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Effective size of the hierarchically structured
populations of the agent of malaria:
a coalescent-based model
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Using the coalescence theory, we derived a simple
expression for the asymptotic inbreeding effective population
size of Plasmodium falciparum, the most malignant agent of
malaria, in relationship to F-statistics at different hierarchical
levels. We consider the effective size of malaria parasites,
both for the intrinsic interest of the result for the study of this
medically important organism and as an example illustrating
general arguments that should clarify effective size calcula-
tions in a wide range of organisms with complex life cycles
and a hierarchical population structure. We consider in this
study a model with four hierarchical levels (villages, oocyst

infrapopulations, oocysts within infrapopulations and the
oocyst). The derived expression is applicable to both island
and isolation by distance models and is a function of three
F-statistics: the genetic differentiation among villages (FVT),
the genetic differentiation among oocyst infrapopulations
(FMV) and, finally, the departure from panmixia (FIM) within
oocyst infrapopulations. The logic of the derivation of
effective size presented in this study is applicable to any
organism showing the same levels of subdivision.
Heredity (2010) 104, 371–377; doi:10.1038/hdy.2009.127;
published online 7 October 2009
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Introduction

Various studies have shown how the concept of effective
size could be used more or less as Sewall Wright initially
envisioned it: to generalize in a straightforward manner
many of the results of the Wright–Fisher model, with
respect to the likelihood of samples (Nordborg, 2001), the
distribution of allele frequencies or the fixation prob-
ability of mutants (Caballero and Hill, 1992; Roze and
Rousset, 2003). However, the computation of the effective
size of spatially structured populations has progressed
slowly (Whitlock and Barton, 1997; Nunney, 1999;
Rousset, 2003, 2004; Blythe, 2007). In this article, we
consider the effective size of malaria parasites, both for
the intrinsic interest of the result for the study of this
medically important organism and as an example
illustrating the general arguments that should clarify
effective size calculations in a wide range of organisms
with complex life cycles and a hierarchical population
structure.

Parasite populations are particularly concerned by
population subdivision. For example, malaria parasites

sampled within one mosquito will be more similar to
each other than parasites sampled in different, geogra-
phically adjacent mosquitoes (for example, within the
same house, (Razakandrainibe et al., 2005)). This result
owes in part to the co-transmission during the infection
events of products of clonal reproduction. A multi-level
population structure is relevant not only for malaria but
also for many other parasite species (Criscione et al.,
2005; Prugnolle et al., 2005b). To understand how their
life cycles and population structure affect effective size,
one option is to formalize effective size as a function of
the parameters that determine the life cycle (for example,
selfing rate, percentage of descendants produced by
clonal reproduction, variance in reproductive success
between individuals during clonal reproduction, migra-
tion rate between infrapopulations, migration rate
between local populations, number of infrapopulations,
number of local populations and regional populations,
etc.) (Prugnolle et al., 2005a). However, simple analytic
expressions may become difficult to derive when the
number of parameters in the model is high. An alter-
native approach, which is followed in this study, is
to derive expressions in terms of Wright’s F-statistics
(Wang, 1997a, b; Whitlock and Barton, 1997; Nunney,
1999), some of which can easily be estimated using
genetic markers. For example, Wright (1938) first derived
the effective size of a structured population as

Ne ¼ 2NT=ð1 � FSTÞ ð1Þ
where NT is the total population size and FST Wright’s
well-known measure of population structure (for example,
Wright, 1951). This result has been extended to ‘hierarchical’
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models with several levels of structure. An example is
given by partial selfing, where the effective size is (under
slightly different conditions in Nunney, 1999; Rousset,
2004):

Ne ¼ 2NT=½ð1 � FSTÞð1 þ FISÞ� ð2Þ
where FIS is also a well-known measure of covariance of
allelic types of homologous genes within individuals.
Such results can be obtained with minimal algebra
(Rousset, 2004, pp 161, 163) or by simple coalescent
arguments (Wakeley and Aliacar, 2001; Rousset, 2003).
The purpose of this article is to illustrate the latter
approach under a complex parasitic life cycle.

Life cycle of Plasmodium falciparum

The life cycle of P. falciparum is complex. Infection in
humans begins with the bite of an infected female
Anopheline mosquito. The female mosquito injects
infective haploid sporozoites into the human host. These
are transported through the bloodstream into the liver
where they invade hepatocytes. Here, they undergo
asexual mitotic replication and give rise to an exoery-
throcytic schizont. This process takes 5–7 days and is
asymptomatic. Rupture of the liver schizonts releases
thousands of merozoites into the bloodstream. Mero-
zoites invade erythrocytes and develop again through
asexual mitotic replication into erythrocytic schizonts,
containing up to 20 daughter merozoites. On rupture of
the schizonts, merozoites can invade fresh erythrocytes
and give rise to new schizonts resulting in a cyclical
(often synchronous) pattern of blood-stage infection. For
P. falciparum, each cycle takes up to 48 h. Schizont rupture
is typically associated with bouts of rigours and fevers.
Some merozoites will go on to differentiate into male
(microgametocyte) and female (macrogametocyte) game-
tocytes. It is to be noted that the same merozoite clone
can differentiate into both male and female gametocytes.
Gametocytes are taken up by mosquitoes and migrate to
the midgut. Male gametocytes undergo a series of
changes, including three rounds of genome replication
and mitotic division, resulting in the release of eight
highly motile, flagellated gametes within only 10 min.
The female gametocyte apparently undergoes few
obvious morphological changes at this stage and is ready
for fertilization. Sexual replication occurs in the mosqui-
to’s midgut involving fusion of a female (macro) and
male (micro) gamete to form a motile zygote (ookinete),
penetration of the midgut wall and formation of oocysts.
Meiosis occurs within the oocyst leading to the devel-
opment of haploid infective sporozoites, which then
replicate through a set of mitotic division and migrate
to the salivary glands (see http://highered.mcgraw-hill.
com/olc/dl/120090/bio44.swf for an animated view of
the life cycle and Figure 1 for a schematized view of this
life cycle highlighting its main steps).

Model assumptions and formalization

The data considered in this study are oocyst genotypes.
Starting from an oocyst (diploid stage), the events of the
life cycle that are important here are meiosis, human
infection by sporozoites, asexual reproduction, mosquito
infection by gametocytes, syngamy and oocyst forma-
tion. It is shown below that a generation is an iteration of

this life cycle (see Figure 1 for a schematic view of this
life cycle).

The total population is subdivided into n different
villages. Within each village, the parasite local popula-
tion is again subdivided into Nim infrapopulations of
oocysts (an infrapopulation of oocysts corresponds to the
group of oocysts present within one individual mosqui-
to). Nim simply corresponds to the number of infected
female mosquitoes. The mean number of oocysts per
mosquito is considered fixed and denoted by N0. When it
is variable from one mosquito to another, the harmonic
mean should be considered.

Of the various definitions of effective size, the most
directly useful definition may be the variance effective
size as it is most relevant to modelling joint drift and
selection processes (in particular, in diffusion approx-
imations: Cherry and Wakeley (2003); Roze and Rousset
(2003)). In such approximations, one expresses the
variance of change in the frequency p of a given allele
in the total population in the form p(1�p)/Ne. Such an
expression is not necessarily valid, because the variance
may depend on the distribution of the allele in the
population, in a manner that cannot be summarized
simply in terms of p (Ewens, 1982). In this respect, the
traditional definition of effective size, as the size of an
ideal population that would drift at the same rate as the
population under study, may not be meaningful. As a
result, various other definitions of effective size have
been considered (Ewens, 1982; Whitlock and Barton,
1997). However, more or less recent papers have
emphasized that the variance of change in allele
frequency essentially takes the form p(1�p)/Ne in a
range of models of population structure (Ethier and
Nagylaki, 1988; Roze and Rousset, 2003), provided that
enough subunits (demes) are considered. In such
conditions, different definitions become equivalent, and
we may focus on definitions that lead to easy computa-
tion by simple coalescent arguments. In particular, the
asymptotic inbreeding effective size is defined as:

Ne ¼ lim
t!1

1 �
Pt�1

k¼1 Cb;k

Cb;t

 !
ð3Þ

where Cb,t is the probability of coalescence at t for two
homologous genes drawn in different demes in the

Oocysts (2n) 

Meiosis Asexuality 

Sporozoites (n) 

Anopheles sp. 
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Asexuality 

Gametocytes (n) 
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Figure 1 Schematized Plasmodium falciparum life cycle. Diploid
stages are denoted by 2n, whereas haploid stages are denoted by n.
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population. The latter specification ‘in different demes’ is
not essential, but is adopted for ease of further exposi-
tion. For simplicity, too, we will consider an island
model, but the same relationship of eigenvalue
effective size with F-statistics can be obtained both for
the island model and for the isolation by distance model
by an argument valid for both cases (Rousset, 2004,
pp 161, 163).

Computation of Ne

We use an argument based on the separation of time
scales (Wakeley and Aliacar, 2001; Rousset, 2003 for
closely related arguments and Nagylaki, 1980; Ethier and
Nagylaki, 1988; Hudson, 1998; Nordborg, 2001 for other
early applications of the concept). The probability that
two lineages coalesce in a given generation T is the sum
over generations, t, that the two lineages last came back
into the same deme T�t generations ago, times the
probability that coalescence occurs at T given t. As the
number of demes increases, the latter probability
remains non-negligible only over a fixed number of
generations. Over this fixed time span, the probability of
the previous event t is essentially a constant, Psame, over
generations. In other words, 1/Ne may be computed as
1/Ne¼Psame�Pcoal where Psame corresponds to the
probability that genes in oocysts collected from different
villages were from the same village one generation
earlier, and Pcoal is the sum of the probabilities of
coalescence over the distribution of t, and therefore is the
probability that the first event back in the history of the
incoming lineages is a coalescence event. Pcoal is often
described as a probability of identity by descent.

Psame is inversely related to the number of villages, n.
By contrast, Pcoal can be approximated to any fixed
degree of accuracy by a sum over a finite number (fixed
independently of n) of generations: it describes events
occurring over a faster time scale than the events
described by Psame, and Pcoal may thus be said to
describe the ‘instantaneous’ (relative to a time scale of
n generations) coalescence for pairs of genes belonging to
the same village. n/Ne may then be computed as the rate
n�Psame at which ancestral gene lineages gather in the
same village in n generations, times the probability of
‘instant’ coalescence, Pcoal.

Coalescence time and F-statistics

In the infinite island model, Pcoal may be well described
by F-statistics relative to the total population (Hudson,
1998; Rousset, 2002): FOT for two homologous genes
within an oocyst, FMT for genes from different oocysts
in the same mosquito and FVT for genes from oocysts
in different mosquitoes from the same village. Here,
FMT � 1 � ð1 � FMVÞð1 � FVTÞ where FMV corresponds to
the probability of identity for two genes drawn within an
oocyst infrapopulation compared with the probability of
identity for two genes drawn in oocysts from different
mosquitoes within the same village.

We will now consider two different situations for
computing Pcoal. For exposition, we will first consider a
model in which the variance in reproductive success of
the different hierarchical levels (infrapopulations of
oocysts, oocysts and sporozoites (gametes)) is that of a

Poisson distribution with a mean equalling 1. We will
then allow greater variance at all levels.

No variance in success greater than expected by a

Poisson distribution among units
Genes within villages ‘instantaneously’ coalesce with pro-
bability FVT, unless they come from the same infected
mosquito (with probability 1/Nim), in which case they are
from the same oocyst with probability 1/N0, and then
coalesce with probability 1

2þ 1
2 FOT, or else are from differ-

ent oocysts and coalesce with probability FMT. Hence

Pcoal ¼ FVT þ 1

Nim

1 þ FOT

2N0
þ 1 � 1

N0

� �
FMT � FVT

� �
ð4Þ

where Nim is the number of infected mosquitoes per village.
FVT may be computed as the product of the probability

that two gene lineages in a village are obtained from the
same village one generation earlier (denoted as Z below),
times the probability that the first event back in their
ancestry is then a coalescence event, which is Pcoal by
definition: FVT¼ZPcoal. Both Pcoal and Z are complex
functions of mosquito dispersal, of human dispersal
(although probably to a lesser extent) and of the details
of clonal reproduction within mosquitoes and humans.
However, we do not need to compute these quantities, as
the following, previously unnoticed, argument shows.
We view the dispersal of two gene lineages as a Markov
chain with two states: state 1¼ ‘lineages within the same
village’ and state 2¼ ‘lineages in different villages’. The
backward probability transition matrix between these
two states is G ¼ Z 1 � Z

Psame 1 � Psame

� �
: Provided that the gene

lineages move independently, and that pairs of gene
lineages in the same village have the same expected
reproductive success as pairs of genes in different
villages, the equilibrium distribution between the
two states is u¼ (1,n�1)/n and as this distribution
must satisfy the equilibrium equation u¼uG, then
Psame¼ (1�Z)/(n�1) and

1

N
Asymptotic
e

¼ PsamePcoal ¼
1 � Z

n� 1
Pcoal

¼ 1 � FVT=Pcoal

n� 1
Pcoal ¼

Pcoal � FVT

n� 1
ð5Þ

The numerator Pcoal�FVT is simply the gain in ‘identity
by descent’ when genes come from oocyst(s) in the same
mosquito. It is to be noted that the simplifications in
Equation (5) follow quite generally from the value of u,
and thus from the fact that gene lineages move
independently. Otherwise, the argument has to be
modified (for example, Rousset, 2003; eqs 23 and A.2;
Rousset, 2004, p 182).

After rearranging F-statistics in Equation (5), we
finally obtain

NAsymptotic
e ¼ NimT

ð1 � FVTÞ FMV þ ð1 � FMVÞ 1þFIM

2N0

� � ð6Þ

where NimT is the number of infected mosquitoes in the
total population, and FIM corresponds to the probability
of identity for two genes drawn within an oocyst
compared with the probability of identity for two
genes drawn in different oocysts from the same infra-
population.
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With variance in success greater than expected by a

Poisson distribution among units
Hill (1972) derived a simple expression for the effect of
variance in offspring number on coalescence probability
and effective size, and we present in this study a simple
generalization of this formula for complex life cycles.

Consider D descendants of P parents. The realized
number of descendants of each parent i is denoted by di.
Conditional on the di’s, the probability that two randomly
chosen descendants are from the same parent is therefore:X

i

diðdi � 1Þ
DðD� 1Þ ð7Þ

The expectation of this quantity over the distribution of
the di’s conditional on the realized D value isP

i Eðd2
i jDÞ � EðdijDÞ
DðD� 1Þ ¼

P
i VarðdijDÞ � E2ðdijDÞ � EðdijDÞ

DðD� 1Þ
ð8Þ

Assuming a constant metapopulation size over generations,
P¼D and E(di|D)¼ 1, this becomesP

i VarðdijDÞ
DðD� 1Þ ¼ VarðdiÞ

ðD� 1Þ ð9Þ

In the Wright–Fisher model, Var(di)¼ 1�1/D and thus the
probability that two randomly chosen descendants are
from the same parent is 1/D, as expected. To write recur-
sions for probabilities of identity in the presence of a given
variance s2 of offspring numbers, it then suffices to replace
any 1/D factor in the recursions (where D is a number of
‘parents’) by s2/(D�1).

Care is required to apply this logic first to the
contributions of different oocysts and then to the
probability that two lineages coalesce, given that they
come from the same oocyst. The probability that the
genes come from the same oocyst is directly dependent
on the variance of oocyst contribution as shown above.
However, the probability of coalescence given that genes
come from the same oocyst is an average, over the
distribution of di, of the conditional probabilities of
coalescence weighted by the probabilities of coming from
the same oocyst:

E diðdi � 1ÞE
P2

j¼1 dijðdij � 1Þ= diðdi � 1Þ½ �jdi
� �h i

E diðdi � 1Þ½ � ð10Þ

where dij is the contribution of each homologous gene
copy j of oocyst i and di the contribution of this oocyst.
This reduces to simpler results when the dij’s are
independent Poisson variables with mean pij, as then
E ðdijðdij � 1Þ dij
� �

¼ diðdi � 1Þðpij=
P

j pijÞ
2 . The usual as-

sumption for diploid organisms is that pij¼ 1/2, so that
the above probability of coalescence is simply 1/2 as
expected. However, fluctuations in pij’s will increase the
probability of coalescence above 1/2 and, considering
that each oocyst produces four sporozoite clones the
sizes of which can be affected by various selection events
within the mosquito host and then within humans, little
can be assumed about such fluctuations and more
generally about the joint distribution of the dij’s.

Furthermore, an additional hierarchical level may be
considered, reflecting high among-mosquito variance in
sporozoite transmission. The effects of multiple levels
can be described as follows.

Up to Equation (9), no assumption has been made
about the biological meaning either of ‘parents’ and
‘descendants’ or of details of the life cycle. Therefore,
the formula applies to the number of copies, over a
cycle from oocyst to oocyst, of any of the two ‘gametes’
(at a given locus) constitutive of the parental oocyst,
as well as to contributions from the two gametes of
the oocyst and to contributions of an infected mosquito.
In other words, the probability of coalescence can be
written as

c1 ¼ VarðABCÞ
2N0Nim � 1

ð11Þ

where A is the total contribution of an infected mosquito
to the next generation, B the fraction of this contribution
from a given oocyst and C the fraction of the oocyst
contribution from one of its gametes. N0 is the mean
number of oocysts per mosquito, and Nim the number of
infected mosquitoes per deme.

Similarly, the probability that two gene copies come
from the same parental oocyst is

c2 ¼ VarðABÞ
N0Nim � 1

ð12Þ

The probability that two gene copies come from the
same parental infected mosquito is

c3 ¼ VarðAÞ
Nim � 1

ð13Þ

and the total gain in identity because of the recent
coalescence when gene copies come from the same deme
(cf Equation (2)) can be written

Pcoal ¼ð1 � c3ÞFVT þ ðc3 � c2ÞðFMTÞ
þ ðc2 � c1ÞðFOTÞ þ c1

ð14Þ

¼ FVT þ c3ðFMT � FVTÞ þ c2ðFOT � FMTÞ þ c1ð1 � FOTÞ
ð15Þ

Further analysis under specific model assumptions
could use general formulas for the variance of a product,
and in particular

Varð
Y3

i¼1
YiÞ ¼

Y3

i¼1
VarðYiÞ þ

X3

i¼1

EðY2
i Þ
Y

j 6¼i
VarðYjÞ

þ
X3

i¼1

VarðYiÞEðY2
j 6¼iY

2
k6¼ði;jÞÞ:

In a statistical perspective, one would need to obtain
estimates of each ci, and for malaria transmission the
variance of per mosquito contribution (A) may be
especially difficult to estimate.

Following the same logic as that in Equation (5), it
turns out that:

NAsymptotic
e ¼ n� 1

ð1 � FVTÞ c3FMV þ ð1 � FMVÞ c2FIM þ c1ð1 � FIMÞ�½ �½
ð16Þ

which is of the same form as Equation (6) but for
a more general situation. By considering a Poisson
distribution of the realized number of descendants
(at each hierarchical level), Equation (16) then equals
Equation (6).
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Discussion

As shown in Equations (6) and (16), the effective
population size of P. falciparum may be seen as a function
of the following five variables: (1) the number of infected
female mosquitoes, (2) the harmonic mean of the number
of oocysts per infected mosquito, (3) the genetic
differentiation measured between oocyst infrapopula-
tions, (5) the departure within infrapopulations from the
Hardy–Weinberg expectations and finally (5) the genetic
differentiation observed between populations from dif-
ferent villages. As shown in Figure 2, each of these
variables has a different effect on the effective population
size. It decreases as FMV and FIM increases, but increases
as FVT increases. Obviously, when NimT and N0 increase,
so does Ne. It must be noted that if FIM equals 0 (no
departure from the Hardy–Weinberg expectations) and
FMV is null (no genetic differentiation between oocyst
infrapopulations), the effective population size of the
total population simply reduces to Ne¼ 2nNimN0/(1�FVT),
which corresponds to the classic result of the effective
population size for a finite island model (Equation (1)).
Similarly, Equation (2) for partial selfing in the island
model can also be recovered from Equation (6).

It is worth emphasizing that in our model, as in
other standard formulations (Maruyama, 1977; Nagylaki,
1983; Rousset, 2004), the realized number of settled
offspring of any given adult is a random variable and so
is the realized number of settled offspring from any
given deme and hierarchical units. This is similar in all
models that assume population regulation after disper-
sal. Thus, Equation (2), and therefore Equations (6) and
(16), holds under the classical assumption of regulation
after dispersal (Rousset, 2004), rather than under the
assumption that sub-populations contribute equally to
the next generation (Nunney, 1999, reproduced in Wang
and Caballero, 1999) if contributions are interpreted as
the realized number of settled offspring. A model with
population regulation only before dispersal would need
to assume non-independent dispersal of individuals
from different demes to keep fixed deme sizes. The
model of Nunney (1999) makes other assumptions
distinct from the present models (for example, separate
sexes) and could benefit from being reconsidered with
the methods of this paper.

In the context of malaria biology, Equations (6) and
(16) would not be exactly true when vectors can die

during dispersal: pairs of gene lineages in the same
village have some low probability of being harboured by
the same mosquito and then of dying simultaneously if
the mosquito dies during emigration, whereas the future
contribution of pairs of gene lineages in two different
mosquitoes is affected only by the probability that two
mosquitoes die. However, the correlation in dispersal
events could be substantial only if very few mosquitoes
dispersed between villages.

In our model, FIM measures the departure from
panmixia within oocyst infrapopulations. The few
studies that have analysed it within natural oocyst
infrapopulations reported high positive values (Paul
et al., 1995; Razakandrainibe et al., 2005; Annan et al.,
2007; Mzilahowa et al., 2007), meaning that infrapopula-
tions harboured more homozygous individuals than
expected if gametes had met at random. Two main
hypotheses are generally proposed to explain a positive
FIS (in our model, FIM) in oocyst infrapopulations: self-
fertilization and/or Wahlund effects. Self-fertilization
may occur, for instance, because gametocytes (that give
both male and female gametes) generally circulate when
aggregated in the bloodstream, which may favour
amphimixia between gametes from the same parent.
Regarding the Wahlund effect, it may occur if the vector
takes two successive infective blood meals in two
different infected hosts sufficiently spaced to prevent
gametes from the two meals fusing. As mosquitoes rarely
do so, however (Koella et al., 1998), the positive FIS

observed in oocyst infrapopulations is generally believed
to be mainly the consequence of self-fertilization (Raza-
kandrainibe et al., 2005; see however Mzilahowa et al.,
2007). In our model, taking into account the potential
existence of Wahlund effects within oocyst infrapopula-
tions would require a slightly different formalization.
The rate of coalescence within oocyst infrapopulations
should then be computed as a function of the probabil-
ities that genes taken in two random oocysts may come
from the same or different mosquitoes one generation
earlier.

FMV measures the covariance of genes from different
oocysts within a mosquito relative to genes from oocysts
in different mosquitoes from the same village. Again, the
few studies that have analysed the genetic variability of
oocyst infrapopulations found strong genetic differentia-
tion between them (Razakandrainibe et al., 2005; Annan
et al., 2007). Several aspects of parasite biology or of their
hosts may explain the amount of genetic differentiation
observed between oocyst infrapopulations. For instance,
for the pathogen, the clonal reproduction that occurs
during blood stages may induce a strong drift within the
human host, especially if there is a strong variance in the
reproductive success of the different blood-circulating
clones. For the vector, the fact that they rarely take
successive blood meals from several infected individuals
at the same time (Koella et al., 1998) may limit migration
among infrapopulations and thus may also participate in
the high differentiation observed.

Finally, FVT measures the similarity of parasites among
mosquitoes within villages relative to the total popula-
tion. The FVT relevant to describe the variance of change
in allele frequency in the total population can in principle
be adequately estimated only from samples from the
total population at stationarity. When these unrealistic
conditions do not hold, the quantities usually estimated
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Figure 2 Effect of hierarchical structure on the effective population
size (Ne). FIM measures the deviation from the Hardy–Weinberg
expectations within oocyst infrapopulations, FMV measures the
genetic differentiation between oocyst infrapopulations, and FVT

measures the genetic differentiation between villages.
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as FST may give poor information about the relevant FVT.
In practice, although, when spatial patterns of isolation
by distance are weak, as is often observed and
theoretically expected under a wide range of conditions,
FST measured over small spatial scales could provide
reasonably more accurate approximations than the long
distance ones (which are more affected by past demo-
graphic events, mutations, etc.; Hutchison and Temple-
ton, 1999). Herein, FVT is mainly dependent on the level
of migration occurring between villages, and on the local
(within a village) population size (or effective density
under isolation by distance), which is also given by the
formula for the total effective size, without its among-
village component (Rousset, 1999), and is thus again
dependent on the local number of infected mosquitoes,
the average number of oocysts, self-fertilization and
population structure occurring between infrapopula-
tions. Regarding the migration of the parasite between
villages, it is necessarily host dependent for P. falciparum.
Therefore, it depends on both the mobility of humans
and that of the vector. In regions of high transmission,
the analysis of genetic differentiation among different
villages or sites distant by several kilometres up to
hundreds or thousands of kilometres have reported very
small FVT (reported as FST estimates corrected for the
differentiation occurring at lower levels (between infra-
populations) in Annan et al. (2007) and Prugnolle et al.
(2008) and as traditional FST in Anderson et al. (2000).
In contrast, in regions of low transmission, where the
local effective size is likely to be lower (due to lower
parasite prevalence), other studies reported strong FVT

even between close sites (Bogreau et al., 2006).

Conclusions

In conclusion, we herein propose simple expressions
(Equations (6) or (16)) of the asymptotic inbreeding
effective population size of P. falciparum. In the case of
Equation (6), which is a particular case of Equation (16),
the realized number of ‘descendants’ for each hierarch-
ical unit follows a Poisson distribution. As a conse-
quence, it turns out that all parameters of the equation
could be easily measurable on the field and so does Ne.
However, Equation (6) has to be taken with lots of
precautions. The model leading to Equation (6) was
mainly exposed to facilitate the understanding of the
more general model. It is indeed likely that certain
hypotheses of this model (in particular, the Poisson
distribution of ‘descendants’) do not hold in natura.
When the number of realized descendants does not
follow this distribution (Equation (16)), this leaves a
difficult problem of estimation if applied to real data,
especially because the variance of per mosquito con-
tribution may be rather difficult to estimate in natura,
even after adopting a proper temporal sampling strategy.

Although the equations proposed in this study were
initially developed for the specific case of P. falciparum,
their derivation follows a sufficiently general model
applicable to any organisms displaying the same kind of
hierarchical structure.
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