedure of mixed model metho-
dology (Lindstrom and Bates, 1988). For the fixed effects,
we have

b ¼ ðXTV�1XÞ�1ðXTV�1yÞ ð11Þ
For the residual error variance, we use

s2 ¼ 1

n
ðy� XbÞTðy� Xb�

Xp
k¼1

ZkEðgkÞÞ ð12Þ

where E(gk)¼E(gk|y, y) is a short notation for the
conditional expectation of gk. Finding the posterior
modes of the parameters belongs to the maximization
steps. We have noticed that these maximization steps
depend on E(gk) and E(gkTgk), which are the conditional
expectations of the linear and quadratic terms of the
missing value.

Best linear unbiased prediction
The expectation of the quadratic term required in the
maximization steps is expressed as

EðgTk gkÞ ¼ EðgTk ÞEðgkÞ þ tr varðgkÞ½ � ð13Þ
where

EðgkÞ ¼ s2kZ
T
k V

�1ðy� XbÞ ð14Þ
is the conditional expectation and

varðgkÞ ¼ Is2k � s2kZ
T
k V

�1Zks2k ð15Þ
is the conditional variance of the missing vector gk.
Derivation of equations (14) and (15) are given in
Appendix A. Both the expectation and the variance
depend on the parameters and thus iterations are
needed. Once the iterations converge, the conditional
expectation E(gk) is called the best linear unbiased
prediction (BLUP) and the square root of the variance
var(gk) is called the prediction error of gk. However,
BLUP is defined on the basis of true parameters. The
conditional expectation of gk after the iterations converge
is conditional on estimated parameters. Technically, the
conditional expectation given in equation (14) is not
called as BLUP, but is called as empirical Bayesian
estimate. Therefore, we will call the BLUP of QTL effects
as the estimated QTL effects subsequently, although they
are predicted QTL effects under the mixed model
framework.

EM steps
Now let us define y¼ {b, s2, s12,y, sp2} as the parameter
vector and x¼ {t, o} or l2 as the hyperparameters. The
genotypic values g are treated as missing values. The EM
steps are described below.

Step (0) Choose x or l2, set t¼ 0 and initialize
parameters with y¼ y(t).

Step (1) Calculate E(gkTgk) using equations (13–15),
which is the E-step.

Step (2) Update y using equations (8, 10–12), which is
the M-step.

Step (3) Let t¼ tþ 1, and repeat Steps (1) and (2) until
convergence is reached.

Linear contrasts
The EM algorithm is described with g being defined as
the genotypic values that are not equivalent to QTL
effects. The QTL effects can be defined as linear contrasts
or linear combinations of the genotypic values. There are
two ways to obtain the QTL effects, one of which is to
recode matrix Z so that g directly represent the QTL
effects. For example, if Zk for the jth individual of locus k
is coded as 1, 0 and �1, for the three genotypes, the
corresponding gk would be the additive effect of QTL k.
The second way of obtaining QTL effects is through
linear contrasts of the genotypic values. The Zk retains its
original definition as a matrix of dummy variables so
that gk represents a vector of genotypic values. In this
case, an extra step is required to obtain the QTL effects
after the EM algorithm converges. First, we need to
obtain the BLUP and prediction error of gk. Second, we
define coefficients of a linear contrast and use them to
convert the estimated genotypic values into a QTL effect.
For example, in the F2 line crossing example, the three
components of gk represent the three genotypic values
denoted by gk¼ [G11 G12 G22]T for the three genotypes
(A1A1, A1A2 and A2A2). The coefficients of the linear
contrast for the additive effect may be defined as
Ha¼ [1/2 0 �1/2]T. The additive effect for QTL k is then
defined as ak¼Ha

Tgk. Similarly, the dominance effect may
be defined as dk¼Hd

Tgk, where Hd¼ [�1/4 1/2 �1/4]T.
Define H¼Ha||Hd as the horizontal concatenation of
matrices Ha and Hd (notation used in SAS language),
the QTL effects (including both the additive and the
dominance effects) are then obtained by using the
formula Zk¼ [ak dk]T¼HTgk. The estimated QTL effects
for locus k are then

EðZkÞ ¼ s2kH
TZT

k V
�1ðy� XbÞ ð16Þ

with a variance–covariance matrix

varðZkÞ ¼ HTðIs2k � s2kZ
T
k V

�1Zks2kÞH ð17Þ
The coefficients of linear contrasts, denoted by matrix H,
can be defined in many different ways. It is up to the
investigator to choose his/her own favorite scale. There-
fore, the genotypic effect model is more flexible than
the QTL effect model. Finally, it is possible to test the
hypothesis H0:Zk¼ 0 using the Wald test statistic

Wald ¼ ẐTkvar
�1ðẐkÞẐk ð18Þ

for each locus. Under the null hypothesis, Wald test
statistic follows approximately a w2 distribution with two
degrees of freedom. This allows us to calculate the
P-value for each locus. Therefore, the Wald test statistics
is often called the w2 statistics.
The variance of the prior distribution of the genotypic

value is sk2 for the kth QTL. After the linear contrasts
(combinations), the additive effect ak has a prior N(0,
Ha

THask2)¼N(0, 1/2 sk2) and the dominance effect dk has a
prior N(0, Hd

THdsk2)¼N(0, 3
8sk

2). The two effects are no
longer independent because the prior covariance bet-
ween ak and dk is Ha

THdsk2¼�1/4sk2. The additive effects
estimated using the allelic effect model and the geno-
typic effect model with linear contrast will not be
affected by the coding (see results of simulations
described later).
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Simulation study

Experimental setup
We simulated a single large chromosome of 2400 cM
(centiMorgan) long evenly covered by 481 co-dominance
markers (5 cM per marker interval). The simulated
population was an F2 family derived from the cross of
two inbred lines with sample size n¼ 500. The genotype
indicator variable for individual j at locus k is defined as
Zjk¼ {1, 0, �1} for the three genotypes (A1A1, A1A2, A2A2),
respectively. Dominance effects were not simulated
and also not included in the model for this simulation
experiment, but will be considered in a separate
experiment presented later. A total of 20 QTLs were
simulated, with the sizes and locations of the QTLs listed
in Table 1. These parameter values were used to generate
a quantitative trait with a population mean b¼ 10.0 and
a residual error variance s2¼ 10.0. The total genetic
variance for the trait is

VG ¼
X20
k¼1

X20
k0¼1

gkgk0covðzk; zk0 Þ

¼ 1

2

X20
k¼1

X20
k0¼1

gkgk0 ð1� 2rkk0 Þ ð19Þ

where rkk0 is the recombination coefficient between
QTLs k and k0, cov(zk, zk0)¼ var(z)(1�2rkk0) is the co-
variance between Zk and Zk0 and var(Z)¼ 1/2 is the
variance of Z (assuming no segregation distortion).
The total genetic variance for the quantitative trait is
VG¼VQþVL¼ 66.384, which is the sum of the genetic
variances due to QTL (VQ) and covariance between
linked QTLs (VL), where

VQ ¼ 1

2

X20
k¼1

g2k ¼ 46:7804 ð20Þ

and

VL ¼
X20
k04k

gkgk0 ð1� 2rkk0 Þ ¼ 19:6034 ð21Þ

The residual error variance for the trait is s2¼VE¼
10.0. Therefore, the total phenotypic variance is
VP¼VGþVE¼ 76.384. The proportion of the genetic
variance contributed by each QTL is 0.5gk2/VG for the
kth QTL (given in the column headed with Prop-G in
Table 1). The corresponding proportion of the phenoty-
pic variance contributed by the kth QTL is 0.5gk2/VP and
given in the column headed with Prop-P in Table 1. The
true QTL effects are depicted in Figure 1, which will be
used as the standard for comparison with estimated QTL
effects using various model and prior setups.

Allelic effect model
Under the allelic effect model, we numerically coded
the three genotypes with Zk¼ {1, 0, �1} for the three
genotypes {A1A1, A1A2, A2A2}. The QTL effects were
directly estimated without taking linear contrasts of the
genotypic values. For 481 markers, the Z matrix has a
dimensionality of 500� 481. Three different priors were
chosen for this data analysis: (1) x¼ (t, o)¼ (�2, 0)
representing uniform prior for sk2; (2) x¼ (t, o)¼ (0, 0)
representing the Jeffreys’ prior for sk2; (3) the Lasso prior
l2¼ 5.1758. This particular Lasso prior value was chosen
using the following empirical method,

l2 ¼ 1

p

Xp
k¼1

s2k

" #�1=2

ð22Þ

More information about this empirical Lasso parameter
will be discussed later. The results for the three different
priors are presented in graphical form for the reason that
a tabular form of presentation is hard to show all the
small estimated QTL effects. The results are depicted in
Figure 2, showing that the Jeffreys’ prior appears to be
better than the Lasso prior, but both are better than the
uniform prior. The QTL effect profile of the Jeffreys’ prior
mimics the true QTL effect profile (see Figure 1) more
closely than the other two priors. Compared with the
Jeffreys’ prior, the Lasso prior tends to split major QTL
effects into a few small effects in the neighborhood of
the true QTL. Therefore, the Lasso-estimated QTL effect
profile tends to have many small ‘bumps’ along the
genome.

Table 1 QTL parameters used in the simulation studies

QTL Position (cM) Marker Effect Prop-G Prop-P

1 50 11 4.47 0.1505 0.1308
2 125 26 3.16 0.0752 0.0654
3 205 42 �2.24 0.0378 0.0328
4 235 48 �1.58 0.0188 0.0163
5 355 72 2.24 0.0378 0.0328
6 360 73 3.16 0.0752 0.0654
7 610 123 1.10 0.0091 0.0079
8 630 127 �1.10 0.0091 0.0079
9 800 161 0.77 0.0045 0.0039
10 900 181 1.73 0.0225 0.0196
11 905 182 3.81 0.1093 0.0950
12 920 185 2.25 0.0381 0.0331
13 1100 221 �1.30 0.0127 0.0111
14 1210 243 �1.00 0.0075 0.0065
15 1305 262 �2.24 0.0378 0.0328
16 1335 268 1.58 0.0188 0.0163
17 1345 270 1.00 0.0075 0.0065
18 1365 274 �1.73 0.0225 0.0196
19 1800 361 0.71 0.0038 0.0033
20 2300 461 0.89 0.0060 0.0052

Abbreviations: cM, centiMorgan; Prop-G, the proportion of genetic
variance contributed by the QTL; Prop-P, the proportion of
phenotypic variance contributed by the QTL; QTL, quantitative
trait loci.
The QTL effects are referred to the additive effects only.
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Figure 1 True quantitative trait loci (QTL) effects (additive model)
and locations of QTLs in a simulated genome of 2400 cM
(centiMorgan) in length.
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We used the mean squared error (MSE) of the
estimated QTL effects to further evaluate the perfor-
mance of the three priors. The MSE is defined as

MSEðt;oÞ ¼ 1

481

X481
k¼1

ðgInv�w2

k � gkÞTðgInv�w2

k � gkÞ ð23Þ

for the scaled inverse w2 prior and

MSEðl2Þ ¼ 1

481

X481
k¼1

ðgLassok � gkÞTðgLassok � gkÞ ð24Þ

for the Lasso prior, where gkInv–w2 is the BLUP value
obtained under the scaled inverse w2 distribution, gkLasso
is the BLUP value obtained under the Lasso prior
distribution and gk is the true value. The MSE compar-
ison shows that MSE(�2, 0)¼ 0.351129659, MSE(0, 0)¼
0.034842259 and MSE(5.1758)¼ 0.033882049. Therefore,
the Jeffreys’ prior and the Lasso prior perform equally
well, and both are better than the uniform prior. The
noisy signals of the Lasso prior have not increased the
MSE compared with the Jeffreys’ prior. In fact, they have
improved (decreased) the MSE slightly.

Genotypic effect model
The same data set was also analyzed using the genotypic
effect model, in which the Z matrix was coded as
dummy variables. For 481 markers, the Z matrix has
481� 3¼ 1443 columns, and thus, 1443 genotypic values
were estimated. To compare this analysis with the allelic
effect model, we used linear contrast Ha (described
earlier) to convert the three genotypic values of each
locus into an additive effect. The dominance effects,
however, were not simulated (zero effects for all loci).
Again, the three priors chosen in the allelic effect model
analysis were used here, that is, x¼ (t, o)¼ (�2, 0), x¼
(t, o)¼ (0, 0) and l2¼ 4.786525. The results are almost
duplicates of the allelic effect model. The additive effect
profiles for the three priors are almost the same as that
obtained in the allelic effect model (data not shown). The
estimation errors are also very close for the two models
(data not shown). The MSEs of the three priors
are MSE(�2, 0)¼ 0.417594, MSE(0, 0)¼ 0.0682055 and
MSE(4.786525)¼ 0.031560243, respectively. The Lasso
prior appeared to perform slightly better than the
Jeffreys’ prior. The genotypic effect model and the allelic
effect model can be used interchangeably for QTL
mapping in line crosses. For line crossing experiments
such as BC and F2, there is no advantage of using the
genotypic effect model except that this model provides
estimated genotypic values so that investigators can
directly interpret the results regarding which parent is
carrying the ‘high’ or ‘low’ allele at each locus.

Simulation with dominance effects
To examine the efficiency of the EM algorithm for
estimating the dominance effects, we simulated another
data set with all other settings being the same as the
simulated data set described before except that we added
six dominance effects to the genome. The sizes and the
locations of the dominance effects are depicted in
Figure 3a (the upper panel). For simplicity, we only
report the result for the Jeffreys’ prior x¼ (t, o)¼ (0, 0)
under the genotypic effect model. The estimated additive
effects and the dominance effects are depicted in
Figure 3b (the lower panel). The estimated genotypic
values and other relevant information for the data
analysis are presented in Table 3. We used âk¼Ha

Tĝk
and d̂k¼Hd

Tĝk to convert the genotypic values gk
into additive (a) and dominance (d) effects. The var-
iance–covariance matrix of the estimated QTL effects

Ẑk ¼ ½̂a d̂k�T are then calculated and used to generate the
Wald test statistic and the P-value using

P-value ¼ 1� P�1
w2 ðWald; 2Þ ð25Þ

where Pw2
�1 denote the inverse of the w2 distribution

function with two degrees of freedom. We used an
arbitrary cutoff point to determine the ‘significance’ of
each locus using P-value o0.01 as the criterion of
significance. The Wald test statistics and the P-values
are listed in Table 2 for all the 24 simulated loci. All but
four of the 24 loci were detected. The four loci that failed
to reach the cutoff P-value are markers 123, 127, 243
and 270. Markers 123 and 127 are 20 cM apart from each
other and each had an additive effect of 1.1 but with
opposite signs. Marker 243 had an additive effect of
a¼�1.0, explaining only 0.65% of the phenotypic
variance. Marker 270 had an additive effect of a¼ 1.0,
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Figure 2 Estimated additive effects and locations of quantitative
trait loci (QTLs) for the simulated data under the allelic effect
model. The uniform prior is equivalent to x¼ (t, o)¼ (�2, 0). The
Jeffreys’ prior is equivalent to x¼ (t, o)¼ (0, 0). The Lasso prior is
l2¼ 5.1758.
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also explaining only 0.65% of the phenotypic variance. In
fact, this marker is only 10 cM apart from marker 268,
which had an additive effect of a¼ 1.58. The effect of
marker 270 was absorbed by marker 268, because the

estimated effect of marker 268 is a¼ 2.147, slightly less
than 2.58¼ 1.58þ 1.0 (sum of the additive effects of the
two loci).

Alternative values of hyperparameters
For the same simulated data set without dominance
effects (described in the experimental setup section), we
chose a few alternative hyperparameters for the scaled
inverse w2 distribution and a few alternative Lasso
parameters to evaluate the performance of the new
method. We only evaluated the allelic effect model for its
simplicity and quickness. For the scaled inverse w2 prior,
we first let x¼ (t, o)¼ (t, 0) and only varied t from 0 to
�1, decremented by 0.1. This type of priors was proper
and suggested by ter Braak et al. (2005). In addition,
we let x¼ (t, o)¼ (�0.5, o) and varied o from 0 to 1,
incremented by 0.1. For the Lasso prior, we chose l2 in
the neighborhood of l2¼ 5.1758 (empirical value ob-
tained earlier for this data set) ranging from 1 to 10,
incremented by 1. We used the MSE to evaluate the
performance of the method under various hyperpara-
meter values. The MSE of these priors are presented in
Table 3. For the set of priors in the x¼ (t, o)¼ (t, 0) series
(Prior I), the minimumMSE occurs at tE�0.6. For the set
of priors in the x¼ (t, o)¼ (�0.5, o) series (Prior II), the
minimum MSE occurs at oE0.05. A slight increase of o
will dramatically increase the MSE. Therefore, 0pop0.1
seems to be optimal. For the Lasso priors (Prior III), the
minimumMSE occurs when 6.0pl2p10.0. The empirical
value of l2¼ 5.1758 is not far away from the optimal
values. Note that these optimal hyperparameters are
sample specific and may not be generalized to other
samples. More discussion on the optimal hyperpara-
meters will be presented later.

Table 2 Estimated genotypic values of the three genotypes (A1A1, A1A2 and A2A2), and the corresponding additive and dominance effects of
QTL obtained under the genotypic effect model using the Jeffreys’ shrinkage prior x¼ (t, o)¼ (0, 0)

QTL cM Marker A1A1 A1A2 A2A2 a d std(a) std(d) Wald P-value

1 50 11 �4.808 0.334 4.474 4.641 0.251 0.224 0.156 432.579 0.000
2 125 26 �0.444 �4.692 5.136 2.790 �3.519 0.237 0.157 650.268 0.000
3 205 42 1.919 0.008 �1.927 �1.923 0.006 0.259 0.166 55.461 0.000
4 235 48 2.091 �0.049 �2.043 �2.067 �0.037 0.262 0.166 62.400 0.000
5 355 72 �1.950 �0.175 2.126 2.038 �0.131 0.472 0.258 18.866 0.000
6 360 73 �3.120 �0.345 3.465 3.292 �0.259 0.472 0.261 49.376 0.000
7 400 81 �1.694 2.547 �0.854 0.420 1.910 0.238 0.156 151.211 0.000
8 610 123 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.002 0.999
9 630 127 0.001 0.001 �0.001 �0.001 0.000 0.008 0.007 0.022 0.989
10 800 161 �1.117 0.492 0.625 0.871 0.369 0.214 0.151 23.673 0.000
11 860 173 2.546 �5.720 3.173 0.313 �4.290 0.242 0.161 708.659 0.000
12 900 181 �1.323 0.664 0.659 0.991 0.498 0.417 0.251 11.473 0.003
13 905 182 �4.004 �0.498 4.502 4.253 �0.374 0.484 0.275 77.208 0.000
14 920 185 �2.179 0.299 1.880 2.029 0.224 0.324 0.185 41.878 0.000
15 1100 221 0.790 0.250 �1.040 �0.915 0.187 0.207 0.150 19.889 0.000
16 1210 243 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
17 1280 257 �0.521 1.668 �1.147 �0.313 1.251 0.218 0.154 66.361 0.000
18 1305 262 1.902 0.029 �1.931 �1.916 0.022 0.239 0.161 64.450 0.000
19 1335 268 �2.161 0.028 2.133 2.147 0.021 0.288 0.171 55.829 0.000
20 1345 270 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
21 1365 274 1.465 0.097 �1.562 �1.514 0.073 0.258 0.164 34.922 0.000
22 1800 361 1.065 �4.173 3.108 1.021 �3.130 0.216 0.158 406.707 0.000
23 2235 448 �0.707 1.352 �0.645 0.031 1.014 0.213 0.152 44.571 0.000
24 2300 461 �0.437 �0.111 0.548 0.492 �0.083 0.182 0.133 7.665 0.022

Abbreviations: a, additive effect; cM, centiMorgan; d, dominance effect; QTL, quantitative trait loci.
Note that std(a) and std(d) are standard errors of the estimated additive and dominance effects, respectively.
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Figure 3 Additive and dominance quantitative trait loci (QTL)
effects in the second simulation experiment. The upper panel shows
the true QTL effects and the lower panel shows the estimated QTL
effects under the genotypic effect model with the Jeffreys’ shrinkage
prior. The blue needles with diamonds represent the additive effects
and the red needles with triangles represent the dominance effects.
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Power and false-positive rate
The Bayesian methods presented here can be reinter-
preted for classical power analysis using replicated
simulation experiments. In this section, we used the
same QTL parameters given in Table 1 and the same
experimental setup to simulate 100 additional samples
for power analysis. We used the allelic effect model to
estimate parameters and calculate the test statistics. As
we only considered the additive effects, the test statistic
for each locus is defined as the squared QTL effect
divided by the squared prediction error of the estimated
QTL effect. Under the null hypothesis, this test statistic
approximately follows a w2 distribution with one degree
of freedom. This allows us to calculate the P-value for
each locus. We chose 0.01 as the threshold for the P-value
to determine the significance of a locus with a QTL effect
and the false-positive status of a locus with no QTL
effect. In other words, if a QTL has a P-value o0.01 in a
particular replication, the QTL is claimed to be detected
in that replication and the proportion of the replicates in
which the QTL is detected out of the 100 replications is
the empirical statistical power for that QTL. As the
power was evaluated for each QTL, the false-positive
rate (FPR) should also be defined in a locus-specific
manner. A locus with no QTL effect is labeled false
positive if the P-value is smaller than the 0.01 threshold.
The FPR of the non-QTL locus is then defined as the
proportion of the replicates labeled as false positive out
of the 100 replications. The FPR is also called the Type I
error. We simulated 20 QTLs out of 481 loci. The distance
between any consecutive loci is 5 cM. We observed that
the effect of a QTL failing to be detected was very often
picked up by a marker in the neighborhood. If a
neighboring marker reaches the significance level, this
QTL is also claimed to be detected. Therefore, for every
true QTL, three consecutive loci (with the true QTL in the
center) are claimed as QTLs. A non-QTL is defined as a
locus that is separated by at least one neutral marker
from a true QTL.

The 100 replicated samples were analyzed using
three different priors (methods): the Lasso method (the
Lasso parameter was empirically estimated), the Jeffreys’
method (Jeffreys’s prior was used) and the method of Xu
(2007) implemented with the Nelder and Mead (1965)

simplex algorithm. The three methods are denoted as
Lasso, Jeffreys and NM, respectively. For some reasons,
the NM method cannot handle the Jeffreys’ prior.
Therefore, x¼ (t, o)¼ (�0.5, 00.5) was used as the prior
for the NM method. The average estimated QTL effects
for all the 481 loci over the 100 replications are depicted
in Figure 4, for all the three methods. The heights of the
needles represent the average estimated QTL effects. The
empirical statistical powers (numerical values) for
the loci are placed at the tips of the needles in Figure 5.
The three methods have similar powers, with the Jeffreys
method slightly better than the Lasso method, which is
slightly better than the NM method. Figure 4 shows the
corresponding biases of the estimated QTL effects for the
three methods. The biases are typically between �0.6 and
0.6. Two loci show large biases for the Jeffreys’ prior,
from �0.8 to 0.8. The Bayesian shrinkage method is
expected to be biased. The biases observed from the

Table 3 The mean squared error (MSE) of alternative prior choice
for the simulated data set reported in the ‘experimental setup’
section under the allelic effect model

Hyperparameter
(f)

Prior I
x¼ (�0.1f, 0)

Prior II
x¼ (�0.5, 0.1f)

Prior III
l2¼f

�5 0.044865 — —
0 0.034842 0.034136 0.336384
0.5 0.034338 0.029194 0.092581
1 0.033919 0.038428 0.063728
2 0.033553 0.066319 0.047295
3 0.033433 0.103673 0.040110
4 0.033323 0.143936 0.035931
5 0.034136 0.190627 0.033142
6 0.030042 0.240278 0.031770
7 0.031679 0.291576 0.030694
8 0.030630 0.341711 0.030058
9 0.031118 0.393937 0.030101
10 0.031358 0.444304 0.029975
15 0.041820 0.696547 0.031143
50 — — 0.051102
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Figure 4 Average estimated quantitative trait loci (QTL) effects over
100 replicated simulations and the empirical statistical powers for
the simulated QTL. The upper panel shows the results of the
Jeffreys’ prior. The panel in the middle shows the results of the
Lasso prior. The lower panel shows the results of the Nelder–Mead
(NM) algorithm with hyperparameter x¼ (t, o)¼ (�0.5, 0.05). The
heights of the needles represent the average estimated QTL effects.
The numbers at the tip (end) of the needles represent the statistical
powers measured in percentage, for example, the integer 99
represents 99%.
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repeated simulation experiments are not too serious
compared with the actual values of the QTL effects.

Figure 6 presents the FPR profiles for the three
methods. Most of the non-QTLs have zero FPR. A small
percentage of the loci have one false positive out of the
100 replications. For the Jeffreys’ method, one locus has
6% FPR, six loci have 3% FPR and 14 loci have 2% FPR.
The largest FPR occurs near a true QTL position with a
small effect. The Lasso method has one locus with 3%
FPR and two loci with 2% FPR. The NM method has the
lowest FPR. Overall, all the three methods have quite
low FPR.

The average numbers of iterations required to con-
verge were 23.51, 15.96 and 11.81, respectively, for the
three methods (Lasso, Jeffreys and NM). The correspond-
ing total computing times for completing the analysis of
100 replications were 128min (Lasso), 89min (Jeffreys)
and 100min (NM) for the three methods. The longer
computing time for the Lasso method was due to the
large number of iterations required for the program to
converge. The average estimated QTL parameters along
with the estimated population mean and residual
variance obtained from 100 replicated simulations are

provided in the supplemental material for interested
readers. The original simulated data sets are also given in
the supplemental material.

Real data analysis

We used a real data set from recombinant inbred lines of
Arabidopsis (Loudet et al., 2002) as an example to show
the application of the method. The two parents initiating
the line cross were Bay-0 and Shahdara with Bay-0 as the
female parent. The recombinant inbred lines were
actually F7 progeny of single seed descendants (selfing)
of the F2 plants. The residual heterozygosity was low
(Loudet et al., 2002). Flowing time was recorded for each
line in two environments: long day (16 h photoperiod)
and short day (8 h photoperiod). We used the short-day
flowering time as the quantitative trait for QTL mapping.
The two parents had very little difference in short-day
flowering time. The sample size (number of recombinant
lines) was 420. A couple of lines did not have the
phenotypic records, and their phenotypic values were
replaced by the population mean for convenience of data
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analysis. A total of 38 microsatellite markers were used
for QTL mapping. These markers are more or less evenly
distributed along five chromosomes with an average
10.8 cM per marker interval. The marker names and
positions can be found in the original article (Loudet
et al., 2002).

We inserted a pseudo marker in every 2 cM of the
genome. With the inserted pseudo markers, the total
number of loci subject to analysis is 200 (38 true markers
plus 162 pseudo markers). All the 200 putative loci were
evaluated simultaneously in a single model. Therefore,
the model for the short-day flowering time trait is

y ¼ Xbþ
X200
k¼1

Zkgk þ e ð26Þ

where X is a 420� 1 vector of unity, b is the population
mean (intercept), Zk is a 420� 1 vector coded as 1 for one
genotype and 0 for the other genotype for locus k. If locus
k is a pseudo marker, Zk¼Pr(genotype¼ 1), which is the
conditional probability of marker k being of genotype 1.
Finally, gk is the QTL effect of locus k. We only used the
allelic effect model for the real data analysis.

The data were analyzed using three different priors,
(1) x¼ (t, o)¼ (�2, 0) corresponding to the uniform prior,
(2) x¼ (t, o)¼ (0, 0) representing the Jeffreys’ prior and
(3) the Lasso prior with l2¼ 3.2739. The estimated QTL
effects are depicted in Figure 7. The Jeffreys’ prior (the
panel in the middle of Figure 7) produced the cleanest
signals of QTL effects. Four QTLs were detected in three
chromosomes. The uniform prior (the panel at the top of
Figure 7) and Lasso prior (the panel at the bottom of
Figure 7) also produced four peaks corresponding to the
same positions as those detected by the Jeffreys’ prior.
However, additional signals also occur for these two
priors. The estimated QTL effects and QTL positions
along with the t-test statistics and other information
under the Jeffreys’ prior are given in Table 4.

We also performed an interval mapping on the short-
day flowering time trait. The results are depicted in
Figure 8. Results of chromosome 1, 2, 3 and 4 agree well
with our Bayesian analysis. However, interval mapping
cannot separate the two QTLs in chromosome 5. Detailed
result of interval mapping can be found in the original
study (Loudet et al., 2002).

Discussion

The EM algorithm developed in this study is not a new
method of QTL mapping. It is an alternative algorithm
used to find the empirical Bayesian estimates of QTL
effects. All properties of the empirical Bayesian method
of Xu (2007) implemented through the simplex algorithm
apply to the EM algorithm. These properties (for
example, dealing with epistatic effects) have been
investigated by Xu (2007), and thus, were not further
explored in the current study. The advantages of the EM
algorithm over the simplex algorithm are the flexibility to
handle both the allelic effect model and the genotypic
effect model, and the ability to deal with the Lasso prior.
Although the simplex method in general can handle
genotypic effect models, the fast algorithm to invert the
variance matrix described by Xu (2007) cannot be
applied, because that algorithm only holds for the allelic
effect model in which each regression coefficient has its

own variance. Another advantage of the EM algorithm is
its transparency of the formulation, as apposed to the
simplex algorithm, so that programming of the EM
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Figure 7 Estimated effects and locations of quantitative trait loci
(QTLs) for the trait of short-day flowering time of Arabidopsis
(Loudet et al., 2002). The five chromosomes are merged into a
single genome and separated by the dotted green reference lines.
The upper panel represents the results using the uniform prior. The
panel in the middle represents the results using the Jeffreys’ prior.
The lower panel gives the results of the Lasso prior with l2¼ 3.2739.

Table 4 The estimated QTL parameters for the Arabidopsis data
using the Jeffreys’ prior under the allelic effect model

QTL Chr. cM Effect StdErr t-Test Variance Prop-P

1 1 84.1 5.8068 0.4909 11.8271 8.1768 0.0967
2 4 2.0 �11.3116 0.5043 �22.4302 29.6081 0.3503
3 5 6.825 10.3596 0.5985 17.3090 20.3803 0.2411
4 5 73.733 4.8789 0.4881 7.7745 4.9297 0.0583

Abbreviations: Chr, chromosome; cM, centiMorgan; Prop-P, the
proportion of phenotypic variance contributed by the QTL; QTL,
quantitative trait loci; StdErr, standard error.
The estimated population mean and the residual error variance
are b¼ 59.7088 and s2¼ 29.8626, respectively. The total genetic
variance contributed by all the four QTLs is VG¼VQ+VL¼
63.0590+(�8.4471)¼ 54.6478. The overall phenotypic variance is
VP¼VG+s

2¼ 54.6478+29.8629¼ 84.5108. The total proportion of
the phenotypic variance contributed by the four QTL is H2¼
VQ/VP¼ 0.7466.
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algorithm becomes much easier. Similar to any other EM
algorithms, our EM algorithm also has its own limit in
terms of slow convergence when the parameters are near
the local optimum. Therefore, the simplex algorithm
adopted in the original empirical Bayes (Xu, 2007) still
has its value in terms of fast convergence and robustness
to the initial values.

The empirical Bayesian estimation of QTL effects is a
kind of posterior mode estimation, and thus, is different
from the fully Bayesian estimation implemented through
the MCMC algorithm (Xu, 2003; Wang et al., 2005). If the
Markov chain is sufficiently long, results of the MCMC
sampling would be better than the posterior mode
estimation. However, the posterior mode estimation is
a quick method to achieve the results that are almost as
good as the fully Bayesian estimation. For the same
simulated data, the EM algorithm took about 1min to
complete the estimation, whereas the MCMC-implemen-
ted sampling algorithm took about one-half hour (data
not shown). In addition, our experience showed that the
Jeffreys’ prior usually performs well compared with
other hyperparameter values. However, the Jeffreys’
prior is improper in the sense that a marginal posterior
distribution of sk2 does not exist (ter Braak et al., 2005).
Although we are not interested in sk2 per se, but use sk2 as a
shrinkage factor to control the estimate of gk, an improper
posterior sk2 always presents a warning signal regarding
the convergence of the chain. Theoretically, all para-
meters should converge to the stationary distribution to
validate the MCMC algorithm. The posterior mode
estimation does not have such a concern.

An obvious question with the posterior mode estima-
tion is how to choose the hyperparameter x¼ (t, o) or l2.
We have noticed that the hyperparameter has a large role
in the final estimates of QTL effects. A common way of

choosing the hyperparameter is to use a cross-validation
test. Tibshirani (1996) in the original Lasso method took a
fivefold cross-validation approach. We can adopt the
same cross-validation method to help determine the
optimal hyperparameter. If desired, cross-validation can
be conducted by the users, because standard x-fold cross-
validation is straightforward and easy to program.
However, using cross-validation to determine the opti-
mal parameter may also have its own problems. For
example, the optimal Lasso parameter l2 may depend on
both the sample size and the dimensionality of the
model. Assume that we decide to use the recommended
fivefold cross-validation to determine the optimal l2. The
optimal value found in the fivefold validation may not be
optimal at all if a threefold cross-validation is performed.
What is the optimal x in the x-fold cross-validation?
Suppose that the fivefold cross-validation is the choice
and we do not want to use any other folds, the optimal l2
in fact is only optimal for sample size 4n/5, but our
sample size is actually n. The question may keep coming
one after another.

If one decides not to use a cross-validation to
determine the hyperparameters, we offer the following
suggestions based on our own experience of data
analyses. The scale parameter o in x¼ (t, o) can be set
to zero or close to zero, say 0.001, and thus, we only have
one hyperparameter t to worry about. We should start
with the Jeffreys’ prior x¼ (t, o)¼ (0, 0) and then choose
an improved value from there. A cross-validation can be
used to evaluate a few alternative values around t¼ 0.
Given that the algorithm is computationally efficient, a
wide range of values of t can be evaluated within a short
period of time.

The Lasso prior should be found using the cross-
validation method suggested by Tibshirani (1996). By
trial and error, we found that equation (22) usually is a
good choice for the Lasso parameter. Let �n¼ p�1

P
p
k¼ 1sk2

be the average of the QTL variance components. The
empirical Lasso prior is simply l2 ¼

ffiffiffiffiffiffiffi
1=�n

p
. Intuitively,

when all QTLs have very large variance components, the
average should also be large, and thus, the Lassos prior
should be small (little shrinkage). If all QTL effects have
small variance components, the average should also be
small, leading to strong shrinkage. If we treat l2 as an
unknown parameter and estimate it through maximiza-
tion of the expected complete-data log likelihood func-
tion, the solution would be l2¼ 1/�n. However, this value
did not work, because the shrinkage was too strong so
that all regression coefficients would be shrunken to
zero. It’s square root worked just fine, but provided no
theoretical proof. We used this empirical shrinkage
parameter for the simulated data (500 individuals and
481 markers) and found that the optimal value l2 was in
the range between 6 and 10. It turned out that the
empirical value of l2¼ 5.1758 is not far away from that
optimal range.

Programming the EM algorithm developed in the
study is made straightforward by following the EM steps
described earlier. However, users can download the
SAS/IML code that we used to analyze the simulated
data. The SAS/IML code (EM-Lasso) along with the data
is posted on our website (www.statgen.ucr.edu). Skilled
SAS users may use PROC MIXED and PROC IML
interactively with the SAS MACRO to call the iterative
process. We can use PROC MIXED to calculate b and g,
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mapping resulted from interval mapping. The upper panel shows
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with variance parameters held at the values provided in
a SAS data set. PROC MIXED is extremely efficient in
estimating b and predicting g. PROC IML can be used to
calculate the variance components using the predicted g
and their standard errors generated by PROC MIXED.
The calculated variance components are stored in a SAS
data set, which in turn is called by PROC MIXED as the
input parameter values. Finally, we can use a SAS
MACRO to connect the two procedures iteratively and
call the macro to achieve the EM estimates of QTL effects.
There is a newly released mixed model procedure in
SAS called PROC HPMIXED. This new procedure is a
simplified version of PROC MIXED, designed with
the purpose of fast speed. We can replace PROC MIXED
by PROC HPMIXED to improve the computational
efficiency.

Finally, association study for quantitative traits in-
volves no new statistical methods beyond the methods
presented for linkage studies. The two only differ by the
populations used for marker analysis. Association study
uses randomly selected individuals from a target
population for mapping. As a result, the inference space
is the entire population from which the individuals are
sampled. Linkage study, however, uses all individuals
from the same family of line cross, and thus, the
inference space is only the two lines initiating the cross.
Association study can narrow down the actual genes
because of cumulative historical recombinants, whereas
the linkage study cannot unless the sample size is
extremely large. The EM algorithm developed here can
be used for both linkage study and association study,
except that the fixed effects in the association study
should be designed so that they can capture population
admixture and other complicated factors unique to
association study. The genotypic effect model is more
useful than the allelic effect model in association study,
because the number of genotypes per locus may vary
from one locus to another. When the number of
genotypes per locus is very large, linear contrasts for
QTL effect conversion are not easy to define. In this case,
association of marker k with a trait is actually indicated
by the estimated value of sk2.
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Appendix A

Derivation of BLUP
Let us rewrite model (1) of the main text as

y ¼ Xbþ
Xp
k0 6¼k

Zk0gk0 þ Zkgk þ e ðA1Þ

This allows us to obtain

covðy; gTk Þ ¼ cov Xbþ
Xp
k0 6¼k

Zk0gk0 þ Zkgk þ e; gTk

 !

¼ covðZkgk; g
T
k Þ ¼ ZkvarðgkÞ ¼ Zks2k

ðA2Þ
The joint distribution of y and gk is multivariate
normal with expectation and covariance matrix given
below,
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E
y
gk

� �
¼ EðyÞ

EðgkÞ

� �
¼ Xb

0

� �
ðA3Þ

and

var
y
gk

� �
¼ varðyÞ covðy; gTk Þ

covðgk; yTÞ varðgkÞ

� �

¼ V Zks2k
ZT
k s

2
k Imk

s2k

� �
ðA4Þ

According to the theorem of multivariate normal
distribution (Giri, 1996), the conditional distribution of
gk, given y is multivariate normal with expectation and
variance given in the following equations,

EðgkjyÞ ¼ covðgk; yTÞvar�1ðyÞ½y� EðyÞ�
¼ ZT

k s
2
kV

�1ðy� XbÞ
ðA5Þ

and

varðgkjyÞ ¼ varðgkÞ � covðgk; yTÞvar�1ðyÞcovðy; gTk Þ
¼ Imk

s2k � s2kZ
T
k V

�1Zks2k
ðA6Þ

These two equations correspond to equations (14) and
(15) of the main text, respectively.
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