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X Lacaze1,3, PM Hayes2 and A Korol3

1Department of Plant Pathology, Kansas State University, Manhattan, KS, USA; 2Department of Crop and Soil Science, Oregon State
University, Corvallis, OR, USA and 3Department of Evolutionary and Environmental Biology and Institute of Evolution, University of
Haifa, Mount Carmel, Haifa, Israel

Phenotypic plasticity is the variation in phenotypic traits
produced by a genotype in different environments. In contrast,
environmental canalization is defined as the insensitivity of a
genotype’s phenotype to variation in environments. Despite the
extensive literature on the evolutionary significance and
potential genetic mechanisms driving plasticity and canaliza-
tion, few studies tried to unravel the genetic basis of this
phenomenon. Using both simulations and real data from barley
(Hordeum vulgare), we used QTL mapping to obtain insights
into the genetics of phenotypic plasticity. We explored two
ways of quantifying phenotypic plasticity, namely the pheno-
typic variance across environments and the Finlay–Wilkinson’s
regression slope. Each relates to a different concept of
stability. Through QTL detection with real and simulated data,

we show that each measure of plasticity detects specific types
of plasticity QTL. Most of the plasticity QTLs were detected in
the data set with the lowest number of environments. All
plasticity QTL co-located with loci showing QTL�E interaction
and there were no QTL that only affected plasticity. The
number of environments that are considered and their
homogeneity is a key to interpret the genetic control of
phenotypic plasticity. Regulatory pathways of plasticity may
vary from one set of environments to another due to unique
features of each environment. Therefore, with an increasing
number of environments, it may become impossible to detect a
single ‘consistent’ regulatory pathway for all environments.
Heredity (2009) 102, 163–173; doi:10.1038/hdy.2008.76;
published online 22 October 2008

Keywords: phenotypic plasticity; QTL–environment interaction; plasticity measures; Hordeum vulgare

Introduction

Environmental canalization and phenotypic plasticity
An organism may show a range of phenotypes in
different environments. A phenotypically plastic geno-
type shows a broad range of phenotypes (Schmalhausen,
1949). Homeostasis, or canalization, refers to the opposite
response, when the individual is insensitive to changes
in the environment (Waddington, 1942). Thus, environ-
mental canalization and phenotypic plasticity can be
viewed as the two possible extremes of response to
changes in environment (see Flatt, 2005). Because
different genotypes of the same species may display a
wide range of variation in the level of their plasticity
response (Breitkreutz et al., 2003; Ungerer et al., 2003; Ros
et al., 2004; Turner, 2004), there must be a genetic basis of
response to environmental change. Alleles at loci that
affect variation in a phenotype across environments
should therefore be considered as determinants of
plasticity and canalization.

Three mechanisms were originally proposed to explain
the genetic basis of phenotypic plasticity (see for
synthesis Scheiner and Lyman, 1989). In the overdomi-

nance model, the degree of stability (or homeostasis) of a
genotype is proportional to its degree of heterozygosity
for relevant genes: an individual homozygous at these
loci shows higher plasticity (Gillespie and Turelli, 1989).
In the pleiotropic model, it is the differential expression
across environments of alleles at a locus that contributes
to phenotypic plasticity (Via and Lande, 1985). In the
epistatic model (Scheiner and Lyman, 1989), plasticity
genes interact epistatically with, and thus regulate, the
‘constitutive’ loci that determine the mean value of
the trait.

Is QTL detection useful for understanding the genetic

basis of plasticity?
One approach to testing the genetic models of pheno-
typic plasticity is to examine the genetic basis of
quantitative trait variation, with a special focus on the
genetic mechanisms shaping phenotypic variation across
environments. QTL analysis allows dissection of quanti-
tative variation by detecting the underlying genetic
determinants (Stuber et al., 1992). These determinants
are characterized in terms of their effects, modes of
action and interactions with other genetic loci (QTL
epistasis) and the environment (QTL�E) (Jansen et al.,
1995; Korol et al., 1998). Two basic patterns of QTL�E
interaction are recognized, they are: (i) inversion in the
ranking of allelic effects across environments (the cross-
over effect, CO) and (ii) variation in the magnitude of
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allelic effects without inversion of ranks (the scale effect,
SC) (Yadav et al., 2002).

QTL showing QTL�E interaction should be implicated
in the control of phenotypic plasticity because they are
related to variable phenotypic expression across environ-
ments, as predicted in the pleiotropic model. Provided
with a suitable measure of phenotypic plasticity as a
quantitative trait, QTL detection tools can therefore be
used to map plasticity genes. Measures have been
proposed to ‘quantify’ the intensity of phenotypic
plasticity or to ‘qualify’ the direction of phenotypic
plasticity according to the shapes of reaction norms. In
the early literature, however, measures of canalization and
plasticity had been attributed to two alternative cate-
gories, static and dynamic stability, as defined by Lin et al.
(1986) and Becker and Léon (1988). Static stability is
analogous to canalization: a stable genotype shows a
constant phenotype across environments. Dynamic stabi-
lity refers to a genotype that responds the same as the
average genotype of the population. Becker and Léon
(1988) define three types of stability parameters. The first
category relates to static stability. It includes the pheno-
typic variance across environments (S2), that is the
variance of the genotype’s phenotypic trait across
environments. Therefore, the most stable genotypes,
based on static stability, are those that show canaliza-
tion—a constant phenotype across environments. The
dynamic concept of stability is based on the regression
slope, according to Finlay and Wilkinson (1963). This
involves estimating the regression of genotypic values
across environments on phenotypic mean values within
environments and taking the slope of the regression as a
stability parameter (Si). The highest stability is manifested
as Si¼ 1. Other measures are used to characterize dynamic
stability (Becker and Léon, 1988). These include Wricke’s
(1962) ecovalence that is calculated for each genotype i as

W2
i ¼

X
ðRij �mi �mj þmÞ2;

where Rij is the observed quantitative trait response, mi

and mj correspond to the mean values for genotype i and
environment j, respectively, and m is the general mean.
The greatest dynamic stability is achieved when W2¼ 0.
Another proposed measure relates to additive main
effects and multiplicative interaction (AMMI) model
decomposition (Zobel et al., 1988). This decomposition is
based on principal component analysis of the G�E
matrix resulting from analysis of variance with declared
genotype and environment main effects. The various
scores of each genotype for each principal component axis
can be taken as dynamic stability parameters. Eberhart
and Russell (1966) proposed the estimated mean square of
genotype deviations from Finlay–Wilkinson’s regression
(sd2) as another stability parameter. This measure was later
proposed as a third type of stability parameter by Lin et al.
(1986), as it allows a choice of which type of stability
(static or dynamic) is the most suitable to the data set.

Weber and Scheiner (1992) were the first to report
mapping of plasticity genes. They were able to detect
chromosome regions having quantitative effects on
plasticity for thorax size in Drosophila melanogaster. Flies
were raised in two environments and the difference in
thorax size across environments was taken as a measure
of plasticity. Wu (1998) mapped stability QTL and asked
the question ‘do QTL displaying QTL�E interaction

show patterns of crossover or scale effects?’ The implicit
assumption was that all QTL showing QTL�E interac-
tion would also affect phenotypic plasticity. Stratton
(1998) proposed a different measure of plasticity—the
linear and quadratic components of the reaction norm.
Kleibenstein et al. (2002) used data from a population of
recombinant inbred lines of Arabidopsis thaliana pheno-
typed in two environments, followed the example of
Weber and Scheiner (1992), and used the difference
between phenotypic trait scores in two environments as
a direct measure of plasticity. Ungerer et al. (2003)
extended this approach to data from more than two
environments. Their measure of phenotypic plasticity
was based on quantifying the difference in a phenotypic
trait for each genotype across each pair of environments.
Then, for each genotype, the trait differences between
each pair of environments were summed and divided by
the average of the trait across genotypes and environ-
ments. Kraakman et al. (2004) proposed a descriptor of
phenotypic plasticity based on the slope of Finlay and
Wilkinson’s (1963) regression (Si for genotype i) and the
deviation from that regression (si2) as defined by Eberhart
and Russell (1966). Recently, Emebiri and Moody (2006)
proposed using the ecovalence of Wricke (1962) and the
AMMI first components genotypic scores, Si, and si2, as
defined previously.

Multiple descriptors of phenotypic plasticity are,
therefore, considered in the literature. The static stability
parameters tend to display higher repeatability and
heritability than the dynamic measures of stability (Léon
and Becker, 1988; Lin and Binns, 1991). Surprisingly,
none of the reports involving QTL mapping of plasticity
used static stability parameters as measures of plasticity.
Moreover, no estimates of heritability of plasticity
measures were provided.

It is important, from both theoretical and practical
reasons, to understand the genetic basis of phenotypic
plasticity. The relationship between QTL�E interaction
and plasticity genes is not clear. In this study, we address
the following questions regarding the genetic basis of
plasticity:

(1) What is the relationship between loci showing
QTL�E interaction and those affecting plasticity?

(2) Do various measures of plasticity identify the same
QTL?

(3) How do the various measures of plasticity relate to
the different concepts of plasticity and stability?

To address these questions, we used two data sets
based on different barley mapping populations pheno-
typed in multiple environments. For each data set, two
measures of plasticity were computed. This allowed us,
through QTL detection, to test the specificities of the two
measures of plasticity according to different patterns
of QTL�E interaction. We then followed analysis of
different sets of simulated data with loci showing
different patterns of QTL�E interactions.

Materials and methods

Data sets
The data sets used in this study were obtained from
Graingenes (http://wheat.pw.usda.gov/GG2/maps.shtml)
and consist of genotypic and multi-environment pheno-
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typic data for two doubled haploid mapping populations
developed by the US Barley Genome Mapping Project.
Each population was derived from a cross between two
inbred parental lines in the following: The Harring-
ton�TR306 (HT) population (n¼ 145 doubled haploids)
was the subject of prior QTL mapping reports (Hayes
et al., 1993; Tinker and Mather, 1994; Tinker et al., 1996;
Mather et al., 1997; Spaner et al., 1998). The Step-
toe�Morex (SM) population (n¼ 150 doubled haploids),
first reported by Kleinhofs et al. (1993), was also the
subject of prior QTL reports (Hayes et al., 1993; Hayes
and Iyamabo, 1994).

Genetic maps
The marker data were used for linkage map construction
as described by Mester et al. (2003) using MultiPoint
software (http://www.multiqtl.com). Owing to the
relatively small population sizes (B150 per population),
markers in high-density regions were removed to
establish higher certainty of map order. The final maps
for each population have an average marker interval of
10 cM. Marker orders in the newly generated maps are
consistent with those available at GrainGenes. However,
some genomic regions in the HT population are sparsely
populated, leading to gaps of X30 cM or more. As a
result, the linkage groups corresponding to chromo-
somes 2H and 5H were each split into two parts.

Quantitative traits
For SM, the traits selected for QTL analyses were grain
yield and grain protein content (GPC). These traits were
measured in seven environments throughout the United
States. Grain yield and thousand kernel weight (TKW)
data from 22 environments across the United States were
used for HT. The SM and HT data trace to different
locations and years.

QTL�E interactions
The quantitative trait data from different environments
were analyzed simultaneously within the multi-environ-
ment framework of MultiQTL (http://www.multiqtl.
com) using the fixed effect model proposed by Jansen
et al. (1995) as follows:

Consider a simplified situation when the trait of
interest (x) depends on a single QTL with two alleles
q1/q2. For an arbitrary genotype j of the doubled
haploids population, the trait measurement in the ith
environment can be presented as

xij ¼ mi þ 0:5gkai þ eij; ð1Þ
where mi is the mean trait value for ith environment
(i¼ 1, 2,y, I), gk is either þ 1 (k¼ 1 corresponds to q1q1

genotypes) or –1 (k¼ 2 corresponds to q2q2 genotypes), ai
is the effect of allele substitution at putative QTL on trait
in the ith environment and eij is a random normally
distributed variable with zero mean and variance si

2.
Assume that the putative QT locus q1/q2 resides in an
interval flanked by two marker loci, M1/m1 and M2/m2,
with recombination rates r1 and r2 in intervals M1/
m1�q1/q2 and q1/q2�M2/m2. If we assume no interfer-
ence (recombination in one segment does not affect the
chances of recombination at an adjacent segment), then
r¼ r1þ r2–2r1r2, where r is the recombination rate
between M1/m1 and M2/m2. On the basis of marker

scores and measurements of the quantitative trait of
interest for individuals from the mapping population, we
should test whether or not variation of x indeed depends
on the interval M1/m1�M2/m2, and, if so, identify the
corresponding locus q1/q2. The expected distribution
of the trait in each of the four marker groups,
Um1m2 (x)¼U1(x), UM1m2 (x)¼U2(x), Um1M2 (x)¼U3(x) and
UM1M2

(x)¼U4(x), can be written as

UsðxÞ ¼ psfq1q1
ðxÞ þ ð1 � psÞfq2q2

ðxÞ; s ¼ 1; . . . ; 4; ð2Þ
with

p1 ¼ð1 � r1Þð1 � r2Þ=ð1 � rÞ; p2 ¼ r1ð1 � r2Þ=r;
p3 ¼1 � p2; and p4 ¼ 1 � p1:

The specification of the densities fq1q1
ðxÞ and fq2q2

ðxÞ
depends on the assumptions made about the genetic
control of the trait (in our case Equation (1)) and the
residual variation (usually, normal distribution is used,
although other possibilities also exist (Hackett and
Weller, 1995; Kruglyak and Lander, 1995)).

Assuming that locus q1/q2 belongs to interval
M1/m1�M2/m2, the log likelihood for a sample of
measurements xijs in marker groups with sizes Js
(s¼ 1,y, 4) can be written as

ln Lð01Þ ¼
X4

s¼1

XI

i¼1

XJs

j¼1

lnUsðW1; xijsÞ

¼
X4

s¼1

XI

i¼1

XJs

j¼1

ln ½psfq1q1
ðxijsÞ

þ ð1 � psÞfq2q2
ðxijsÞ�;

ð3Þ

where vector 0¼01¼ {r1,l, a, r2} of unknown parameters
specifies the putative QTL position in the considered
interval, population means (m1, m2,y, mn), QTL effects
(a1, a2,y, aI) and residual variances {s1

2, s2
2,y, sI2} in each

environment. Clearly, vector 01 defines the hypothesis
H1e that there is a fluctuating QTL effect across
environments (QTL�E interaction) associated with
the considered marker interval. The assumption of a
QTL with no such interaction can be parameterized
by a vector 0¼ 010¼ {r1,l, a*, r2}, where a¼ a* fits the
condition a1¼ a2¼y¼ aI. For each pair of flanking
markers, maximization of the likelihood function is
conducted using sliding scanning across ‘trial’ positions
rtrial of the putative QTL between the flanks, resulting in
estimates of parameters mi, ai and si2 for each rtrial. The
likelihood for the H10 hypothesis is calculated similarly,
but the QTL effect is considered constant across
environments, ai¼ constant. To reduce the residual
variation that is not accounted for by the mapping
model, the QTL analysis was conducted using the
multiple interval mapping approach (Kao et al., 1999).

The existence of a QTL was confirmed by permutation
tests (Doerge and Chirchill, 1996). To detect a QTL
showing QTL�E interaction, the hypothesis of constant
substitution effect of the QTL across environments was
compared with the more general hypothesis of varying
effect across environments. For this comparison, interval
QTL analysis allowing for QTL�E interaction (H1e

model) was performed, followed by fitting a model
assuming no QTL�E interaction (H10 model). We then
simulated 1000 data sets using the parameter values
estimated from the H10 model. For each of these sets, a
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QTL analysis was performed with and without an
assumption of QTL�E. The difference in LOD score
between the two models was used as a criterion for the
significance of QTL�E interaction; that is we counted
the proportion of cases where the difference in LOD
score between the two models using simulated data was
higher than the difference obtained using real data. This
proportion gives the significance of QTL�E interaction.
To take into account multiple tests, the obtained
significance values were corrected based on false
discovery rate control (Benjamini and Hochberg, 1995).

The plasticity measures
To quantify phenotypic plasticity, two measures were
computed that relate (respectively) to the concepts of
static and dynamic plasticity: (a) phenotypic variance
across environments (VAR) and (b) the slope of regres-
sion based on Finlay and Wilkinson’s regression
(SLOPE). For each quantitative trait (for example, yield),
we calculated SLOPE and VAR for each doubled haploid
genotype in each mapping population. We then analyzed
jointly the two VAR or two SLOPE measures for each set
of traits (for example, yield VAR and VAR–GPC in the
SM population) as implemented in MultiQTL (two-trait
model).

Repeatability of phenotypic plasticity measures
To evaluate the repeatability of the plasticity measures,
re-sampling of multi-environment data was performed
on the HT data set. The HT data were chosen because it
included the most environments. A total of 40 sub-
samples, each including 4 of 22 environments, were
generated at random using jackknifing. The sub-samples
were generated separately for yield and TKW. For each
re-sampling run, VAR and SLOPE were computed. To
assess the repeatability of each of these scores, a fixed
effects analysis of variance was performed. The repeat-
ability was then computed as the ratio of the mean
square of genotypic effects to the mean square for total
variation.

Simulations
To understand the specificity of each plasticity measure
relative to plasticity QTL, we performed simulations.
Each simulation was based on the same genetic map,
generated with MultiQTL, corresponding to a population
of 300 doubled haploids. Only one QTL was simulated,
with specific patterns of QTL�E interaction in each
simulation (Figures 1 and 2). The simulations reflected
the type of QTL�E interaction: crossover (CO) or scale
(SC) interactions versus symmetry or dissymmetry of
QTL effects across environments. For each simulated
data set of two environments, we computed VAR and
SLOPE. Using MultiQTL, we then conducted separate
QTL analysis for the two plasticity measures.

Results

Real data analysis
Reaction norms profile: As an example of the shapes of
the reaction norms for the quantitative traits, TKW data
from the HT population are shown in Figure 3.

Trait correlations: In SM population, yield and GPC
were negatively correlated (Pearson’s correlation) in six
of seven environments. The average correlation was
�0.25; individual environment values ranged from �0.44
to 0.04. Yield and TKW, in the HT data set, were
positively correlated in all but two environments, with
an average of 0.33 and a range of �0.06 to 0.74. In light of
our findings that trait QTL and plasticity QTL tend to
coincide (see below), it was of primary interest to test
whether traits and plasticity measures also tend to
correlate. We therefore calculated the correlation
between the plasticity scores and the traits scores in
each environment by regressing the 150 (SM) or 145 (HT)
plasticity values for the different genotypes with the
individual trait scores. Overall, the plasticity traits (VAR
and SLOPE) were not highly correlated with their
corresponding individual quantitative environments in
HT (Table 1). However, for SM, plasticity measures for
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yield were highly correlated with one environment of
yield data (Table 2, Environment MonI91, R¼ 0.83 for
yield VAR and R¼ 0.89 for yield SLOPE). The doubled
haploid lines with higher yields in this environment also
had higher plasticity measures for this trait. Overall, the
correlations were higher for SM than for HT and higher
for SLOPE than for VAR.

QTL main effects and QTL�E interactions: Twelve and
11 QTL were detected for TKW and yield, respectively, in
the HT population (Figure 4, Table 3). Considering
the linkage map positions of these 23 QTL, 14 distinct
QTL peaks were defined; and of these, 12 QTL were
coincident for the two traits. Of the 14 QTL, all but 4
showed significant QTL�E interaction and 9 of these
showed QTL�E interactions for both traits.

A total of 16 QTL were detected using the SM data set:
8 for each trait, yield and GPC (Figure 5, Table 4). There
were nine clearly defined QTL positions for at least one

of the two traits; at eight of these positions, there were
coincident QTL effects for the two traits. Two of the
GPC and four of the yield QTL did not show QTL�E
interaction.

Plasticity and environmental canalization: In the HT
data set, there were two QTLs for SLOPE and all were
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Table 1 Correlations between plasticity measures and individual
quantitative traits typed in the several environments for HT dataset

ENV HT Yield VAR Yield SLOPE TKW-VAR TKW-SLOPE

ON93b �0.18 �0.17 �0.61 �0.64
ON92b �0.30 �0.31 �0.42 �0.44
ON92a �0.31 �0.37 �0.61 �0.63
SK92d �0.12 �0.16 0.00 �0.02
PE92 �0.12 �0.16 �0.51 �0.50
AB92a 0.08 0.05 �0.18 �0.16
QC93 �0.13 �0.12 �0.43 �0.44
AB93b 0.07 0.08 0.17 0.18
SK93b �0.08 �0.06 �0.50 �0.53
SK93c 0.16 0.17 �0.11 �0.13
SK92c 0.11 0.17 0.07 0.06
SK92b 0.03 0.06 �0.23 �0.21
MB93 �0.14 �0.10 �0.63 �0.65
PE93 �0.10 �0.06 �0.57 �0.59
AB92c 0.31 0.32 0.07 0.07
SK93a 0.01 0.00 �0.53 �0.52
AK93 0.29 0.28 0.02 �0.02
AB93a 0.21 0.25 �0.17 �0.15
ND92 0.19 0.21 �0.18 �0.18
QC92 0.14 0.15 �0.12 �0.13
SK92a 0.58 0.59 �0.13 �0.09
WA93 0.39 0.46 �0.14 �0.16

Abbreviations: HT, Harrington�TR306; SLPOE, slope of Finlay–
Wilkinson’s regression; TKW, thousand kernel weight; VAR,
phenotypic variance across environments.
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coincident with yield and/or TKW QTL. No significant
QTL were found for VAR (Figure 4, Table 5). In all cases,
the same parent was the source of the higher plasticity
alleles for both traits. In the SM population, seven QTL
were detected, which had significant effects on VAR of
the both traits (yield and GPC) analyzed simultaneously
(Figure 5). All seven QTL were colocalized with main
effect QTL for one or both traits. The four QTL detected

for SLOPE were also coincident with main trait QTL and
with QTL for the VAR measure of plasticity. Figure 6
illustrates the difference in the slope of reaction norms
for alternative alleles of the plasticity QTL located on
chromosome 3H. At four of the six plasticity QTL,
the same parent contributed to higher plasticity (as
measured by VAR and SLOPE) for yield and the lower
plasticity allele for GPC.

Repeatability of the plasticity measures obtained by

resampling
The repeatabilities for the plasticity of TKW in the HT
data set were 0.07 for VAR and 0.15 for SLOPE. For yield,
the repeatabilities were lower, that is 0.05 and 0.06 for
VAR and SLOPE, respectively.

Simulations: For the four main simulated situations
(Figures 1 and 2), the results are specific to the type of
QTL�E interaction pattern: for crossover QTL�E
interaction and symmetrical QTL effects, no significant
VAR QTL were detected. On the contrary, as one could
expect from Figure 2, there were significant SLOPE QTL

Table 2 Correlations between plasticity measures and individual
quantitative traits typed in the several environments for SM dataset

ENV SM GPC-VAR GPC-SLOPE Yield VAR Yield SLOPE

Wash91 �0.24 �0.39 0.25 0.32
Wash92 �0.32 �0.49 0.22 0.31
MonI91 0.23 0.13 0.83 0.89
MonI92 �0.28 �0.41 0.28 0.34
Ida91 0.18 0.11 0.34 0.40
Ida92 0.34 0.32 0.07 0.19
Min92 �0.29 �0.41 �0.46 �0.46

Abbreviations: HT, Harrington�TR306; SLPOE, slope of Finlay–
Wilkinson’s regression; TKW, thousand kernel weight; VAR,
phenotypic variance across environments.
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(LOD¼ 16.9). For the crossover and dissymmetry cases,
significant QTL were detected for both VAR and SLOPE
with LOD scores of 3.4 and 35.3, respectively. For
the scale QTL�E interaction situation, the results
were consistent with the previous cases. VAR only
detected QTL with dissymmetrical effects (LOD¼ 2.9),
whereas SLOPE detected QTL at LOD scores of 2.98
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Table 4 List of QTL detected in SM dataset

Chr Trait LOD Position Stdev (cM) P-value P(QTL�E)

1 GPC 8.8 114.8 22.0 0.001 NS
1 Yield 8.4 75.7 55.2 0.016 0.008
2 GPC

53.3
34.3 5.8

0.00001
0.00001

2 GPC 65.3 14.5 0.00001
2 Yield 17.5 38.1 7.2 0.00001 0.00001
3 GPC 16.2 61.2 6.8 0.00001 0.00001
3 Yield 18.1 61.2 2.2 0.00001 0.00001
4 GPC 20.1 102.6 2.5 0.00001 NS
4 Yield 7.3 71.1 24.3 0.02 0.007
6 GPC 8.0 28.4 34.7 0.021 NS
6 Yield

20.1
30.5 29.0

0.00001
NS

6 Yield 83.1 18.8 NS
7 GPC 31.4 80.8 5.0 0.00001 NS
7 Yield 12.6 91.4 8.1 0.00001 0.00001

Abbreviation: Stdev, standard deviation.

Table 3 QTL detected in HT dataset

Chr Trait LOD Position Stdev (cM) P-value P(QTL�E)

1 TKW 23.0 54.0 5.0 0.00001 NS
1 Yield 17.3 59.0 20.8 0.001 NS
2 TKW

67.7
12.7 5.9

0.00001
NS

2 TKW 44.1 2.7 NS
2 TKW 46.3 174.0 1.4 0.00001 0.006
2 Yield 15.8 50.0 12.1 0.008 NS
2 Yield 24.6 161.0 6.5 0.00001 NS
3 TKW 19.3 29.3 16.2 0.001 0.036
3 Yield 36.2 55.0 6.4 0.00001 0.002
4 TKW 40.6 87.5 3.2 0.00001 0.00001
4 Yield 26.6 91.1 11.3 0.00001 0.00001
5 TKW 45.5 0.0 1.0 0.00001 0.00001
5 Yield 46.2 0.5 1.0 0.00001 0.00001
5 TKW

43.8
128.4 6.0

0.00001
0.00001

5 TKW 193.2 9.1 0.00001
5 Yield

48.9
127.9 2.2

0.00001
0.00001

5 Yield 209.7 8.6 0.00001
6 TKW

37.4
16.7 23.9

0.00001
NS

6 TKW 109.0 15.8 0.00001
6 Yield 31.5 124.0 5.1 0.00001 0.00001
7 TKW

132.9
10.4 20.5

0.00001
0.00001

7 TKW 107.2 15.0 0.00001
7 Yield

45.0
97.1 36.6

0.00001
0.00001

7 Yield 170.4 26.1 0.00001

Abbreviation: Stdev, standard deviation.
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for symmetrical effect and LOD¼ 15.2 for the
dissymmetrical case. Therefore, VAR and SLOPE reveal
different types of plasticity QTL according to their
QTL�E interaction patterns. Overall, SLOPE revealed
plasticity QTL in more situations than VAR.

Discussion

With a large number of environments, mixed model
formulation, with mean QTL effects per interval taken as
fixed effects and QTL�E interactions as random effects,
is widely considered to be the most suitable approach
for QTL analysis (Piepho, 2000). However, we considered
environments to be a fixed factor, which is more
appropriate when environments have been purposefully
selected and when the analysis focuses on the detection
of QTL�E interaction. Fixed model formulation ignores
genetic correlations between environments: even if the
major genetic effects are accounted for in the fixed effect
model, some genetic correlation across environments
will remain (Korol et al., 1998). Such correlations cause
‘residual’ QTL and QTL�E effects that have not been
accounted for by the fixed part of the mapping model to
reduce the power of the QTL detection tests. This is one
of the main reasons for considering environment-specific
effects as random effects (Piepho, 2000).

In a more suitable framework for QTL�E analysis,
that is, mixed model formulation, QTL�E interaction
is considered in terms of random effects. Instead of

estimating and testing variation of the QTL additive
effects ai across environments, it is the difference in
variance s2(ai) associated with each QTL allele across
environments that is estimated and tested (Wang et al.,
1999). With such an approach, the predicted environ-
ment-specific effects ai should be estimated using the
best linear unbiased prediction (BLUP) method. How-
ever, the corresponding tests for detecting QTL�E
interaction effects show low detection power (Wang
et al., 1999; Xing et al., 2002). Thus, if the focus of the
study is to detect QTL�E interaction, then despite the
drawbacks noted in recent studies, fixed model (with
fixed QTL effects and fixed QTL�E interactions) can be
applied for detecting QTL�E interaction with higher
power than mixed models (Jansen et al., 1995; Tinker and
Mather, 1995; Romagosa et al., 1996; Korol et al., 1998;
Wang et al., 1999). One of the possibilities for improving
the suitability of fixed models for multiple environment
situations is to reduce the residual genetic variation that
is not accounted for by the fixed part of the mapping
model. This can be achieved by using multiple interval
mapping analysis (Kao et al., 1999). Our previous
analysis (Korol et al., 1998) based on the application of
the Eberhart and Russell (1966) approach for modeling
QTL-by-environment interaction shows that the combi-
nation of multiple environment and multiple QTL
analyses is indeed very promising for addressing this
issue (see also Piepho, 2000). This combination is
available in MultiQTL and we used it for the analyses
in this study.

Comparison of QTL across quantitative traits and

mapping populations
There were coincident yield and TKW QTL at 12 of 14
locations in HT and 8 of 9 QTL for yield and GPC were
coincident in SM. This coincidence of QTL supports the
need for measuring as many potentially related pheno-
types as possible in QTL mapping experiments. The
relationship of yield and the yield component TKW is
obvious because grain yield is the result of develop-
mental processes affecting kernel number from sowing to
flowering and kernel weight after flowering (Slafer,
2003). All QTL affecting TKW should therefore affect
yield. Yield and GPC are usually negatively correlated,
as GPC is directly related to nitrogen sink/source
relationship. This relationship, in turn, is related to the
number of grains per spike formed and the deposition of
carbohydrate during grain filling (Martre et al., 2003).

Seventy nine percent (11/14) of QTL significantly
affecting quantitative traits in the HT population, and
55% (5/9) in the SM population, showed QTL�E
interaction. This is not surprising, given the large number
of environments sampled and the large differences
between environments in terms of available moisture,
growing conditions, and so on. It is quite improbable that
a QTL affecting yield will have an expression indepen-
dent of the environment. Indeed, the elaboration of yield
is dependent on the number of spikelets per spike and on
post-fertilization grain filling processes. These mechan-
isms are known to be dependent on environmental
factors (Mozafar and Oertli, 1990; Loss and Siddique,
1994; Voltas et al., 1999; Savin et al., 1996; Savin et al., 1997;
Schelling et al., 2003; Samarah, 2005). Therefore, the
expression of QTL involved in the determination of yield
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Figure 6 Example of a yield QTL in SM data set affecting the slope
of Finlay–Wilkinson’s regression. The two trend lines show the
mean difference in the slopes of reaction norms of individuals
carrying alternative alleles at the plasticity QTL located on
chromosome 3H. SM, Steptoe�Morex.

Table 5 List of plasticity QTL detected in both datasets

Chr Trait LOD Position Stdev (cM) P-value

Harrington
2 Slope 4.8 21.3 4.5 0.00001
5 Slope 3.6 1.2 4.2 0.004

Steptoe morex
1 Var 5.4 88.7 12.3 0.00001
2 Var

15.0
34.5 6.5

0.000012 Var 74.8 8.3
2 Slope

12.8
37.9 13.9

0.000012 Slope 72.4 20.3
3 Var 10.9 60.9 4.2 0.00001
3 Slope 11.4 61.1 3.5 0.00001
4 Var

4.2
105.4 29.11

0.0074 Var 109 30.11
6 Var 8.0 73.9 4.7 0.00001
6 Slope 7.0 72.9 7.3 0.00001

Abbreviation: Stdev, standard deviation.
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will be highly dependent on environmental factors; and
hence, the additive effect at the QTL will vary across
environments. Ten of the coincident grain yield and TKW
main effects QTL in the HT data set also showed
significant QTL�E interaction, as did nine of the
coincident grain yield/GPC QTL in SM.

The relationship of QTL�E interaction and phenotypic

plasticity
In our analysis, QTL affecting environmental plasticity
were coincident with trait QTL. This finding lends
support to the arguments of Via (1993) and de Jong
(1995), who reasoned that phenotypic plasticity may
evolve as a consequence of selection for plasticity in
underlying traits. Via et al. (1995) proposed two genetic
models for phenotypic plasticity, and we have adopted
their simplified terminology in this study. In the allelic
sensitivity model (which is equivalent to the aforemen-
tioned pleiotropic model), constitutive genes are directly
sensitive to the environment, and it is their differential
expression across environments that is responsible for
plasticity. The gene regulation model (equivalent to the
epistatic model) hypothesizes that regulatory genes,
sensitive to the environment, mediate the expression of
constitutive genes that actually determine the trait. Our
results support the allelic sensitivity rather than the gene
regulation model (no cases favoring the gene regulation
model were observed in our analysis). Therefore, it
seems that a plasticity QTL should simultaneously affect
the trait itself. However, in most prior reports, the
authors conclude that some QTL affect only plasticity.
For example, Wu (1998) reported that 13 out of 15 QTL
for plasticity showed clear indications of gene regulation.
Ungerer et al. (2003) found that 55–83% of the plasticity
QTL colocalized with QTL having an effect on the
respective quantitative traits. In the study by Kraakman
et al. (2004), three of five QTL for plasticity co-located
with QTL having an effect on the quantitative trait itself;
thus, two of the QTL for plasticity were good candidates
for gene regulation. Overall, reports in the literature
indicate a greater prevalence of gene regulation than we
observed. The main limitation of the QTL detection to
identify QTL affecting only plasticity resides in the
uncertainty of QTL location. In the literature, the use of
colocalization for differentiating between gene regulation
vs allelic sensitivity is considered a weak line of
evidence. Therefore, conclusions regarding the relative
importance of the two phenomena can, at this point, only
be of a very limited value.

The main difference between prior reports and our
report is the number of environments sampled. In our
case, we have many more environments, particularly
with HT. Wu (1998) sampled only 2 different environ-
ments and all 17 of the QTL detected showed gene
regulation. Our findings are more similar to those of
Kleibenstein et al. (2002), where only two environments
were considered and yet all of the plasticity genes
showed allelic sensitivity. Kraakman et al. (2004) also
found a low rate of genes showing gene regulation: 2
QTL out of 18 showed gene regulation in an experiment
with B15 environments. Therefore, on the basis of
the literature and our results, we can hypothesize that
gene regulation is more detectable as the number of
environments decreases. Moreover, we estimated

commonly used phenotypic plasticity parameters for
each individual and then mapped QTLs for these
parameters. In doing so, we introduced two different
sources of noise. First, the estimation of phenotypic
plasticity parameters has a sampling error (estimation of
yield in each environment is, for instance, dependent
on the harvesting conditions). Second, QTL mapping
with these estimated parameters has sampling errors
(position and QTL effects). However, by increasing the
number of environments, we also increase the precision
of the estimates of the slope of Finlay–Wilkinson’s
regression, which would be closer to the true value
that one could obtain by sampling all ‘possible’ types of
environments.

Alternative plasticity measures: results of simulations
Our results indicate that SLOPE is more repeatable than
VAR. This may be due to the SLOPE measure being less
sensitive to changes in environmental composition and
its computational basis (regression). VAR and SLOPE are
able to discriminate between different types of QTL
affecting plasticity as is evidenced by the fact that in the
simulations, the two plasticity measures reveal different
plasticity QTL. The distinction between the two mea-
sures corresponds to the kind of simulated QTL�E
interaction. Each of the measures relates to one of the two
concepts of plasticity: one static (VAR) and the other
dynamic (SLOPE). A ‘VAR’ plasticity QTL affects, in a
quantitative manner, the range of variation of the
reaction norms and relates to the definition of static
plasticity. Plasticity QTL detected by SLOPE affects
phenotypic plasticity ‘qualitatively,’ as the two QTL
alleles show alternative shapes of reaction norms (see
Figure 6 for illustration). As this measure of plasticity
depends on the environmental mean of the genotype set,
it relates to the dynamic concept of plasticity. Our
analysis suggests that there may not be a universal
measure of plasticity that will identify all plasticity QTL.
Rather, there are different types of plasticity QTL related
to the different concepts of plasticity and the two
measures will show different degrees of repeatability,
with SLOPE being more ‘heritable.’

Kumar et al. (1998) reached the same conclusion, but
these authors, like others (Annicchiarico, 1997; Ortiz
et al., 2001), reported higher repeatability values for the
two measures of plasticity than we did. This may be due
to higher heterogeneity among the environments in our
data sets. The number of plasticity QTL varied with data
set. More plasticity QTL were detected in SM than in HT.
This may be due to the smaller number of environments
in the former (7 vs 22). It is likely that more plasticity
QTL will be detected when a smaller number of more
homogeneous environments are sampled.

The importance of homogeneity vs heterogeneity of

environments
As described in the previous section, the repeatability
values of the plasticity measures are very low. The
dependence of the results on the set of environments is
crucial, which is intuitively obvious. Indeed, the regula-
tory pathways affecting the traits chosen for study may
vary from one environment to another due to unique
features of each environment. Therefore, with an
increasing number of environments, one will eventually
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reach a situation where it is impossible that a single
‘consistent’ regulatory pathway determines the pattern
of plasticity across the entire set of environments. On the
contrary, when considering smaller and/or more homo-
geneous samples of environments, it is more likely that
some common regulatory pathways may be involved in
the control of phenotypic plasticity. Our results suggest
that the regulatory genes controlling plasticity are
different from one subgroup of environments to another.
Thus, for a better understanding of the genetic control of
plasticity, one should take into account the homogeneity
of the environments that are sampled.

Trait correlations and epistasis
In the HT data set, VAR and SLOPE were not highly
correlated with the corresponding individual quantita-
tive traits (for example, yield VAR) in the different
environments. However, in SM, plasticity measures for
yield were correlated with yield per se in one environ-
ment (MonI91). This suggests that this environment is
different from the other environments in that it has a
deep influence on the plasticity traits. The trends for
correlations between plasticity traits and the quantitative
traits themselves were similar for yield and GPC in the
SM data set and for yield and KTW in the HT data set.
This suggests that QTL detection results should have
been similar across quantitative traits for each data set. In
SM, however, the alleles at four of the seven QTL giving
higher plasticity for yield gave lower plasticity for GPC.
In HT, on the other hand, alleles giving higher plasticity
for yield also gave higher plasticity for TKW. We believe
that this difference is attributable to the physiological
bases of these traits and that it reflects the phenotypic
correlations—positive for yield and TKW and negative
for yield and GPC.

It is therefore essential to take into account the
correlation between related quantitative traits to under-
stand the evolution of plasticity, as suggested by Schlicht-
ing (1986). In the epistatic model (Scheiner and Lyman,
1989), plasticity genes interact epistatically with, and thus
regulate, the ‘constitutive’ loci that determine the mean
value of the trait. In a limited number of models—
Drosophila melanogaster (Scharloo, 1991), tomato (Eshed and
Zamir, 1996) and RNA viruses (Burch and Chao, 2004)—
there is evidence that canalization and phenotypic
plasticity may be explained by epistatic mechanisms. The
role of epistasis in the elaboration of phenotypic plasticity
should be a subject of future studies.

Evolutionary perspectives: Phenotypic plasticity has
long been recognized by evolutionary biologists and
ecologists as an important phenomenon. When the
environments with which a genotype is confronted are
heterogeneous, it is not likely that having the same
phenotype across the spectrum of environments will lead
to the highest fitness. Therefore, the capacity to modulate
the phenotype in response to the environment should be
evolutionarily advantageous. One way an individual can
adapt to environmental change is through a
phenotypically plastic response (Scheiner and Lyman,
1989). Clearly, numerous examples could be cited where
phenotypic stability may be of high value.

By extending the definition of plasticity to the level of
gene expression, it is now possible to test for variability
of gene expression across environments. In principle,

plasticity/canalization at the gene expression level could
be considered a molecular manifestation of plasticity/
canalization at the level of quantitative traits. The
doubled haploid barley mapping populations and
reference data used in this study, together with tools
for transcriptome profiling (Druka et al., 2006), would
provide new insights into the genetic control of genetic
and environmental plasticity.
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