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Classical methodologies for grapevine selection used in the
vine-growing world are generally based on comparisons
among a small number of clones. This does not take
advantage of the entire genetic variability within ancient
varieties, and therefore limits selection challenges. Using the
general principles of plant breeding and of quantitative
genetics, we propose new breeding strategies, focussed on
conservation and quantification of genetic variability by
performing a cycle of mass genotypic selection prior to
clonal selection. To exploit a sufficiently large amount of
genetic variability, initial selection trials must be generally
very large. The use of experimental designs adequate for
those field trials has been intensively recommended for

numerous species. However, their use in initial trials of
grapevines has not been studied. With the aim of identifying
the most suitable experimental designs for quantification of
genetic variability and selection of ancient varieties, a study
was carried out to assess through simulation the comparative
efficiency of various experimental designs (randomized com-
plete block design, a design and row-column (RC) design).
The results indicated a greater efficiency for a and RC
designs, enabling more precise estimates of genotypic vari-
ance, greater precision in the prediction of genetic gain and
consequently greater efficiency in genotypic mass selection.
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Introduction

Grapevine is a very socially and economically important
crop in many countries worldwide. It is thought that
the ancient grapevine varieties have resulted from the
domestication of individual wild plants, subsequently
multiplied by vegetative propagation throughout cen-
turies and millennia until the present time. As such, one
variety would have been a single homogeneous clone at
the beginning, but the effects of recurrent somatic
mutations, and of other factors of variation, would have
transformed it into a vast group of genotypes, with some
morphological homogeneity, yet with differences in
many quantitative characteristics of agronomical and
technological interest (yield, sugar, acidity of the must
and many others). Consequently, high genetic variation
was generated within varieties along their evolutionary
history.

Field experimentation with perennial plants is com-
paratively difficult and the selection methodology of
grapevine varieties used in the vine-growing world in
the last 50–100 years emphasizes the sanitary side of the

selection process based on virus diagnosis (OIV, 1991)
but neglects the potential of genetic variation.

However, understanding the entire variability existent
within a variety and its distribution across the different
regions and countries where it is grown is a very
important matter because this will allow new views on
history of agriculture and people (based on the relation
between variability and evolutionary age of popula-
tions), a more efficient recognition and preservation of
genetic resources (slowing down genetic erosion) as well
as higher genetic gains through selection. As a conse-
quence, our selection strategy in Portugal is mainly
focussed on the knowledge about genetic variability
(quantification, geographic distribution) through a method
composed of three phases: (i) sampling variability in
different regions where the variety is grown (hundreds
of mother plants in ancient vineyards); (ii) planting a
large field trial with the sampled plants (each one
multiplied by vegetative propagation originating a
clone); this phase has the objective of quantifying the
genetic variability of the most important traits (typically
yield, but also sugar content of the must, acidity and
antocyanes) and of carrying out mass genotypic selection
(selecting a group of clones); (iii) establishment of multi-
environmental trials with the selected group in phase 2,
with the aim of clonal selection. This paper refers to the
second stage of this methodology.

To quantify the genetic variation within a variety and
to perform efficient selection, through quantitative
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genetics as well as other methods, it is necessary to plant
a very large field trial (normally from 200 to 400 clones).
Only large trials contain a representative sample of all
the variation within the variety across the different
regions where it is grown. The fact that grapevine is
perennial and the field trials are maintained for many
years, allows us to make various genotypic mass
selections, responding to future environmental altera-
tions as well as to ever changing consumer demands. As
a result, large field trials are in fact at the cutting edge of
a new strategy for the evaluation and the usage of
grapevine genetic resources.

However, the field trial above referred would cover an
unusually large area (from 0.75 to 1.5 ha) which, by itself,
causes large environmental variation. Therefore, the
importance of experimental design in this type of
trial is crucial to reach the objectives above referred
successfully.

After Fisher (1935) introduced randomized complete
block (RCB) designs, Yates (1936, 1940) described
balanced incomplete block designs for the first time,
including balanced square lattice designs. Since then,
many variants on these designs have appeared.
Although this group of designs is very large, we will
restrict ourselves to only the most relevant for working
with a high number of treatments, as frequently happens
with initial trials of grapevine selection. Of note are
a designs (Patterson and Williams, 1976), which consti-
tute a particular class of generalized lattice designs, row-
column (RC) designs (Williams and John, 1989), and
which correspond to groups of more complex latin
square designs, t-latinized designs (John and Williams,
1998) and resolvable spatial RC designs (Williams et al.,
2006). In sum, it can be said that a designs are resolvable
designs and are recommended whenever the number
of treatments is large. For these block designs there is
no limitation on block size. For resolvable RC designs
the plots in each replicate are arranged in rows and
columns. A spatial resolvable RC design takes into
account the separation of different treatments in rows
and columns. For a latinized design the replicates are
contiguous and form long blocks (or columns) of plots
(for more details see the references above mentioned and
Whitaker et al., 2007).

Many algorithms have been developed to build these
designs, suitable for trials of more than 100 treatments
(Patterson and Williams, 1976; Williams, 1985; Nguyen,
1994; Nguyen, 1997; Whitaker et al., 2007), as well as
statistical tools to assess their efficiency (John and
Whitaker, 2000).

The use of these experimental designs has been
intensively recommended and discussed for decades.
In the agricultural field, studies have reported greater
effectiveness of balanced incomplete block and a designs
compared to RCB designs (Patterson et al., 1978;
Patterson and Silvey, 1980; Patterson and Hunter, 1983;
Kempton et al., 1994; Yau, 1997; Qiao et al., 2000), and in
the area of forestry similar results have been obtained,
for example by Fu et al. (1998, 1999) and Gezan et al.
(2006).

Although all these contributions are important, their
use in initial trials of grapevines has not been studied.
In this article we compare through simulation several
of the aforementioned experimental designs (RCB, a
and RC designs), with the aim of identifying those

most suitable for quantifying and using the genetic
variability under various different conditions: different
field layouts, different population sizes, different levels
of genetic variability of yield in the population, different
levels of environmental variance. Through the simu-
lations we attempted to clarify the effects of dif-
ferent experimental designs on the control of spatial
variation, on the accuracy and precision of the esti-
mates for genetic variance and on the prediction of
genetic gain.

Materials and methods

Simulation procedure
Yield data were simulated because this trait has a general
interest in all selection programmes and it is currently
used for quantification of genetic variability under field
conditions.

The simulated yield data were generated according to
the model

y
ilm

¼ mþ ugi
þ eilm þ Zilm

where yilm is the observed yield located in the lth column
and mth row, generated as the sum of the overall mean of
the population (m) with the genotypic effect of clone gi

(ugi
) and the errors associated with the observation yilm,

spatially dependent (eilm) and independent (Zilm).
The parametric values were established such that

generated data showed a good agreement with the actual
trials for grapevine selection. Thus, populations with
an overall mean (m) of 3 kg per plant were used.
The genotypic effects were assumed independent and
identically distributed (iid) random variables, with
normal distribution with mean 0 and variance s2

g
(ugi

� Nð0; s2
gÞ). Two values of genotypic variance were

considered, sg
2 ¼ 0.2025 and sg

2 ¼ 0.81, correspon-
ding, respectively, to populations with a smaller and
larger genetic variation (Martins, 2007). Populations
of 100, 200 and 300 genotypes were simulated, with
both levels of variability. These populations were
generated using SAS code, version 9.1 (SAS Institute,
2003), RANNOR function (100 simulations for each
population type).

In this simulation study, the option for a high value
for the error variance component (se

2) is justified because
of the fact that we are working with a perennial plant
that is influenced by many environmental factors,
grown in poor and heterogeneous soils and requiring
intensive management, which causes a high level of
errors associated with the observations. Thus, according
to what is observed in large grapevine field trials
(around 70 in Portugal), two values of error variance
were considered, se

2¼ 1 and 3, corresponding respec-
tively to level 1 (the most frequent) and level 2 of
environmental variation. In respect to spatial variability,
in these trials the percentage of spatially independent
variation is usually around 60%, but can oscillate
between 50 and 70% of the total error variance (values
obtained from current yield data analysis of 70 grapevine
initial selection trials and also supported by Gonçalves
et al., 2007). In this study, we assumed that 60% of the
total error variance is attributable to the spatially
independent variance and 40% to the spatially depen-
dent variance. As a consequence, two error components
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were considered: an iid normal component Zilm, defined
as ZilmBN(0, sZ2), and a spatially dependent component
eilm, defined as N(0, se2f ), with

f ¼ exp �1=yrow

� �� � habk krow

exp �1=ycol

� �� � habk kcol

:

This is an anisotropic exponential model, where
8hab8row¼ 8sa–sb8row is the Euclidian distance
between the centre of the plot located at Sa and the
centre of the plot located at Sb in row direction,
habk kcol¼ sa � sbkk col is the Euclidian distance between

the centre of the plot located at Sa and the centre of the
plot located at Sb in column direction and parameters yrow

and ycol are related to the ranges of correlation in row
and column directions, respectively. It should be pointed
out that under the exponential model the correlation
reaches 0 only asymptotically. Therefore, for this model
is used the term practical range (3yrow, 3ycol) for speci-
fying the distance where the covariance is reduced to
5% of the se2, that is, the distance where the level of
correlation is regarded as approximately 0 (Littell et al.,
2006).

They were established values for the parameters yrow

and ycol of 20 and 15 m, respectively (values frequently
obtained from current yield data analysis of 70 grapevine
initial selection trials and also supported by Gonçalves
et al., 2007). These errors were generated in Proc SIM2D
of SAS version 9.1 (SAS Institute, 2003), 100 simulations
for each field layout.

Regarding the field layouts, in many of these trials
conflicts frequently arise between what is theoretically
more correct and what is feasible in practice. Theoreti-
cally, the better estimates of genetic variability and a
more successfully selection would be obtained from the
greatest number of replicates, that is, from replicates
with single plant plots. However, in practice, the
management of a grapevine initial trial with thousands
of plots will be very difficult, increasing the experimental
errors associated to the data collection. Consequently,
four replicates were adopted with four plants per plot to
save on trial area needed, for greater security of plot
boundaries (so that they coincided with vine trellis posts)
and because often the wood of a mother plant is
insufficient to make a clone with more than 16 plants.
With a spacing of 1.2 m� 2.5 m, the conditions above
produce a distance to the centre of adjacent plots of 2.5 m
in row and 4.8 m in column directions.

In grapevine trials the replicates are usually contiguous,
therefore latinized designs were simulated and the
respective effect (latinized block or latinized column) will
be included in the model for data analysis. However,
according to the parsimony principle, this effect can
always be discarded when it does not improve the fit of
the model to the data.

Various types of experimental designs were applied to
each field layout arranged by rows ((1,y,r� k) and
columns (1,y,s) (Table 1). The RCB design was gener-
ated using the Proc Plan of SAS version 9.1 (SAS
Institute, 2003). The a designs, latinized by block, RC
designs and spatial RC (RCSpatial) designs, latinized by
column, were generated using the package CycDesigN
3.0 (Whitaker et al., 2007). In the RCSpatial design the
separation of different genotypes in rows and columns
was ensured according to a modified exponential
variance weight function, with a value of 0.9 for the

decay factor, which is coherent with values from real
grapevine selection trials.

For each situation described in Table 1, 100 different
randomizations were done. Altogether, 11 200 simula-
tions were generated, 100 for each of 112 studied cases:
population with 100 clones� 2 genetic variances� 2
error variances� 2 field layouts� 4 experimental designs
(32 situations); population with 200 clones� 2 genetic
variances� 2 error variances� 2 field layouts� 4 experi-
mental designs (32 situations); population with 300
clones� 2 genetic variances� 2 error variances� 3 field
layouts� 4 experimental designs (48 situations).

Models for data analysis
The linear model used for data analysis of an experiment
with an RCB design was

y
ij
¼ mþ ugi

þ urj
þ eij ð1Þ

for i¼ 1,y,g and j¼ 1,y,r. The yij represent the observa-
tions, m the population mean, ugi

the genotypic effects, urj

the resolvable replicate effects (complete block effects)
and eij the random errors associated with individual
plots.

The linear model for an a design, latinized by block,
was

yijtl ¼ mþ ugi
þ urj

þ ublatt
þ ubðrÞjl

þ eijtl ð2Þ

Table 1 Field layout, experimental designs for r¼ 4 resolvable
replicates and other design parameters: g—no. of genotypes, s—no.
of incomplete blocks per replicate, for a design, or number of
columns, for row-column designs, k—incomplete block size, for a
design, or number of rows, for row-column designs

g Field layout Experimental design s k

100 20 plots (rows)�
20 plots (columns)

RCB5� 20a

a-20 20 5
RC5� 20
RCSpatial5� 20

40 plots (rows)�
10 plots (columns)

RCB10� 10a

a-10 10 10
RC10� 10
RCSpatial10� 10

200 20 plots (rows)�
40 plots (columns)

RCB5� 40a

a-40 40 5
RC5� 40
RCSpatial5� 40

40 plots (rows)�
20 plots (columns)

RCB10� 20a

a-20 20 10
RC10� 20
RCSpatial10� 20

300 20 plots (rows)�
60 plots (columns)

RCB5� 60a

a-60 60 5
RC5� 60
RCSpatial 5� 60

40 plots (rows)�
30 plots (columns)

RCB10� 30a

a-30 30 10
RC10� 30
RCSpatial 10� 30

80 plots (rows)�
15 plots (columns)

RCB20� 15a

a-15 15 20
RC20� 15
RCSpatial 20� 15

Abbreviations: RC, row-column; RCB, randomized complete block.
aRows� columns arrangement within each complete block.
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for i¼ 1,y,g, j¼ 1,y,r, t¼ 1,y,s, l¼ 1,y,s. The yijtl

represent the observations, m the population mean, ugi

the genotypic effects, urj
the resolvable replicate effects,

ublatt
the latinized block effects, ubðrÞjl

the incomplete block
effects within replicates and eijtl the random errors
associated with individual plots.

The linear model for a resolvable RC design, latinized
by column, was

yijtlm ¼ mþ ugi
þ urj

þ ulcolt
þ ucolðrÞjl

þ urowðrÞjm
þ eijtlm ð3Þ

for i¼ 1,y,g, j¼ 1,y,r, t¼ 1,y,s, l¼ 1,y,s, m¼ 1,y,k. The
yijtlm represent the observations, m the population mean,
ugi

the genotypic effects, uri
the resolvable replicate

effects, ulcolt
the latinized column effects, ucolðrÞjl

the
column effects within replicates, urowðrÞjm

the row effects
within replicates and eijtlm the random errors associated
with individual plots.

In all cases, model effects (with the exception of m)
were assumed iid normal variables with 0 mean
and respective variances sg

2, sr
2, sblat

2 , sb(r)
2 , slcol

2 , scol(r)
2 ,

srow(r)
2 and se

2. All random effects were assumed mutually
independent.

It should be noted that, although we know the real
error variance–covariance structure, and it is possible to
incorporate it into models 1, 2 and 3, this was not the
objective and so we considered iid errors. What one
would expect is that the spatially dependent
error component, which was initially simulated and
incorporated into the data would now be captured, in
some extent, by the effects of the design factors. A
second justification for the non-fitting of spatial models
was to avoid making comparisons of models that are
influenced by the way the data were generated. We
always followed this strategy, even for data analysis of
spatial RC designs, which were analyzed as a classical
RC design.

All models were fitted in Proc Mixed (Littell et al.,
2006) of SAS version 9.1 (SAS Institute, 2003).

Model parameters evaluation and effects

on genetic selection
Model parameters were estimated by the residual or res-
tricted maximum likelihood method (REML, Patterson
and Thompson, 1971), using the Fisher-scoring algorithm
(Jennrich and Sampson, 1976).

To understand the fraction of the total variance
accounted for by each of the design effects, the results
were expressed in terms of the percentage of each
component of variance resulting from each effect of the
model. In addition, the relative bias (RB) and the mean
squared error (MSE) of the estimates of the genotypic
variance component were calculated to assess its
accuracy and its precision.

To compare the effects of different experimental
designs and, therefore, of the respective models for data
analysis (models 1, 2 and 3) on efficiency of genetic
selection, the following indicators were calculated
(expressed as the average of the 100 simulations, for
each case studied).

(i) For the prediction of the genotypic effects of
the clones, empirical best linear unbiased predictors—
EBLUPs—of genotypic effects of the clones (~ugÞ were
obtained through mixed model equations (Henderson
1975; Searle et al., 1992).

(ii) For evaluating the precision in the prediction of
genotypic effects, the prediction standard errors (PSEs)
based on the comparison of ~ug with the simulated
genotypic random effects were computed.

(iii) Relative efficiency (RE) of experimental design D1
compared with experimental design D2, defined as

REAPSEðD1 to D2Þð%Þ ¼ APSED2

APSED1
�100

where APSE is the average prediction standard error
of ~ug.

(iv) Spearman’s rank correlation coefficient (rs) and the
associated standard error, for the comparison between
the rankings of EBLUPs of the genotypic effects and the
true genotypic effects (the simulated effects).

(v) RB and the MSE of the predicted genetic gain
(PGG) (RBPGG and MSEPGG, respectively) for the selec-
tion of the group of 30 top-ranking clones for the
populations of 100 and 200 clones, and 45 top-ranking
clones for the population of 300 clones. The PGG was
calculated for each simulation as the average of the
EBLUPs of the top selected clones. The true genetic gain
was calculated in the same way, but using genetic effects
generated for each situation.

To clarify if it is possible to control the effect of the
spatial autocorrelation through the experimental design,
semivariograms of the errors in simulated populations
were compared with those of the residuals from various
fitted models (which describe the spatial correlation
not accounted for by the design effects). More precisely,
a simulation of two field layouts for populations with
300 genotypes was studied, and plots of the sample
semivariogram (Matheron, 1963) were computed
through Proc Variogram and Proc Gplot of SAS.

Results

For the level 1 of error variance, the estimates of
restricted maximum likelihood of genotypic variance
were close to the parametric values imposed during the
simulation (that is values of 0.2025 and 0.81), revealing a
very low RB (varying between �4 and 6%). This occurred
for all the experimental designs (including the RCB
design), for any size of population (that is for 100, 200
and 300 genotypes) and for the two levels of genetic
variation (Table 2). However, the MSE of the genetic
variance estimates was lower (chiefly by a reduction in
its variance) for a and RC designs, and decreased as the
number of clones in the trial increased. For the level 2 of
error variance similar results were obtained, but a higher
RB and MSE associated with these estimates were
observed, especially for trials with 300 clones under
low genetic variability and RCB designs (Table 3).

The RCB design showed the greatest percentage of
total variance attributable to error, coming out one
percentage point lower in this component in the a and
RC designs. Furthermore, it was observed that among
the RCB designs, the closer the resolvable complete block
was to the square, the greater the percentage of total
variance attributable to component sr

2 and the less it is
attributable to se

2.
In Tables 2 and 3, it is clear that among a designs, the

greater the number of incomplete blocks and the smaller
their size, the greater is the percentage of total variance
attributable to incomplete blocks (sb(r)

2 ) and to latinized
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blocks (sblat
2 ) and the less is attributable to the compo-

nents sr
2 and se

2. Among RC designs, it was also observed
that the greater the number of rows per replicate the
bigger is ŝ2

rowðrÞ and the smaller is ŝ2
r . On the other

hand, the greater the number of columns, the greater
are the estimates of the variance components s2

col ðrÞ
and s2

lcol . The greater proximity between the values of
ŝ2

rowðrÞ and ŝ2
colðrÞ was observed for RC10� 20 (trial with

200 clones) and for RC10� 30 (300 clones). In these
situations, a reduction in variance of error (s2

e ) was also
observed. In addition, the results obtained with spatial
and non-spatial RC designs were similar (which is

expectable because the model for data analysis was the
same).

From the aforementioned comments it follows that
the higher the number of levels of design effects, the
greater is the percentage of the total variance attributable
to design effects (incomplete blocks, latinized blocks,
row, column, latinized columns effects). This occurs
because when random effects are assumed, reduced
numbers of levels give rise to more frequent null REML
estimates for the respective variance components.

For the level 1 of error variance the frequency of null
estimates of genotypic variance was 0. In situations of

Table 2 Relative bias (RB) and mean squared error (MSE) of the genotypic variance estimate (ŝ2
g) and fraction of the total variance estimate

(FTV) attributable to each variance component, for two levels of genotypic variance and level 1 of error variance and for 100, 200 and
300 genotypes (g) (results expressed as the average of 100 simulations)

g Experimental design ŝ2
g ŝ2

g ŝ2
r ŝ2

blat ŝ2
bðrÞ ŝ2

lcol ŝ2
rowðrÞ ŝ2

colðrÞ ŝ2
e

RB (%) MSE FTV (%)

100
Low genetic variability RCB10� 10 �1.1 0.006 13.3 14.7 72.0

a-10 �0.9 0.005 13.2 14.4 0.8 2.7 68.9
RC10� 10a 5.2 0.005 13.9 12.9 0.9 14.8 3.8 53.7
RCB5� 20 0.1 0.006 13.9 11.8 74.3
a-20 1.2 0.006 13.9 11.5 3.3 8.8 62.6
RC5� 20a �2.7 0.004 13.3 10.3 4.2 5.8 9.4 57.0

High genetic variability RCB10� 10 4.1 0.028 39.0 10.3 50.7
a-10 �1.2 0.026 37.6 10.3 0.9 2.1 49.2
RC10� 10a 1.6 0.028 38.4 9.2 0.6 10.5 2.8 38.5
RCB5� 20 3.7 0.026 40.2 8.3 51.5
a-20 �1.0 0.024 38.7 8.1 2.5 6.0 44.6
RC5� 20a 1.9 0.031 39.5 7.3 2.5 3.8 6.5 40.4

200
Low genetic variability RCB10� 20 �1.2 0.006 12.8 13.6 73.6

a-20 1.2 0.002 13.1 13.4 1.2 5.5 66.8
RC10� 20a 2.6 0.002 13.2 12.5 1.2 8.4 6.4 58.3
RCB5� 40 0.3 0.006 13.5 9.0 77.5
a-40 3.8 0.002 13.7 8.6 4.1 14.1 59.6
RC5� 40a �1.7 0.003 13.0 8.1 4.0 2.6 14.5 57.8

High genetic variability RCB10� 20 0.2 0.028 37.5 9.9 52.6
a-20 1.5 0.013 37.7 9.6 0.8 4.0 47.9
RC10� 20a 0.2 0.015 37.4 9.1 0.9 5.7 4.6 42.3
RCB5� 40 0.9 0.028 38.1 6.7 55.2
a-40 2.3 0.015 38.5 6.1 2.9 9.9 42.5
RC5� 40a �0.3 0.015 37.7 5.8 3.1 1.9 10.2 41.3

300
Low genetic variability RCB20� 15 �1.1 0.006 12.7 10.4 76.9

a-15 0.7 0.002 13.8 10.9 0.6 2.4 72.3
RC20� 15a 1.3 0.002 12.8 9.3 0.6 16.1 2.8 58.4
RCB10� 30 1.2 0.006 13.4 10.8 75.8
a-30 3.5 0.002 13.4 10.3 1.7 7.6 67.0
RC10� 30a 3.7 0.002 13.3 9.6 1.7 6.5 8.2 60.6
RCB5� 60 1.3 0.006 13.2 6.2 80.6
a-60 5.3 0.002 13.5 6.0 7.1 14.9 58.5
RC5� 60a 1.1 0.001 13.0 5.6 7.0 2.0 15.3 57.1

High genetic variability RCB20� 15 �0.2 0.028 37.0 7.5 55.5
a-15 1.6 0.008 37.0 7.6 0.4 1.5 53.4
RC20� 15a 2.8 0.009 37.4 6.7 0.5 11.4 2.0 42.1
RCB10� 30 0.8 0.028 37.3 7.9 54.8
a-30 2.1 0.009 37.6 7.3 1.3 5.6 48.2
RC10� 30a 0.8 0.007 37.4 6.9 1.3 4.8 6.0 43.7
RCB5� 60 0.5 0.028 37.3 4.4 58.3
a-60 2.7 0.008 37.8 4.3 5.1 10.7 42.1
RC5� 60a 0.7 0.007 37.3 4.0 5.1 1.5 11.0 41.1

Abbreviations: RC, row-column; RCB, randomized complete block.
aThe results obtained with RCSpatial design were similar.
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higher error variance (level 2) and low genetic variability,
the frequency of simulations, which caused null esti-
mates of the genotypic variance component (ŝ2

g ¼ 0), was
greater in trials with 100 genotypes (6–11%) and
decreased with the rise in the number of genotypes.
The choice of an a design or a RC design led to a
reduction in null estimates of genotypic variance
(Table 3).

As the level 1 of error variance is the more frequent
situation, we just illustrate the results related to
EBLUPs of genetic effects for this case. For the three
population sizes and for the two genetic variation
levels, the PSEs of EBLUPs of genotypic effects were

smaller for a and RC designs than for RCB design
(Table 4). The greatest efficiency of those designs
relative to RCB design can be seen when working
with populations with 300 clones and with higher
genetic variation, thereby obtaining RE values of
108.4%.

The greatest efficiency of the RC designs relative to the
a designs occurs when the number of plots per
incomplete block is greater or equal to 10. In other
words, for populations of 100 genotypes, the efficiency of
the RC10� 10 and of the RCSpatial10� 10 is greater
relative to the a-10, for populations of 200 genotypes the
efficiency of the RC10� 20 and RCSpatial10� 20 is

Table 3 Relative bias (RB) and mean squared error (MSE) of the genotypic variance estimate (ŝ2
g ) and fraction of the total variance estimate

(FTV) attributable to each variance component, for two levels of genotypic variance and level 2 of error variance and for 100, 200 and 300
genotypes (g) (results expressed as the average of 100 simulations)

g Experimental design ŝ2
g ŝ2

g ŝ2
r ŝ2

blat ŝ2
bðrÞ ŝ2

lcol ŝ2
rowðrÞ ŝ2

colðrÞ ŝ2
e

% ŝ2
g ¼ 0 RB (%) MSE FTV (%)

100
Low genetic variability RCB10� 10 11.0 6.3 0.022 5.2 16.1 78.8

a-10 10.0 �1.8 0.021 4.7 15.7 0.9 2.9 75.7
RC10� 10a 7.0 13.3 0.021 5.5 14.2 0.9 16.2 4.2 59.1
RCB5� 20 6.0 7.2 0.026 5.4 12.9 81.6
a-20 4.0 4.8 0.024 5.3 12.5 3.7 9.6 68.9
RC5� 20a 5.0 �3.8 0.016 4.9 11.4 3.9 6.0 10.6 63.3

High genetic variability RCB10� 10 0 8.1 0.063 18.1 13.8 68.0
a-10 0 �3.1 0.062 16.4 13.7 0.8 2.8 66.3
RC10� 10a 0 3.5 0.058 17.4 12.4 0.8 14.1 3.8 51.6
RCB5� 20 0 7.6 0.060 18.7 11.1 70.2
a-20 0 �1.5 0.048 17.3 10.9 3.3 8.2 60.4
RC5� 20a 0 3.6 0.045 18.1 9.9 3.3 5.2 9.0 54.6

200
Low genetic variability RCB10� 20 3.0 �2.5 0.013 4.6 13.1 82.3

a-20 1.0 9.1 0.011 5.1 13.2 1.6 6.5 73.6
RC10� 20a 1.0 8.0 0.011 5.1 12.2 1.6 9.7 7.6 63.9
RCB5� 40 4.0 12.1 0.013 5.5 9.0 85.5
a-40 1.0 15.1 0.013 5.7 8.7 4.6 15.3 65.7
RC5� 40a 1.0 10.8 0.016 5.4 7.9 4.7 2.9 15.9 63.1

High genetic variability RCB10� 20 0 �1.4 0.042 16.2 11.8 72.0
a-20 0 3.5 0.027 17.0 11.5 1.4 5.8 64.4
RC10� 20a 0 2.7 0.028 16.9 10.7 1.4 8.5 6.6 56.0
RCB5� 40 0 3.3 0.036 17.7 7.8 74.5
a-40 0 5.5 0.037 17.9 7.6 3.9 13.3 57.3
RC5� 40a 0 2.1 0.031 17.4 7.1 4.1 2.6 13.7 55.2

300 RCB20� 15 2.0 11.0 0.009 5.1 11.5 83.4
Low genetic variability a-15 2.0 0.4 0.010 4.6 11.3 0.6 2.7 80.8

RC20� 15a 1.0 0.3 0.008 4.6 10.5 0.7 17.4 3.3 63.5
RCB10� 30 0 14.1 0.010 5.4 11.0 83.6
a-30 0 �7.6 0.007 4.3 10.9 2.6 8.8 73.4
RC10� 30a 0 4.4 0.006 4.9 10.1 2.7 7.1 9.4 65.8
RCB5� 60 1.0 2.3 0.008 4.8 5.7 89.5
a-60 1.0 2.5 0.007 4.8 5.4 7.4 18.1 64.2
RC5� 60a 0 �1.8 0.005 4.6 5.1 7.4 2.1 18.6 62.2

High genetic variability RCB20� 15 0 2.9 0.022 16.7 10.1 73.2
a-15 0 2.1 0.025 16.6 10.0 0.6 2.3 70.5
RC20� 15a 0 1.5 0.024 16.5 9.2 0.6 15.3 2.9 55.5
RCB10� 30 0 3.1 0.021 17.0 9.7 73.4
a-30 0 �0.1 0.016 16.4 9.4 2.3 7.6 64.2
RC10� 30a 0 �0.1 0.017 16.5 8.8 2.3 6.3 8.4 57.8
RCB5� 60 0 1.4 0.026 16.7 5.0 78.3
a-60 0 1.6 0.020 16.7 4.8 6.6 15.8 56.1
RC5� 60a 0 1.6 0.015 16.7 4.4 6.5 2.0 16.0 54.3

Abbreviations: RC, row-column; RCB, randomized complete block.
aThe results obtained with RCSpatial design were similar.
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greater relative to the a-20 and for populations of 300
genotypes the efficiency of the RC20� 15 and the
RCSpatial20� 15 is greater relative to the a-15. In the
latter case, the RE of RC relative to the a designs is in
the region of 107%, for populations with higher genetic
variation (Table 4).

Comparing the rankings of EBLUPs of the geno-
typic effects and the true genotypic effects, Spearman’s
rank correlation coefficient values with lower stan-
dard error were obtained for the a and RC designs
(Table 5).

As expected, all these results are reflected in the RB
and in the MSE of genetic gains obtained with the
selection of a group of clones (genotypic mass selection).
With the a designs, smaller RBPGG and MSEPGG were
obtained as the number of plots per incomplete block
decreased, confirming once more that smaller incomplete
blocks are more efficient for controlling environmental
variation. In contrast, when the number of plots per
column increased, smaller values for the RBPGG and
MSEPGG were observed with the RC designs, mainly for
trials with 200 and 300 clones (Table 5). On the basis of
these results it is easy to see how much can be gained in
precision when working with populations with high
genetic variation. An RB of around �13% can be
observed with the a and RC designs (that is much closer

to the true genetic gain), whereas with low variation, this
RB is in the region of �33%.

Discussion

As for the estimates of the component of genotypic
variance (quantification of the yield genetic variability
in a population), a and RC designs were observed to
be more beneficial than RCB design (estimates with
less variance), especially when the number of clones
increased. However, no single design was entirely
inefficient for quantification of genetic variability. These
results were predictable as we are working with large
samples of genotypes (100, 200 and 300). In fact, when
trying to obtain an estimate of the genetic parameter
relating to a group of genotypes (as in this case of
genotypic variance), individual deviations are mini-
mized by increasing the number of genotypes and the
final estimate is reliable, even with a certain amount of
environmental variation. However, the same conclusion
cannot be reached with regard to the accuracy of the
mass genotypic selection. This is explicable if we
consider that making selection involves taking decisions
(acceptance or rejection) regarding each individual
genotype, so that the presence of a large experimental
error may lead to wrong decisions. With the RC designs

Table 4 Average prediction standard error (APSE) of EBLUPs of genotypic effects and relative efficiency (RE) for populations with 100, 200
and 300 genotypes (g) and level 1 of error variance

g Experimental design Low genetic variability High genetic variability

APSE RE (%)a RE (%)b APSE RE (%)a RE (%)b

100 RCB5� 20 0.1402 0.1839
a-20 0.1376 101.8 0.1814 101.4
RC5� 20 0.1356 103.4 101.5 0.1770 103.9 102.5
RCSpatial5� 20 0.1359 103.1 101.3 0.1777 103.5 102.1
RCB10� 10 0.1416 0.1844
a-10 0.1378 102.8 0.1843 100.0
RC10� 10 0.1344 105.4 102.5 0.1758 104.9 104.9
RCSpatial 10� 10 0.1334 106.1 103.3 0.1777 103.8 103.8

200 RCB5� 40 0.1407 0.1892
a-40 0.1366 103.0 0.1814 104.3
RC5� 40 0.1352 104.0 101.0 0.1791 105.7 101.3
RCSpatial5� 40 0.1359 103.5 100.5 0.1805 104.8 100.5
RCB10� 20 0.1398 0.1880
a-20 0.1379 101.3 0.1842 102.0
RC10� 20 0.1350 103.6 102.2 0.1793 104.9 102.7
RCSpatial10� 20 0.1361 102.7 101.4 0.1789 105.1 103.0

300 RCB5� 60 0.1423 0.1933
a-60 0.1370 103.9 0.1810 106.8
RC5� 60 0.1360 104.6 100.7 0.1789 108.1 101.2
RCSpatial5� 60 0.1369 104.0 100.1 0.1783 108.4 101.5
RCB10� 30 0.1406 0.1891
a-30 0.1388 101.3 0.1838 102.9
RC10� 30 0.1373 102.4 101.1 0.1812 104.3 101.4
RCSpatial10� 30 0.1374 102.4 101.0 0.1789 105.7 102.7
RCB20� 15 0.1412 0.1899
a-15 0.1404 100.5 0.1880 101.0
RC20� 15 0.1360 103.8 103.3 0.1768 107.4 106.4
RCSpatial20� 15 0.1349 104.7 104.1 0.1754 108.2 107.2

Abbreviations: EBLUPs, empirical best linear unbiased predictors; RC, row-column; RCB, randomized complete block.
aRelative efficiency of a and row-column designs compared with RCB design.
bRelative efficiency of row-column designs compared with a design.
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(spatial and non-spatial) lower PSEs of EBLUPs of the
genotypic effects and higher values for rs with lower
standard error were obtained, thus these results indicate
that with these experimental designs more accurate
selections can be made.

Spatial autocorrelation was simulated, as the problem
of spatial variability has had a major effect on our
grapevine selection trials. These effects are unpredictable
over the course of a trial, various natural phenomena
cause this spatial correlation (fertility, water and other
environmental factors) and, so are more difficult to
control for at the experimental design stage. Thus, the
challenge was to identify which type of experimental
design will best control the type of spatial autocorrela-
tion usually observed in large experimental populations
of grapevine clones.

From the results obtained, it is clear that the
component of spatially dependent error (present in the
data but not modelled through the error structure) was
partially absorbed by variance components associated
with design factors: sb(r)

2 and sblat
2 , in the case of the a

designs, and srow(r)
2 , scol(r)

2 and slcol
2 , in the case of the RC

designs. However, this result raises the question: will we
be able to control the effect of the spatial autocorrelation
through the experimental design?

From the observation of Figures 1 and 2, it was clear
that residuals resulting from the RCB model fit showed
the same pattern of spatial variation as the simulated

errors. However, this correlation starts to weaken with
the adjustment of the models corresponding to the a and
RC designs, in the case of a-60, RC5� 60 and RCSpatial
5� 60 (Figures 1c–e, respectively), and to the RC designs,
in cases RC20� 15 and RCSpatial20� 15 (Figures 2d and
e, respectively). Hence, these results support the ability
of the latter designs to control the spatial correlation.

From this simulation study, it is also possible to
state that if we have field layouts allowing squared
replicates with 10 or more plots per row and column, we
should opt for a RC design. If the field layout allows only
small-scale incomplete blocks (around five plots), we
could opt for an a design. As for the best size of
incomplete block, similar conclusions have been
obtained in trials on other crops (Patterson and Hunter,
1983; Fu et al., 1998; Fu et al., 1999; Gezan et al., 2006),
suggesting incomplete blocks of around five plots for a
design.

The comparative efficiency of a and RC designs
relative to RCB design varied between 101 and 108%
(Table 4). No direct comparison can be made of these
values with others obtained in field experiments with
other crops, as the PSE of the genotypic effects is not
always used as a criterion of comparison between
experimental designs. For example, if the RE was
calculated, not based on PSE, but on prediction error
variance, those values would be higher. However, it is
worth pointing out that the biggest differences in

Table 5 Spearman’s rank correlation coefficient (rs) and associated standard error (s.e.), predicted genetic gain (kg per plant) (PGG) and the
corresponding relative bias (RBPGG) and mean squared error (MSEPGG) for populations with 100, 200 and 300 genotypes (g) and level 1 of
error variance

g Experimental design Low genetic variability High genetic variability

rs (s.e.) Mass genotypic selection rs (s.e.) Mass genotypic selection

PGG RBPGG MSEPGG PGG RBPGG MSEPGG

100 RCB5� 20 0.62 (0.0078) 0.334 �34.7 0.043 0.85 (0.0037) 0.909 �13.2 0.030
a-20 0.64 (0.0068) 0.342 �33.0 0.039 0.85 (0.0037) 0.897 �14.3 0.036
RC5� 20 0.65 (0.0065) 0.339 �33.7 0.037 0.86 (0.0033) 0.920 �12.1 0.033
RCSpatial5� 20 0.65 (0.0065) 0.344 �32.6 0.037 0.86 (0.0034) 0.914 �12.7 0.030
RCB10� 10 0.62 (0.0070) 0.329 �35.6 0.044 0.85 (0.0036) 0.910 �13.1 0.031
a-10 0.64 (0.0066) 0.333 �35.0 0.042 0.85 (0.0031) 0.890 �15.4 0.039
RC10� 10 0.66 (0.0061) 0.362 �29.2 0.031 0.86 (0.0031) 0.919 �12.2 0.039
RCSpatial10� 10 0.66 (0.0068) 0.372 �27.1 0.029 0.86 (0.0033) 0.899 �14.1 0.037

200 RCB5� 40 0.62 (0.0049) 0.438 �36.6 0.075 0.84 (0.0033) 1.188 �13.4 0.051
a-40 0.64 (0.0040) 0.473 �31.6 0.055 0.86 (0.0030) 1.224 �10.8 0.033
RC5� 40 0.65 (0.0047) 0.459 �33.6 0.063 0.86 (0.0027) 1.203 �12.3 0.044
RCSpatial5� 40 0.65 (0.0041) 0.468 �32.3 0.058 0.86 (0.0027) 1.219 �11.1 0.041
RCB10� 20 0.62 (0.0051) 0.436 �37.0 0.076 0.85 (0.0032) 1.189 �13.4 0.052
a-20 0.64 (0.0046) 0.457 �34.0 0.063 0.85 (0.0031) 1.206 �12.1 0.043
RC10� 20 0.65 (0.0043) 0.470 �32.1 0.055 0.86 (0.0029) 1.205 �12.2 0.046
RCSpatial10� 20 0.65 (0.0048) 0.450 �34.9 0.065 0.86 (0.0026) 1.207 �12.1 0.043

300 RCB5� 60 0.61 (0.0048) 0.438 �37.9 0.076 0.83 (0.0029) 1.184 �15.7 0.061
a-60 0.64 (0.0038) 0.475 �32.6 0.060 0.86 (0.0018) 1.227 �12.6 0.040
RC5� 60 0.65 (0.0041) 0.459 �34.9 0.064 0.86 (0.0017) 1.213 �13.6 0.044
RCSpatial5� 60 0.64 (0.0044) 0.450 �36.1 0.070 0.86 (0.0020) 1.209 �13.9 0.045
RCB10� 30 0.62 (0.0048) 0.446 �36.8 0.073 0.84 (0.0024) 1.191 �15.2 0.055
a-30 0.63 (0.0044) 0.463 �34.3 0.064 0.85 (0.0021) 1.208 �14.0 0.049
RC10� 30 0.64 (0.0047) 0.473 �32.9 0.060 0.85 (0.0018) 1.212 �13.7 0.045
RCSpatial10� 30 0.64 (0.0038) 0.452 �35.8 0.071 0.86 (0.0019) 1.217 �13.3 0.043
RCB20� 15 0.61 (0.0045) 0.434 �38.4 0.079 0.84 (0.0025) 1.186 �15.6 0.058
a-15 0.61 (0.0044) 0.442 �37.3 0.076 0.84 (0.0021) 1.199 �14.6 0.050
RC20� 15 0.65 (0.0041) 0.471 �33.2 0.061 0.86 (0.0018) 1.234 �12.1 0.038
RCSpatial20� 15 0.65 (0.0038) 0.463 �34.3 0.064 0.86 (0.0013) 1.221 �13.1 0.043

Abbreviations: RC, row-column; RCB, randomized complete block.

Experimental designs for ancient grapevine varieties
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efficiency among experimental designs will be found
whenever the size of the trial is large (higher number of
genotypes) and when there is more environmental
heterogeneity. Hence, as environmental variation is
never entirely predictable at the beginning of a field
trial, we should be ambitious in our choice of experi-
mental design for large trials of grapevine clones, always
opting for a or resolvable RC designs, in preference
to an RCB design. Besides, a point in favour of those
more complex resolvable designs is that there is always
the option of analysing them as an RCB design.

We should also remember that an experimental design
supposed entirely suitable might later prove to be
inefficient in controlling for spatial variation. That is
why recourse to spatial models for data analysis
is another important option for the selection success
(Cullis and Gleeson, 1991; Federer, 1998; Qiao et al., 2000;
Dutkowski et al., 2006; Gonçalves et al., 2007). It is

important to emphasize, however, that even using spatial
analysis, a good experimental design is always essential.
In sum, the correct strategy should be starting with a
classical incomplete block or RC model and then check if
addition of a spatial error model can improve the fit (note
that the option for a spatial design clearly supports this
sequential fitting process). This approach also defended
by other authors (Williams et al., 2006; Piepho et al., 2008)
is the most adequate for data analysis of large grapevine
field trials. In fact, these are perennial plants, and
experimenting on them is costly and prolonged, and
experimental failure is very hard to bear. Therefore,
demanding statistical methods are entirely justified.

Finally, we should note that the conclusions of this
work represent foundations for a new knowledge on
genetic variability within grapevine varieties, allowing
novel strategies for genetic resources conservation as
well as for selection with high genetic gains.
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Figure 1 Empirical semivariograms for row and column directions from one simulation of a population with high genetic variability
containing 300 genotypes and a field layout 20 plots (rows)� 60 plots (columns): (a) simulated errors, (b) model 1 fit residuals (RCB5� 60
design), (c) model 2 fit residuals (a-60 design), (d) model 3 fit residuals (RC5� 60 design), (e) model 3 fit residuals (RCSpatial5� 60 design).
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