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A Fisher scoring algorithm for the weighted
regression method of QTL mapping

L Han and S Xu
Department of Botany and Plant Science, University of California, Riverside, CA, USA

An improved weighted least square (LS) method for quantita-
tive trait loci (QTL) mapping using the estimating equation (EE)
algorithm was developed recently. The method is more efficient
than both the LS and the weighted LS methods and slightly less
efficient than the mixture model maximum likelihood (ML)
method. The iteration process of the EE algorithm is implicit.
We developed a Fisher-scoring algorithm for the weighted LS
method. The iteration process is explicit and easy to program.
In addition, the method automatically provides an approximate

variance–covariance matrix for the estimated QTL parameters
as a by-product of the iteration process. As a consequence, a
W-test statistic can be used for testing the significance of QTL.
To compare the Fisher scoring algorithm with the expectation
maximization (EM)-based ML method, we also developed a
slightly simplified method to compute the variance–covariance
matrix of the estimated parameters under the EM algorithm.
Heredity (2008) 101, 453–464; doi:10.1038/hdy.2008.78;
published online 13 August 2008
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Introduction

The mixture model maximum likelihood (ML) method for
quantitative trait loci (QTL) mapping (Lander and
Botstein, 1989) is the most efficient method for interval
mapping (IM) (Kao, 2000). Least square (Haley and Knott,
1992) and weighted least square (LS; Xu, 1998a, b) methods
are approximations of the ML method but with improved
computational speed. Recently, Feenstra et al. (2006)
developed an improved weighted regression method by
extending the simple regression method of Haley and
Knott (1992) and the weighted regression method of Xu
(1998a, b). The authors made a simple assumption that
conditional on marker information, the phenotypic value
of individual j is normally distributed with mean mj and
variance sj2. Feenstra et al. (2006) adopted an estimating
equation (EE) algorithm to solve for the parameters
(regression coefficients and residual error variance).

The exact ML method (Lander and Botstein, 1989)
takes into consideration the mixture distribution of the
phenotypic value conditional on flanking marker infor-
mation. The mixture distribution occurs because the
genotype of a QTL is unknown. The basic assumption is
that the residual error has a known distribution, that is,
normal. The simple regression method of Haley and
Knott (1992) ignores the uncertainty of the QTL genotype
and assumes that s2j ¼ s2 for all j ¼ 1; � � � ; n, where n is
the sample size. No other assumption is required. The
iteratively reweighted LS (IRLS) method of Xu (1998a
and b) takes into account the uncertainty of QTL
genotype so that s2j varies across j¼ 1,?, n, but ignores
the mixture distribution. In addition, when maximizing
the objective function, the method of IRLS treats sj2 as a

constant, although sj2 is a function of mj, and thus as a
function of QTL effects. The parameter values involved
in sj2 are replaced by values in the previous iteration. The
EE method of Feenstra et al. (2006) takes into account the
fact that sj2 is a function of mj and maximizes the objective
function with respect to parameters occurring in
every place of the objective function. Feenstra et al.
(2006) compared all the methods and showed that
ML4EE4IRLS4LS, that is, ML is the most efficient
method and LS is the least efficient one.
Feenstra et al. (2006) used the EE algorithm to solve for

the parameters, but provided no explicit iterative
equation. We found that an explicit expression of the
iteration exists by using a Fisher scoring algorithm. The
iteration equation appears to be simple and thus easy to
program. In addition, the method automatically provides
a variance–covariance matrix for the estimated QTL
effects. This covariance matrix is required to construct
a W-test statistic. This test statistic may replace the
likelihood-ratio test statistic with a computational ad-
vantage over the latter—in that only a single likelihood
function (under the full model) is needed.

Methods

Model
The model follows Xu (1998b) and Feenstra et al. (2006),
which is

yj ¼ Ujbþ ej ð1Þ
where yj is the phenotypic value of individual j (j¼ 1,?, n),
Uj is the expectation of variables indicating the QTL
genotype given marker information, b is a vector of QTL
effects (including the population mean) and ej is the residual
error. The residual error has mean zero and variance

varðejÞ ¼ bTSjbþ s2 ð2Þ
where Sj is the conditional variance–covariance
matrix of the QTL indicator variables given marker
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information (it is not a summation sign). Note that if the
QTL genotype is observed (i.e., the QTL overlaps with a
fully informative marker), Sj would be zero and thus
the residual error variance would be identical to the
environmental error variance s2. Definitions and for-
mulations of Uj and Sj are given by Xu (1998b) and also
described later in this study for an F2 population. The
parameter vector is y ¼ b; s2

� �
and the data include yj, Uj

and Sj. Let

mj ¼ EðyjÞ ¼ Ujb ð3Þ

and

s2j ¼ varðyjÞ ¼ bTSjbþ s2 ð4Þ

The likelihood function is based on the assump-
tion of independent yj � Nðmj; s2j Þ for j¼ 1,?, n.
Therefore, the logarithm of the likelihood function is

LðyÞ ¼
Xn
j¼1

LjðyÞ ð5Þ

where

LjðyÞ ¼ � 1

2
lnðs2j Þ �

1

2s2j
ðyj � mjÞ2 ð6Þ

Fisher scoring algorithm
The partial derivatives of the likelihood for individual
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Let SðyÞ ¼ ½
Pn

j¼1
qLjðyÞ
qy 	 be the score vector and

HðyÞ ¼ ½
Pn

j¼1
q2LjðyÞ
qy qyT

	 be the Hessian matrix. The informa-

tion matrix is IðyÞ ¼ �E HðyÞ½ 	. Using the following
identity (Wedderburn, 1974)
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The score vector is
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The derivations of equations (10) and (11) are presented
in Appendix A for advanced readers. The information
matrix and the score vector are required to perform the
following Fisher scoring algorithm for the ML estimation

yðtþ1Þ ¼ yðtÞ þ I�1ðyðtÞÞSðyðtÞÞ ð12Þ
where yðtÞ is the parameter value in the t-th iteration.
Starting with an initial value yð0Þ , we iterate equation
(12) until a certain criterion of convergence is reached,
i.e., yðtþ1Þ 
 yðtÞ. The ML solution is ŷ ¼ yðtÞ for t satisfying
the convergence criterion. The variance–covariance
matrix of the estimated parameters is given by

varðŷÞ 
 I�1ðŷÞ ð13Þ

W-test statistic
When the variance–covariance matrix of the estimated
parameters is known, the likelihood ratio tests are not
needed. Instead, a W-test statistic can be used (Wald,
1941). We now use an F2 mating design as an example to
show how to construct the W-test statistic. Let

Xj1 ¼
þ1 for A1A1

0 for A1A2

�1 for A2A2

8><
>:

and

Xj2 ¼
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1 for A1A2
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>:

ð14Þ

be indicator variables for the QTL genotype, the linear
model of the phenotypic value of individual j is

yj ¼ b0 þ Xj1b1 þ Xj2b2 þ ej ð15Þ
where b0¼m is the population mean (intercept), b1¼ a is
the additive effect and b2¼ d is the dominance effect and
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ej � Nð0; s2Þ is the environmental error. Using marker
information, we calculate

Uj ¼ 1; EðXj1Þ; EðXj2Þ
� �

ð16Þ
where EðXj1Þ ¼ pjð1Þ � pjð�1Þ and EðXj2Þ ¼ pjð0Þ � ½pjð1Þ
þpjð�1Þ	. The Sj, matrix is

Sj ¼
0 0 0
0 varðXj1Þ covðXj1;Xj2Þ
0 covðXj2;Xj1Þ varðXj2Þ

2
4

3
5 ð17Þ

where

varðXj1Þ ¼ pjð1Þ þ pjð�1Þ � ½pjð1Þ � pjð�1Þ	2;

varðXj2Þ ¼ 1� pjð0Þ � ½pjð1Þ þ pjð�1Þ	
� �2

and

covðXj1;Xj2Þ ¼ ½pjð�1Þ � pjð1Þ	 � ½pjð1Þ � pjð�1Þ	
� pjð0Þ � ½pjð1Þ þ pjð�1Þ	
� �

The probabilities of QTL genotypes conditional on
marker information are pjð1Þ ¼PrðXj1 ¼ 1jmarkerÞ, pjð0Þ ¼
PrðXj1 ¼ 0jmarkerÞ and pjð�1Þ ¼ PrðXj1 ¼ �1jmarkerÞ,
respectively, for the three genotypes. They are calculated
based on the multipoint method of Jiang and Zeng
(1997).

The parameter vector is y ¼ b0 b1 b2 s2
� �

. Therefore,

varðyÞ is a 4� 4 matrix. Let b ¼ ½ b̂1 b̂2
T	 and

varðbÞ ¼ varðb̂1Þ covðb̂1; b̂2Þ
covðb̂2; b̂1Þ varðb̂2Þ

� �
ð18Þ

be a subset of matrix varðŷÞ. The W-test statistic for
hypothesis H0 : b1 ¼ b2 ¼ 0 is

W ¼ bT varðbÞ½ 	�1b ð19Þ

Under H0, this test statistic follows approximately a w2

distribution with two degrees of freedom. Therefore, the
W-test statistic is comparable to the likelihood ratio test
statistic. The W-test statistic has a simple relationship
with the F-test statistic, that is, W¼ 2F, where the F-test
statistic follows an F distribution with a numerator
degrees of freedom 2 and a denominator degrees of
freedom n�3 under H0.

Information matrix of the EM algorithm
The mixture model-based ML method implemented
through the expectation maximization (EM) algorithm
(Lander and Botstein, 1989) does not have a simple
method for calculating the variance–covariance matrix of
the estimated parameters. Kao and Zeng’s (1997) method
for calculating the variance–covariance matrix is quite
complicated. If the QTL position is fixed at a particular
genome location, that is, the QTL position is not a
parameter, their formulas may be simplified. The
simplified version of the variance–covariance matrix is
relatively easy to program. To compare the Fisher scoring
algorithm with the mixture model-based ML method for
the variance–covariance matrix of the estimated para-
meters, we introduced the variance–covariance matrix
under the EM algorithm here. The EM algorithm is

derived based on the following full data QTL model
(assuming that QTL genotypes are observable)

yj ¼ Xj0b0 þ Xj1b1 þ Xj2b2 þ ej ¼ Xjbþ ej ð20Þ

The score function when Xj is fully observed is
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The Hessian matrix (second partial derivatives) is
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The Louis’ (1982) information matrix is

IðyÞ ¼ �E HðyjXÞ½ 	 � E SðyjXÞSTðyjXÞ
� �

ð23Þ

The expectations are taken with respect to the missing
value X using the posterior probabilities of QTL
genotypes. Calculation of the first term E HðyjXÞ½ 	 is
straightforward, but the second term E SðyjXÞSTðyjXÞ

� �
is

hard to compute. The method of Kao and Zeng (1997) for
calculating E SðyjXÞSTðyjXÞ

� �
is complicated. Luo et al.

(2003) used Monte Carlo simulation to approximate
E SðyjXÞSTðyjXÞ
� �

, but the method is computationally
demanding. We realized that

E SðyjXÞSTðyjXÞ
� �

¼ var½SðyjXÞ	 ð24Þ

because E SðyjXÞ½ 	 ¼ 0 when y ¼ ŷ , where ŷ is the
maximum likelihood estimate (MLE) of y. The variance–
covariance matrix of the scores is

var SðyjXÞ½ 	 ¼
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which is not difficult to calculate. Note that the
expectations and the variance–covariance matrices are
calculated with respect to the missing value X using
the posterior probabilities of QTL genotypes (conditional
on both marker and phenotype information and the
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estimated parameter value). Therefore, the information
matrix for the EM estimated QTL parameters is

IðyÞ ¼ �E HðyjXÞ½ 	 � E SðyjXÞSTðyjXÞ
� �

¼ �E HðyjXÞ½ 	 � var SðyjXÞ½ 	
ð26Þ

because E SðyjXÞSTðyjXÞ
� �

¼ var SðyjXÞ½ 	 as shown in
equation 24. The estimated variance–covariance matrix
for ŷ is varðŷÞ ¼ I�1ðŷÞ. This variance–covariance matrix
will be compared to that obtained from the weighted LS
method.

Results

Monte carlo simulation
The purpose of the simulation study is to verify the
Fisher scoring algorithm. The final result of the Fisher
scoring algorithm is identical to the result of EE (Feenstra
et al., 2006), because both algorithms maximize the same
likelihood function. Extensive simulation studies for
the improved weighted regression method have been
performed by Feenstra et al. (2006). Therefore, we only
evaluated the Fisher scoring algorithm under one
situation. We placed a QTL in the middle of a 10 cM
marker interval. The two markers were fully informative.
The simulated parameter values were

y ¼

b0
b1
b2
s2

2
664

3
775 ¼

m
a
d
s2

2
664

3
775 ¼

10:0
0:400
0:125
1:000

2
664

3
775

The additive and dominance effects of the QTL
explained 7.3% and 1.43% of the phenotypic variance,
respectively. Overall, the QTL contributed 8.73% of the
phenotypic variance. The sample size of the simulated F2
population was n¼ 300. The simulation experiment was
replicated 200 times. The QTL position was fixed at the
true location (5 cM away from either flanking marker)
and only y was estimated.

For comparison purpose, we also analyzed the data
using the simple regression or the LS method of Haley
and Knott (1992), the IRLS method of Xu (1998a, b) and
the mixture model ML method of Lander and Botstein
(1989). The Fisher scoring method developed in this
study is denoted by FISHER. The EE algorithm is simply
a different algorithm from the Fisher scoring algorithm
for the same problem. Both EE and FISHER maximize
the same likelihood function, and thus both generate the

same ML estimates of the parameters. For the three
methods with iterations, the same initial values of
parameters were used, which are

mð0Þ að0Þ dð0Þ s2ð0Þ
h i

¼ 1 0 0 1½ 	

The average estimates of the parameters and their
standard deviations obtained from the 200 replicated
simulations are listed in Table 1. The estimated para-
meters for all the four methods are very close to the true
parameters. This verified all methods, including the
Fisher scoring method developed here. The new method
took about five iterations to converge, whereas ML and
IRLS took about seven and four iterations, respectively,
to converge to the same criterion ðjjyðtþ1Þ � yðtÞkp10�8Þ.
The computing time for the Fisher scoring method took
about 0.1 s per replication, which is approximately the
same as the time for the IRLS method. Both FISHER and
IRLS are faster than ML.

Special algorithm is required to obtain the variance–
covariance matrix of the estimated QTL parameters for
the ML method (Kao and Zeng, 1997; Luo et al.,
2003). The Fisher scoring method, however, provides
such a covariance matrix as a by-product of the
iteration process. To evaluate the accuracy of the
estimated variance–covariance matrix, we compared
the ‘predicted’ covariance matrix with the ‘realized’
covariance matrix. The predicted covariance matrix
was obtained as follows. For the kth replicated
simulation ðk ¼ 1; � � � ; 2001Þ we calculated VðkÞ ¼ varðŷÞ
using equation (13) and then took the average

�V ¼ 1
200

P200
k¼1 V

ðkÞ as the ‘predicted’ covariance matrix.

The realized covariance matrix was calculated using the
following approach. Let ŷðkÞ be the estimated parameters
from the kth replicated simulation ðk ¼ 1; � � � ; 200Þ. The
‘realized’ covariance matrix was defined as

V ¼ 1

200

X200
k¼1

ðŷðkÞ � �̂yÞðŷðkÞ � �̂yÞT

where
�̂y ¼ 1

200

P200
k¼1 ŷ

ðkÞ. The predicted and realized
covariance matrices obtained from 200 replicated
simulations are given in Table 2. Clearly, the predicted
covariance matrix is very close to the realized covariance
matrix.

Numerical evaluation
A dataset from an F2 mouse population consisting of 110
individuals was used as an example for demonstration.

Table 1 Mean estimates of parameters and the standard deviations (in parentheses) of the estimated parameters obtained from 200 replicated
simulations

Parameter True value Method

LS ML IRLS FISHER

m 10.000 9.999 (0.060) 9.999 (0.060) 9.999 (0.060) 9.999 (0.059)
A 0.400 0.418 (0.093) 0.418 (0.092) 0.418 (0.093) 0.418 (0.091)
D 0.125 0.119 (0.065) 0.119 (0.066) 0.118 (0.065) 0.119 (0.066)
s2 1.000 1.012 (0.080) 0.992 (0.079) 1.002 (0.080) 0.992 (0.079)
Iteration — — 7.135 3.885 5.085
Time — 0.0817 0.1526 0.1095 0.1005

Abbreviations: IRLS, iteratively reweighted LS; LS, least square; ML, maximum likelihood.
The average number of iterations and the average computing time (s) per replicate are given in the last two rows.
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The data were published by Lan et al. (2006) and are
freely available from the internet (see Lan et al., 2006 for
the website address). A preliminary analysis showed that
there was a QTL for the trait of 10th week body weight
on the second chromosome between markers D2Mit194
and D2Mit263 (result not given). The putative position of
the QTL is at 95.7 cM, whereas the two flanking markers
are located at 85.4 and 98.7 cM, respectively. QTL
parameters were estimated assuming that the position
of the QTL is known (fixed at 95.7 cM).

The iteration process of the Fisher scoring algorithm is
given in Table 3. It took seven iterations to converge
when mð0Þ að0Þ dð0Þ s2ð0Þ

� �
¼ 1 0 0 1½ 	 was used as the

initial values of the parameters. If the LS estimates of
QTL parameters were used as the initial values, only
five iterations were required to converge to the same
criterion, jjyðtþ1Þ � yðtÞkp10�8 (data not shown).

The data were also analyzed using the other three
methods (LS, IRLS and ML) and the results are given in
Table 4. The estimated parameters from LS and IRLS are
more alike to each other than to the parameters estimated
from ML and FISHER, which are almost identical to each
other. The W-test statistics for all the four methods
(LS, IRLS, ML and FISHER) were compared with the
likelihood-ratio test statistics and they are indeed similar
to each others (see last two rows of Table 4).

The variance–covariance matrices for the estimated
parameters for the four methods are given in Table 5. The
covariance matrices for the four methods are very
similar. To further validate the accuracy of the covariance
matrix of the Fisher scoring method, we performed a
bootstrap analysis (Efron, 1979) with 1000 replicated

samples to draw an empirical covariance matrix for the
estimated parameters. The bootstrapped covariance
matrix for the FISHER method is also presented in
Table 5. We can see that the bootstrapped covariance
matrix is similar to the predicted one from the Fisher
scoring method, although some relatively large devia-
tions have occurred for some covariance elements.

Interval mapping and composite interval mapping (CIM)
This section presents the results of IM and CIM (Zeng
1994) for the same mouse data (Lan et al., 2006). The
mouse genome has 19 chromosomes (excluding the sex
chromosome). The data investigated contain 110 F2 mice
and 193 markers covering about 1800 cM of the entire
genome. The trait of interest is still the 10th week body
weight. The entire genome was scanned with 1 cM
increment using the IM approach (under the single
QTL model). The log of odds (LOD) score profiles
(converted from the likelihood ratio test statistic profiles)
for all the four methods (LS, IRLS, ML and FISHER) are
given in Figure 1. The four methods generate almost
identical result (the profiles overlap). Permutation tests
showed that the critical value for the LOD score was
2 .985, close to 3 (data not shown). Therefore, we used
LOD 3 as the approximate critical value for controlling
the genome wise Type I error of 0.05 for declaration of
statistical significance. Three QTL passed the LOD 3
criterion for all the four methods. The estimated
positions and effects for the three QTL are given in
Table 6. The three QTL detected explain 10–20% of the
phenotypic variance each. Again, the four methods give
almost identical result for the estimated QTL parameters.
We have identified three QTL using the IM approach.

Since IM uses a single QTL model, the estimated QTL
parameters are subject to bias (Zeng, 1994). We now
adopt the CIM approach to handle multiple QTL. We
scanned the entire genome again but used the markers
nearby the three identified QTL (in the IM) as cofactors
to control the background noise. The LOD score profiles
are presented in Figure 2. Using the same LOD 3 as the
approximate critical value, we detected two QTL, one
remains in chromosome 2 and the other one occurs in
chromosome 13. Again, the four methods are almost
indistinguishable. The estimated QTL parameters are
given in Table 7. The two detected QTL individually
explain a less proportion of the phenotypic variance
compared with the results of the IM, which is expected
for the CIM approach.
Figure 3 represents the LOD score profiles for the

FISHER method developed in this study under theIM
and the CIM frameworks. Again, the IM is a single QTL

Table 2 Comparison of the predicted with the realized variance–
covariance matrices of the estimated parameters for the Fisher
scoring algorithm

Predicted

m̂ â d̂ ŝ2

m̂ 0.00338 –0.00004 –0.00001 0.00000
â –0.00004 0.00767 –0.00007 –0.00037
d̂ –0.00001 –0.00007 0.00436 –0.00021
ŝ2 0.00000 –0.00037 –0.00021 0.00683

Realized

m̂ â d̂ ŝ2

m̂ 0.00354 –0.00015 –0.00014 –0.00015
â –0.00015 0.00836 0.00016 0.00001
d̂ –0.00014 0.00016 0.00436 0.00023
ŝ2 –0.00015 0.00001 0.00023 0.00618

Table 3 Iteration process of the Fisher scoring algorithm of QTL mapping for the mouse data

Iteration m a d s2 jjyðtþ1Þ � yðtÞjj

0 1 0 0 1 —
1 60.002269 –2.892456 0.2439982 3549.8115 3149388.3
2 60.002134 –2.893374 0.2453587 31.071243 3095383.3
3 59.99052 –2.975879 0.3830536 30.879357 0.0156806
4 59.988608 –2.989226 0.3904464 30.822373 0.0008709
5 59.988479 –2.990227 0.3913964 30.819513 2.5261E-6
6 59.988465 –2.990331 0.3914711 30.819225 2.4867E-8
7 59.988464 –2.99034 0.3914783 30.819201 1.792E-10
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model, whereas the CIM is a multiple QTL model. The
two different approaches do show significant difference.
The CIM is an improved approach and is highly
recommended over the IM approach.

Discussion

The Fisher scoring algorithm developed in this study and
the EE algorithm developed by Feenstra et al. (2006)
produce identical result, because both maximize the
same likelihood function. Therefore, they are two
different algorithms for the same method, called the
improved weighted LS method. Properties of the

improved weighted LS method have been investigated
thoroughly by Feenstra et al. (2006). Therefore, we only
provided results of simulations and real data analysis for
a simple situation: the QTL position is known. The
purpose of this study is to demonstrate that a Fisher
scoring algorithm can be used to estimate QTL para-
meters. Given that FISHER is identical to EE, why do we
bother to develop such an algorithm? Several reasons
may justify the new algorithm. One is that Fisher scoring
is an important algorithm in genetics and this study
gives another example of its application to genetics.
Another reason is that the EE algorithm introduced by
Feenstra et al. (2006) has no explicit expression of the
iteration process, whereas the Fisher scoring algorithm
does. More importantly, the EE was performed in two
steps within an iteration, the b-step and the s2 -step. As a
result, variance–covariance matrix of the estimated
parameters is not available for the EE algorithm, at least
it is not a by-product of the iteration process, but the
Fisher scoring algorithm provides such a matrix as a by-
product of the iteration process. We were informed that
Feenstra B (personal communication) did derive the
information matrix for the parameters under the EE
algorithm in his thesis, but the result was not published.

An algorithm of maximization, like the Fisher scoring
algorithm, that provides an easy way for calculating the
variance–covariance matrix of the estimated parameters
may be more preferable than the EM algorithm for the
mixture model ML method, because a W-test statistic can
be used for significance test of QTL. The W-test statistic is
similar to the likelihood-ratio test, but it is computation-
ally less intensive than the latter. For the Fisher scoring
algorithm, three different test statistics (additive, dom-
inance and both) can be generated with only one
objective function (the likelihood function for the full
model) for maximization, whereas the EM implemented
ML method requires maximization of several likelihood
functions (under the full model and various reduced
models).

The Fisher scoring implemented weighted LS method
has some similarity to the quasilikelihood method
(Wedderburn, 1974). Both require only the first (mean)
and second (variance) moments of an observed data
point to be known functions of parameters and no other
assumptions are needed. The Fisher scoring method,
however, cannot be replaced by the quasilikelihood
method, because the latter requires the variance to be a
known function of the mean for each observed data
point.

Table 4 Estimated QTL parameters and their standard errors (in parentheses) for the mouse data from four different methods

Parameter Method

LS ML IRLS FISHER

m 60.002 (0.543) 59.991 (0.539) 60.002 (0.548) 59.988 (0.539)
a –2.892 (0.827) –2.990 (0.826) –2.905 (0.831) –2.990 (0.814)
d 0.244 (0.587) 0.384 (0.590) 0.256 (0.590) 0.391 (0.579)
s2 31.700 (4.274) 30.797 (4.226) 31.849 (4.295) 30.819 (4.204)
Number of iteration – 8 5 7
Likelihood ratio 11.706 12.149 11.736 11.613
W-test 12.239 13.096 12.227 13.553

Abbreviations: IRLS, iteratively reweighted LS; LS, least square; ML, maximum likelihood.

Table 5 Variance–covariance matrix of the estimated QTL para-
meters for the mouse data

Method m̂ â d̂ ŝ2

LS
m̂ 0.295 0.067 –0.019 0.000
â 0.067 0.684 –0.058 0.000
d̂ �0.019 –0.058 0.345 0.000
ŝ2 0.000 0.000 0.000 18.271

ML
m̂ 0.290 0.066 �0.020 0.017
â 0.066 0.683 �0.083 0.212
d̂ �0.020 �0.083 0.348 �0.083
ŝ2 0.017 0.212 �0.083 17.859

IRLS
m̂ 0.300 0.068 –0.019 0.000
â 0.068 0.690 –0.059 0.000
d̂ –0.019 –0.059 0.348 0.000
ŝ2 0.000 0.000 0.000 18.443

FISHER
m̂ 0.290 0.065 –0.018 0.014
â 0.065 0.663 –0.056 0.143
d̂ –0.018 –0.056 0.335 0.004
ŝ2 0.014 0.143 0.004 17.671

FISHER-ba

m̂ 0.265 –0.017 0.039 �0.017
â –0.017 0.543 0.035 0.390
d̂ 0.039 0.035 0.332 0.176
ŝ2 –0.017 0.390 0.176 17.628

Abbreviations: IRLS, iteratively reweighted LS; LS, least square;
ML, maximum likelihood.
aFISHER-b obtained from 1000 bootstrapped replicates of the
primary dataset.
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Table 6 Estimated QTL parameters for the mice data from the interval mapping analysis

QTL Method LOD QTL position (cM) Nearest marker m a d s2 h2

QTL 1 LS 3.424 175.257 D2Mit9 58.966 �3.574 (0.848) 1.622 (1.241) 29.989 0.190
ML 3.469 174.286 D2Mit9 59.244 �3.444 (0.780) 1.131 (1.060) 29.664 0.174
IRLS 3.412 175.257 D2Mit9 59.122 �3.116 (0.792) 1.455 (1.074) 29.694 0.153

FISHER 3.468 174.286 D2Mit9 59.204 �3.459 (0.784) 1.207 (1.059) 29.633 0.176
QTL 2 LS 3.299 206.81 D2Mit274 59.338 �2.820 (0.731) 1.659 (1.060) 30.419 0.133

ML 3.299 206.81 D2Mit274 59.354 �2.803 (0.730) 1.626 (1.056) 30.393 0.131
IRLS 3.299 206.81 D2Mit274 59.351 �2.806 (0.730) 1.630 (1.056) 30.426 0.131

FISHER 3.299 206.81 D2Mit274 59.350 �2.807 (0.730) 1.633 (1.056) 30.390 0.132
QTL 3 LS 3.504 233.06 D2Mit263 59.665 �3.328 (0.793) 0.816 (1.166) 30.111 0.159

ML 3.508 233.06 D2Mit263 59.699 �3.282 (0.745) 0.747 (1.049) 29.678 0.157
IRLS 3.485 234.01 D2Mit263 59.817 �3.024 (0.753) 0.566 (1.052) 29.857 0.135

FISHER 3.508 233.06 D2Mit263 59.704 �3.280 (0.752) 0.736 (1.044) 29.683 0.157

The standard errors of estimated QTL effects (square roots of the variances of estimated QTL effects) are given in parentheses.
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Figure 2 Log of odds (LOD) test statistic profiles for the four methods (LS, IRLS, ML and FISHER) using the composite interval mapping
(CIM) approach. The 19 chromosomes are merged into a single genome. The dash–dot horizontal line along the top of the graph represents
the threshold value of LOD 3. The main and minor tick marks on the horizontal axis separate the chromosomes and indicate the position of
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Figure 1 Log of odds (LOD) test statistic profiles for the four methods (LS, IRLS, ML and FISHER) using the interval mapping (IM) approach.
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Although the EM implemented ML is not the focus of
this study, the simple method for calculating the variance
of the score functions, var½SðyjXÞ	, is new and cost
efficient relatively to the method of Kao and Zeng (1997)
and the Monte Carlo method of Luo et al. (2003).

Any quantitative traits may be controlled by more than
one QTL. The IM approach uses a model that contains
only a single QTL. Therefore, the model will never be the
correct one if multiple QTL exist. However, people using
the IM approach can still detect multiple QTL, simply by
evaluating the number of peaks in the test statistic profile
that pass the critical value of the test statistic. The
estimated QTL effects will be biased if multiple linked
QTL exist. There are two ways to handle multiple QTL.
One is the multiple IM developed by Kao et al (1999),
where a multiple QTL model is fit and the number of
QTL included is determined by a model selection
algorithm, for example, stepwise regression. The other
method is called the CIM where markers with significant
effects are selected and then fit into the model to control
the background noise (Zeng, 1994). In this study, we
modified the Fisher scoring algorithm to fit the CIM
model. We first used the IM approach to identify
markers. We found three separate peaks in chromosome
2 of the mouse genome. We then selected three markers
that are close to the three peaks as cofactors and fit the
composite mapping model. Once we fit the CIM model,
the three QTL in chromosome 2 became one and an

additional QTL in chromosome 13 was detected. There-
fore, the CIM does show different result from the IM. We
did not fit a true multiple QTL mapping model, because
the focus of this study is to develop the Fisher scoring
method rather than evaluating the multiple QTL map-
ping model. The CIM does serve as a simple method to
handle multiple QTL. The actual multiple QTL model
under the Fisher scoring algorithm is not hard to fit, but
requires substantial computational time. Let q be number
of QTL fit to the model, the multiple QTL model is

yj ¼ mþ
Xq
k¼1

Ujkbk þ ej ð27Þ

where Ujk is the conditional expectation of the QTL
genotype indicator variable for locus k and bk is a vector
of QTL effects for the kth locus. The residual error has
mean zero and variance

varðejÞ ¼
Xq
k¼1

bTj
X
jk

bk þ s2 ð28Þ

where Sjk is the conditional variance–covariance matrix
of the kth QTL genotype indicator variable. The score
vector and the information matrix are equivalent to those
obtained for the single QTL model except that
the dimensionalities of the vector and matrix are
increased.

Table 7 Estimated QTL parameters for the mice data from the composite interval mapping (CIM) analysis

QTL Method LOD QTL position (cM) Nearest marker m a d s2 h2

QTL 1 LS 3.299 206.81 D2Mit274 59.338 �2.820 (0.731) 1.659 (1.060) 30.393 0.133
ML 3.299 206.81 D2Mit274 59.354 �2.803 (0.730) 1.626 (1.056) 30.426 0.131
IRLS 3.299 206.81 D2Mit274 59.351 �2.806 (0.730) 1.630 (1.056) 30.390 0.131

FISHER 3.299 206.81 D2Mit274 59.350 �2.807 (0.730) 1.633 (1.056) 30.419 0.132
QTL 2 LS 3.454 1270.82 D13Mit66 56.323 2.603 (0.682) 2.143 (1.015) 24.533 0.156

ML 3.456 1270.82 D13Mit66 56.336 2.562 (0.677) 2.097 (1.008) 24.588 0.151
IRLS 3.456 1270.82 D13Mit66 56.346 2.562 (0.677) 2.091 (1.007) 24.525 0.151

FISHER 3.456 1270.82 D13Mit66 56.341 2.567 (0.677) 2.097 (1.007) 24.583 0.152

Abbreviations: IRLS, iteratively reweighted LS; LS, least square; ML, maximum likelihood.
The standard errors of estimated QTL effects (square roots of the variances of estimated QTL effects) are given in parentheses.
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Epistatic effects may also contribute to the genetic
variance of a quantitative trait. However, they are not as
important as the main QTL effects for many quantitative
traits of agronomy crops (Xu and Jia, 2007). Extension to
models with epistatic effects is tedious and will digress
from the main focus of this study. Therefore, we only
introduce the main effect model under the Fisher scoring
algorithm. Feenstra et al (2006) investigated the proper-
ties of the EE algorithm and found out that the EE
algorithm can be substantially more efficient that the LS
and weighted LS methods when epistatic effects are fit to
the model. Since the Fisher scoring algorithm is identical
to the EE algorithm in terms of parameter estimation and
significance test, we expect that the Fisher scoring
algorithm will also show the same advantage as the EE
algorithm in handling epistatic effects.

Finally, we developed a new SAS procedure called
PROC QTL, which has an option to conduct QTL
mapping using the Fisher scoring method. The SAS
code is given in Appendix B.
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Appendix A

Derivation of the score vector and the information matrix
The log-likelihood function is the sum of LjðyÞ across all
n individuals, where

LjðyÞ ¼ � 1

2
lnðs2j Þ �

1

2s2j
ðyj � mjÞ2 ðA1Þ

The expectation and variance of yj is mj¼Ujb and
s2j ¼ bTSjbþ s2, respectively. The first partial derivatives
of the likelihood for individual j with respect to the
parameters are
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where q
qbmj¼UT

j ;
q
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qbs
2
j ¼2Sjb and q

qs2s
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j ¼1:Further

manipulation on the above equations leads to
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The score vector simply takes the sum of the above
individual wise first partial derivatives across all
individuals
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This concludes the derivation of equation (11) in the
main text.
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The information matrix is IðyÞ ¼ �E HðyÞ½ 	. Using the
following identity (Wedderburn, 1974)

IðyÞ ¼ �E
Xn
j¼1

q2LjðyÞ
qy qyT

2
4

3
5 ¼

Xn
j¼1

E
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qyT

� �
ðA5Þ

we obtained
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We now provide the details of each element of the above
matrix. The products of the two partial derivatives
involved in the information matrix are given as follows.

1. The first product:
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Further manipulation on the above equation leads to
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Taking the expectation value with respect to the
observed phenotypic value yj, we obtained
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Note that
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for odd k
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Therefore, the above equation becomes
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We now have concluded the derivation for the first
diagonal block of the information matrix.

2. The second product:
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The expectation of the above product is

E
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qs2

qLjðyÞ
qs2

� �

¼ 1

4s4j
� 1
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" #
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1

4s8j
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4s4j

" #
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þ 3

4s4j

" #
¼ 1

2s4j
ðA14Þ

ThereforeXn
j¼1

E
qLjðyÞ
qs2

qLjðyÞ
qs2

� �
¼

Xn
j¼1

1

2s4j
ðA15Þ

We have now completed the derivation for the second
diagonal block of the information matrix.

3. The third product:
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� �

¼ � 1

s2j
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1

s4j
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1
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1
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ðyj�mjÞ4Sjbþ

1
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ðA16Þ
The expectation of the above equation is

E
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qb
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1
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" #

þ� 1
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1
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1
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j Eðyj�mjÞ3
" #

¼ 1

2s4j
Sjb�

1

2s4j
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þ � 1
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Therefore

Xn
j¼1

E
qLjðyÞ
qb

qLjðyÞ
qs2

� �
¼
Xn
j¼1

1

s4j
Sjb ðA18Þ

We have now concluded the derivation of the off-
diagonal block of the information matrix. The informa-
tion matrix is symmetrical, and thus the other off-
diagonal block simply takes the transposition of the
above quantity.

Substituting all the four elements into the informa-
tion matrix, we obtained the final expression of the
information matrix,

IðyÞ ¼

Pn
j¼1

1
s2
j

UT
j Uj þ 2

Pn
j¼1

1
s4
j

Sjbb
TSj

Pn
j¼1

1
s4
j

Sjb

Pn
j¼1

1
s4
j

bTSj
1
2

Pn
j¼1

1
s4
j

2
6664

3
7775 ðA19Þ

which is the matrix given in equation 10 of the
main text.

Appendix B

The SAS code of QTL mapping
We developed a new SAS procedure called PROC QTL,
which has an option to conduct QTL mapping using four
different methods (LS, IRLS, ML and FISHER). The
option FISHER is the Fisher scoring method developed
in this study. The SAS code is given in this appendix.
People who want to use this program to conduct
QTL mapping must be a regular SAS users. Before
running the procedure, users need to ask for a
trial version of the executable file from the authors
and install the new procedure to the existing SAS
software package licensed from the SAS company. We
will deliver the software (executable file) along with a
user manual for the software. The QTL procedure is not
a built-in SAS procedure, but once you install this
customized SAS procedure into your system, you can
execute the procedure just like you do for any other built-
in SAS procedures without noticing the difference
between this customized procedure and any other
regular SAS procedures. The SAS code is given in the
next page.

The SAS code to run PROC QTL:

filename aa ‘C:\Users\gen.csv’;
filename bb ‘C:\Users\phe.csv’;
filename cc ‘C:\Users\map.csv’;
filename dd ‘C:\Users\result.csv’;

data one;
infile aa dlm¼ ‘,’ lrecl¼ 20000;
input id (m1-m193)($);

data two;
infile bb dlm¼ ‘,’ lrecl¼ 20000;
input id sex $ y;

data three;
infile cc dlm¼ ‘,’ lrecl¼ 20000;
input marker $ position chromoso;

data mouse;
merge one two;
by id;

PROC QTL data¼mouse map¼ three out¼ result
method¼ ‘fisher’ step¼ 1;
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model y¼ ;
matingtype ‘f2’;
genotype A1A1¼ ‘A’ A1A2¼ ’H’ A2A2¼ ‘B’;
estimate ‘a’¼ 1 0 �1 ‘d’¼�1 1 �1;

run;

data four;

set result;
file dd dlm¼ ‘,’;
put trait chr marker position n_iter conv_err LRT Wald
ve intercpt a d var_1 cov_1_2 var_2;

run;

quit;
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