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Hierarchical modeling of clinical and expression
quantitative trait loci

MJ Sillanpää and N Noykova
Department of Mathematics and Statistics, Rolf Nevanlinna Institute, University of Helsinki, Helsinki, Finland

Previous articles have presented clinical quantitative trait
locus (cQTL) models, where the information provided by
quantitative/qualitative phenotypes, molecular markers and
gene expressions (transcription levels) were combined and
analyzed simultaneously. Because of financial constraints,
marker data may be available for much larger group of
individuals than expression data. However, it is desirable to
use all the available information. We therefore extend such
approaches by presenting a reliable missing data model for
the case when marker data is more complete (that is, has
many fewer missing entries). In the suggested hierarchical
model, an expression QTL (eQTL) model (which is essen-
tially our missing data model) is part of the larger
cQTL model and it represents a Bayesian model-based
method for estimating cis- and trans-acting regulatory
effects for multiple (typically hundreds of) expression pheno-

types simultaneously. The modeling dependence between
transcripts in the eQTL model is also considered. The
method is based on presenting data in the form of marker
gene pairs, for which the presence of regulatory effect (link)
can be hypothesized. These marker gene pairs can be
obtained from oligonucleotide arrays or created using
information available on known pathways or previous
eQTL/allelic expression studies. The estimation of the model
parameters (such as presence/absence of regulation,
eQTL/cQTL effects and proportion of eQTLs and cQTLs
among the set of marker gene pairs) as well as the handling
of missing data is performed using Markov Chain Monte
Carlo (MCMC) sampling. The method is illustrated using both
simulated and real data.
Heredity (2008) 101, 271–284; doi:10.1038/hdy.2008.58;
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Introduction

Expression quantitative trait locus (eQTL) studies (Jan-
sen and Nap, 2001, 2004) have been conducted recently
in man, mouse and other organisms (Schadt et al., 2003;
Morley et al., 2004; Sladek and Hudson, 2006). In such
studies both marker- and gene-expression data need to
be available from each study individual. These studies
utilize conventional QTL mapping to analyze genetic
patterns (eQTLs) underlying the gene expressions and
regulatory networks (Bystrykh et al., 2005; Chessler et al.,
2005). A similar strategy has recently been applied also
for studying genetic patterns of protein expression (Foss
et al., 2007). An eQTL could be cis- or trans-acting. Cis-
acting means that the eQTL maps to the same (or a very
close) genome position as the gene whose variation it
explains. Similarly trans-acting eQTLs map to a distant
genome locations to the genes and remotely regulate
their expression. As in the case of expression profiling
(Aune et al., 2004), it is also possible to study colocaliza-
tion of eQTLs with genome positions explaining clinical
phenotype(s) (Mehrabian et al., 2005; Schadt et al., 2005).

The data collected for eQTL studies are two dimen-
sional. The number of investigated gene transcripts

determines the first dimension (typically containing
thousands of measurements), whereas the other dimen-
sion (typically containing dozens of measurements)
refers to the number of genotyped individuals, forming
the sample size. However, eQTL studies today still suffer
from low reproducibility in microarray measurements
(Draghici et al., 2006) and small sample size in terms of
individuals (de Koning and Haley, 2005), both of which
give some cause for concern. To alleviate this problem,
strategies for optimal design (Bueno Filho et al., 2006)
and selective phenotyping (Jin et al., 2004; Jannink, 2005;
Xu et al., 2005; Fu and Jansen, 2006) have been
developed.

Typically in an eQTL mapping study, data is screened
over hundreds (or thousands) of different gene expres-
sions (that is, expression phenotypes). The high dimen-
sionality of the data may lead to serious computational
problems. This encourages the use of some exploratory
or preliminary screening methods or database informa-
tion concerning interesting pathways, which are usually
applied to reduce number of candidates (Thomas, 2005).
The more detailed modeling efforts are then only
targeted on the resulting subsets of data. The exception
to this design are the marker-based approaches, where
data at given marker point is first divided into genotypic
subgroups and each subgroup is then searched for
differentially expressed genes by using standard meth-
ods (see Kendziorski et al., 2006; for a review see
Parmigiani et al., 2003). However, all of these approaches
suffer from certain flaws. The repeated application of
statistical test leads to serious concerns about the

Received 13 December 2007; revised 13 May 2008; accepted 23 May
2008; published online 23 July 2008

Correspondence: Dr MJ Sillanpää, Department of Mathematics and
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appropriate significance threshold due to dependency
between the tests and the multiple testing problem. The
subset of differentially expressed genes may not neces-
sarily represent a functionally important subset of genes
(Yanai et al., 2006). Moreover, the selection of candidates
based on dimension reduction techniques (Perez-Enciso
et al., 2003; Lan et al., 2004) has difficulties concerning the
interpretation of the new variables. And finally, interest-
ing pathways may still include hundreds of genes that
necessitate the development of new effective analysis
methods. For some new developments, see Chen and
Kendziorski (2007), Gelfond et al. (2007), Jia and Xu
(2007), Perez-Enciso et al. (2007).

The same kind of data (markers and expression jointly)
can be used to explain variation in quantitative traits,
which is called clinical quantitative trait locus (cQTL)
analysis (Hoti and Sillanpää, 2006; Bhattacharjee and
Sillanpää, 2008). It is evident in this setup that the
expression measurements of the joint data can provide
additional information for explaining and predicting the
phenotype (West et al., 2006). Due to financial constraints
the current problem in cQTL analysis is having a too
small sample size for the joint data even if marker data
may be available for much larger group of individuals.
Here we want to address the problems of predicting
expression values for genotyped individuals by integrat-
ing the eQTL model, as a missing data model, into the
cQTL model. Thus, we present method to estimate
parameters underlying the frequency distribution of
gene expression among the prespecified set of marker
gene pairs. Information from previous eQTL and allelic
expression studies as well as known pathways can be
utilized in the forming of such input data (marker gene
pairs; Hoti and Sillanpää, 2006). The suggested method
provides posterior estimates and predictions for para-
meters (for example, missing data) including: (1) the
proportions and occupancy probabilities of the eQTLs
(the markers regulating the expression) and the cQTLs
(the marker or transcript variation explaining the pheno-
type) as well as their eQTL and cQTL effects, (2) the
predicted values of gene expression based on the geno-
types at a regulatory locus and (3) the genotype predictions
based on the expression values and the genotypes at linked
(adjacent) loci. Because of the above listed properties the
suggested method can also be regarded as a multi-trait
eQTL analysis, which can simultaneously handle hundreds
of expression phenotypes.

The model

We first introduce the eQTL model for molecular marker
and expression data and then present a large hierarchical
model for quantitative phenotypes, the cQTL model, as
an extension of our eQTL model.

Input data
Let us assume that offspring data from inbred line cross
experiment (backcross, double haploids or F2) consist of
paired marker- and gene-expression measurements,
marker–gene pairs, collected from each individual
separately. Such data was called link data in Hoti and
Sillanpää (2006) and is here considered to represent
earlier eQTL findings from allele expression studies,
genetical genomics experiments or known pathways that
are to be validated. Both cis- and trans-acting pairs can be

included but the validation data set cannot be the same
set where the original findings were made (to avoid
selection bias). However, the trans-acting effects are
known to be small and thus more difficult to identify
(Ren et al., 2000; Sladek and Hudson, 2006). Moreover,
trans-acting eQTLs often occur in clusters (Mueller et al.,
2006). Therefore we focus mainly on the larger cis-acting
effects, which could be successfully identified from the
current small data sets in presence of missing data.
If there are no earlier findings, the suitable data for the
method would be oligonucleotide array data of Ronald
et al. (2005) where the marker- and the gene-expression
measurements are simultaneously produced at every
position. Alternatively, to study cis-acting regulation, one
can form putative link data (presented as pairs) solely
based on the genomic proximity between the markers
and the genes.

Here we assume that only a single marker (a major
gene/major-effect eQTL) is controlling each expression
phenotype, which means that a gene-expression distri-
bution can depart from a normal distribution (Gibson
and Weir, 2005). Note, however, that under this assump-
tion, the same marker can simultaneously regulate two
or more expressions. See ‘Discussion’ for multilocus
modeling of expression phenotype.

The cis- and trans-acting effects and the corresponding
marker gene pairs are illustrated in Figure 1. On the
same figure the form and indexing of the input data,
which are chosen cis- and trans-acting pairs, is described.
This indexing is required as a first step of the statistical
data description and follows the order of the markers on
chromosomes. In case there is no information about the
expression value, related to some particular marker, this
marker is included in the input data as a pair with
missing information about the corresponding gene
expression. In case when two gene expressions are both
regulated by the same marker we assume that this
marker is represented twice, so that the distance between
the both copies is specified to be extremely small
(approximately 0).

Expression QTL model
Let us assume that backcross or double haploid data has
been collected from N individuals at Np marker gene
pairs. See Appendix for consideration of F2 intercross.
For a convenience, two genotypes are denoted as AA and
Aa in case of backcross; AA and aa for double haploid
data. Conditionally on the underlying parameters ex-
plained below the following bimodal mixture distribu-
tion is assumed for the expression data, where i is index
for an individual (i¼ 1yN), and j for a marker gene pair
(j¼ 1yNp):

Ei;j Ij;
�� mj;Aj;Gi;j; aj; s2

j � Nðaj þ IjmjAjGi;j; s2
j Þ ð1Þ

This is equivalent to assuming (simultaneously for each
pair) a linear eQTL model Ei,j¼ ajþ IjmjAjGi,jþ ei,j, where
the residuals ei,j (that is, the expression values after
correcting with respect to the regulatory effects) follow a
normal distribution with mean 0 and variance sj

2. After
normalization and transformation of the data (Quacken-
bush, 2001) we assume that the overall mean and the
expression variance in each pair and in each mixture
component are equal: aj¼ a0 and sj

2¼s0
2 for all j.

Moreover, we assume that data has been centralized,
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that is, aj¼ a0¼ 0, and the residuals ei,j are uncorrelated
even if centralization may induce dependence between
residuals in practice (Qu and Xu, 2006; Jia and Xu, 2007).
Here, the value of the indicator variable Ij controls
presence (Ij¼ 1) or absence (Ij¼ 0) of a regulatory effect
for pair j. A variable mjX0 is the effect size, and a variable
Gi,j is the genotype value of individual i at marker j,
which is 1 for genotype AA and �1 for the other
genotype. The value of the assignment variable Aj for
pair j defines the sign of the regulatory effect: Aj¼ 1
corresponds to the positive and Aj¼�1 to the negative
effect (Figure 2).

Note that, in case of backcross, one can alternatively
learn the values of the assignment variable Aj by taking
one extra microarray from pooled sample of individuals
from one of the parental lines (all with genotype AA)
and possibly one from F1 individuals (Aa). From Figure 2,
it becomes clear that an individual’s genotype (at
regulatory locus) can be predicted by knowing only the
values of the assignment and gene expression. This
immediately suggests one strategy to produce genotype
predictions for known marker gene pairs based on
the gene expressions from the offspring and one of the
parents.

Aj = 1 Aj = -1

D
en

si
ty

0
AA 0 Aa

-µµj +µj Gene Expression

D
en

si
ty

0
Aa 0 AA

-µj +µj Gene Expression

Figure 2 Backcross. The gene-expression distribution for the possible values of the assignment variable Aj, corresponding to the left (Aj¼ 1)
and the right (Aj¼�1) ordering of the genotypes Aa and AA. Here Aj¼ 1 means that there is a positive regulatory effect, and Aj¼�1 means a
negative regulatory effect.

Gene-Expression 
Measurements  
Ej, j = 1,..., 4000

E4000 E3E1 E4 E3500 

Markers 
Mi, i = 1,2,3,4,5 M1 M3 M4 M5

E2

M2
Chromosome

M6

E5 E3700  •

Listing of the pairs

Cis- pairs:  {(M1, E1), (M4, E3), (M5, E4)}

Trans- pairs:  {(M3, E3500)}

Correspondence of the ordering of the pairs in the input data 
to the ordering of the pairs in the original data:  

{(M1, E1), (M2, E2), (M3, E3), (M4, E4), (M5, E5), (M6, E6), (M7, E7)}

Pairs with missing expression data:  {(M2, •)}  

Pairs, where single marker regulates several expressions:  {(M6, E5), (M6, E3700)}

= {(M1, E1), (M2, •), (M3, E3500), (M4, E3), (M5, E4), (M6, E5), (M6, E3700)}

... ... ...

Figure 1 An example of ordering of known cis- and trans-acting marker gene pairs. In this example 4000 expression measurements and
information from six markers are available. On the basis of the previous independent experiment only three cis-acting pairs with clear one-to-
one correspondence and two trans-acting effect pairs are expected. There is no prior information about cis-acting effects between the marker
M4 and the gene-expression E3, but this putative pair (M4, E3) is included in the statistical analysis because M4 and E3 are very close to each
other on the genome. There is no information about any Ej expression, connected with the marker M2. Therefore (M2, �) is a pair with missing
information. There are two expressions (E5 and E3700), both corresponding to the marker M6. In this case the pairs {(M6, E5), (M6, E3700)} are
formed. The ordering of all pairs in the input data follows the chromosomal ordering of the markers.
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Hence the expression data Ei,j are described as a
mixture of two normal distributions, centered around
�mj and þ mj and depending on the possible values of
genotypes AA and Aa. Thus the gene effect (assuming co-
dominance) is presented by the quantity 2Ijmj, where the
product bj¼ Ijmj is called as a regulatory effect of the
gene.

In the case where we allow the effect size mj to be also
negative, mjA(�N, þN), and fix the assignment vari-
able Aj¼ 1, we practically obtain the same model (1),
described above. Then the information from the assign-
ment variable Aj is in the sign of mj because only the
product mj

*¼mjAJ is involved in the description of the
bimodal distribution (1). The separate sign variable Aj is
simply used here for illustration and to emphasize that
knowledge of it may potentially be useful for genotype
prediction.

Hierarchical eQTL model
Denote the data vector as D¼ (EO, GO), where the
observed gene expression (EO) and marker data (GO)
both may have some missing entries. The eQTL-
parameter vector is denoted as ye¼ (I,m,A,G,E,s0

2), where
E and G represent the complete forms of the data. The
mutual independence is assumed between and among
the variables I, m and A. According to Bayes rule,
pðye Dj Þ ¼ pðD; yeÞ=pðDÞ ¼ c 	 pðD; yeÞ;where c¼ 1/p(D) is
a normalizing constant. Here the posterior distribution
p(ye|D) is proportional to the joint distribution of the
parameters and data, p(D,ye), which can be expressed
as a product of likelihood p(D|ye) and prior p(ye). This
is equivalently p(ye|D)pp(D,ye)¼ p(D|ye)p(ye) and, for
given conditional independence assumptions, can be
further factorized as:

pðI; m;A;G;E; s2
0 EO;GO
�� Þ / pðEO;GO; I; m;A;G;E; s2

0Þ
¼pðEO;GO E;GÞj pðE I; m;A;Gj ; s2

0ÞpðAÞpðGÞpðmÞpðI sej Þpðs2
0Þ:

Here p(EO,GO|E,G) is the indicator function being one
only when the complete data is consistent with the
observations, and is 0 otherwise. The complete expres-
sion data likelihood

pðE I; m;A;Gj ; s2
0Þ ¼

YN
i¼1

YNp

j¼1

pðEi;j Ij; mj;Aj;Gi;j; s2
0

��� Þ;

where the likelihood function can be written for
individual i and pair j (equation 1) as:

pðEi;j Ij; mj;Aj;Gi;j; s2
0

��� Þ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

0

q exp � 1

2s2
0

Ei;j � IjmjAjGi;j

� �2
� �

:

Prior distributions: Next we define functional forms of
prior distributions, reflecting our prior beliefs, for
parameters p(A), p(G), p(m), p(I|se), and p(s0

2). We
assume that the assignment variables Aj are mutually
independent and have the following prior distribution,
pðAÞ ¼

QNp

j¼1 pðAjÞ; where p(Aj) is a Bernoulli (pj)
distribution with parameter pj¼ 1

2 at each locus. This
means that both assignments for Aj are a priori equally
likely. The prior density function of the effect size can be
expressed as pðmÞ ¼

QNp

j¼1 pðmjÞ;where p(mj) is a density

function of right (positive) tail of normal distribution
(truncated at 0) with mean 0 and variance 100. The prior

for indicator variables I is pðI sej Þ ¼
QNp

j¼1 pðIj sej Þ; where

p(Ij|se) is a Bernoulli (se) distribution with known
parameter se¼P(Ij¼ 1). The parameter se

X
1
2 represents

our prior expectation for the proportion of pairs with
regulatory effect, that is, it controls how much value one
is preferred over 0. Its value is assumed to be greater
than 1

2 because it is probable that a large proportion of
pairs (to be validated) actually has a regulatory effect.
The prior p(s0

2) is assumed to be an inverse Gamma (1,1)
restricted to the range (0.5, 10 000) (cf. Sillanpää and
Bhattacharjee, 2005, 2006). For discussion of alternative
priors, see Gelman (2006) and Van Dongen (2006). Note
that the restriction of the inverse Gamma distribution
was imposed for computational reasons—to maintain
numerical stability in OpenBUGS.

Model for missing genotypes: The prior distribution of
the marker data is defined in the same way as in
Sillanpää and Arjas (1998) and Hoti and Sillanpää (2006).
We assume that the genotype measurements are
conditionally independent between individuals (given
the parents), because all individuals are equally related:

pðGÞ ¼
YN
i¼1

pðGi;1;Gi;2 . . . ;Gi;Np
Þ

/
YN
i¼1

pðGi;1Þ
YNp

j¼1

pðGi;j Gi;j�1Þ
��

2
4

3
5;

where P(Gj,1) is the prior probability (expected frequency)
of genotype Gi,1 at marker 1 and p(Gi,j|Gi,j�1) is the
between-loci transition probability for individual i. The
actual values depend on the genotypes, the map distance
(the recombination fraction) and the design considered
(for details, see Jiang and Zeng, 1997; Sillanpää and
Arjas, 1998). In case where the genetic map is unknown,
unlinked loci and expected genotype frequencies can be

assumed in pðGÞ ¼
QN

i¼1

QNp

j¼1 pðGi;jÞ:

Model selection and interpretation: Bayesian model
selection of pairs with a regulatory effect is performed
using indicator variables. A similar technique is
commonly used for variable selection in QTL and
association models (Uimari et al., 1996; Uimari and
Hoeschele, 1997; Yi et al., 2003; Sillanpää and
Bhattacharjee, 2005, 2006). According to the above prior
assumptions, the parameters mj and Ij are a priori
independent, that is, p(m,I|se)¼ p(m)p(I|se). This
formulation is analogous to Kuo and Mallick (1998).
Thus, based on evidence given by data, to conclude if
pair j has a regulatory effect, it is more robust to monitor
the posterior product bj¼mj� Ij rather than each variable
(mj or Ij) separately (Sillanpää and Bhattacharjee, 2005).
Alternatively one can assume a hierarchical prior
p(m,I|se)¼ p(m|I)p(I|se), which gives better identifiability
for individual parameters but additional computational
problems such as adjustment of tuning parameters
(pseudo priors) may appear unless mj and Ij are
updated together as a block during the Markov Chain
Monte Carlo (MCMC) sampling (Geweke, 1996;
Meuwissen et al., 2001).
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Modeling dependence between transcripts: So far we
have assumed independence between expression levels
at different pairs. However, the values of gene
expressions may be (in reality) correlated due to many
different reasons. In the following, we hypothesize two
kinds of dependencies: (1) the spatial dependencies due
to genomic proximity of the gene transcripts meaning
that the expression distributions of two genes, whose
positions are close by in the genome, are dependent on
each other according to the distance between them and
(2) the dependencies due to the membership of the genes
in the same pathway/gene set. To consider dependence
between expressions we model it in the level of their
underlying distributions, at effect sizes mj. That is,
we model the effect size vector l¼ ðm1; :::; mNp

ÞT using a

multivariate normal distribution, lBMVN(Õ,S) with the
mean vector Õ¼ (0, 0,y, 0)T and the covariance matrix S.

The existence of spatial dependence between expres-
sion distributions may not be well justified biologically,
but it provides helpful way to share information
horizontally between transcripts. In the spatial depen-
dence model, the elements of the covariance matrix are
given by the exponential decay function sj,jþ 1¼
t0 exp(�ldj), which depends on the given smoothing
parameters (t0 and l) and the physical or genetic
distance dj between the transcripts j and jþ 1. The
parameter t0 controls the overall level of smoothing (say
t0¼ 100) and l defines the degree of spatial dependence
(Conti and Witte, 2003; Sillanpää and Bhattacharjee,
2005). Note that this model is especially suitable for
densely spaced transcripts (spanning few cM candidate
regions) because dependence is a decreasing function of
genomic distance and the rate is dependent on t0 and l
(cf., Sillanpää and Bhattacharjee, 2005).

In the pathway membership model, the connectivity
matrix S (with all elements being t0 or 0) is constructed
based on the database knowledge about the pathway
memberships, list of differentially expressed genes or
simply based on the pairwise correlateness between the
gene expressions. In the last case, if linear pairwise
expression correlation between the genes j and k is
higher or equivalent than a predefined threshold T, then
two genes are said to be connected, that is, if rj,kXT then
sj,k¼ t0 and otherwise sj,k¼ 0. The parameter t0 is the
prior variance/covariance assumed for the effect size
among the pathway members.

Clinical QTL model
Hoti and Sillanpää (2006) presented a cQTL model where
a phenotype Y¼ (Yi) was described as a linear combina-
tion of the marker genotypes G¼ (Gi,j) and the gene-
expression levels E¼ (Ei,j) and possible genotype�
expression interactions. The genotype� expression inter-
actions are allowed to occur only between members
(genotypes and expressions) of the single marker gene
pair. Due to necessary assumption of co-dominance in
backcross, these genotype� expression interactions
should be interpreted as allele-specific expression effects.
Here we use the similar model than Hoti and Sillanpää
(2006) except that the phenotype-associated subset
of terms is determined by the indicator variables (cf.
Bhattacharjee and Sillanpää, 2008; see ‘Model selection
and interpretation’ above). The generic term cQTL is
used for the trait-associated components. We assume the

following cQTL model for the quantitative phenotype Yi

of individual i:

Yi ¼ aþ
XNp

j¼1

IM
j bM

j Gi;j þ IE
j b

E
j Ei;j þ IME

j bME
j Gi;jEi;j

� �
þ ei: ð2Þ

Here a is an overall mean and the residuals ei

(¼ observed�estimated trait value) are assumed to be
normally distributed with mean 0 and variance se

2. Let us
denote an indicator variable for the marker and the
transcript at each pair j as Ij

M and Ij
E, respectively.

Similarly, let us denote an indicator variable for the
genotype-expression interaction component (at pair j) as
Ij
ME. These indicators variables are together collected into

the single vector of triplets as Ic ¼ ðIM
1 ; IE

1 ; I
ME
1 ; ::::;

IM
NP
; IE

NP
; IME

NP
ÞT: For pair j, the genotype, expression, and

genotype� expression interaction effects with respect to
phenotype are determined by bj

M, bj
E and bj

ME. The cQTL
effects are jointly denoted in the vector form as
bc ¼ ðbM

1 ; bE
1 ; b

ME
1 ; ::::; bM

NP
; bE

NP
; bME

NP
ÞT: For F2 intercross,

see Appendix. To model binary phenotypes, see Hoti and
Sillanpää (2006) and Bhattacharjee and Sillanpää (2008).

Hierarchical cQTL model
Let us denote the cQTL model parameters as
yc¼ (Ic,bc,sc

2, a,se
2) and recall that the eQTL model

parameters were denoted as ye¼ (I,m, A, G, E, s0
2). Now

their posterior distribution is proportional to the joint
distribution (of data and parameters) and can be further
factorized as

pðyc; ye EO;GO;Y
�� Þ / pðyc; ye;EO;GO;YÞ

¼pðY a; Ic; bc;E;G; s2
e Þ

�� pðIc scj Þpðbc s2
c

�� Þ
�pðs2

c ÞpðaÞpðs2
e Þ�pðEO;GO; yeÞ

Here the likelihood function for all individuals jointly is

pðY a; Ic; bc;E;G; s2
e Þ

��
¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp

 
� 1

2s2
e

 
Yi � a

�
XNp

j¼1

IM
j bM

j Gi;j þ IE
j b

E
j Ei;j þ IME

j bME
j Gi;jEi;j

� �!2!
:

We make several (conditional) independence assump-
tions in the construction of prior distributions. Given
sc¼ p(Ic ¼ 1), which is a small prior probability for a
candidate to be associated into the trait, we assume the
following independence prior for the indicator variables
pðIc scj Þ ¼

QNp

j¼1 ½pðIM
j scj Þ�pðIE

j scj Þ�pðIME
j scj Þ
: Here p(Ij

K|sc)
for each component j and K¼ {M,E,ME} is a Bernoulli (sc)
distribution with parameter sc. Note that unlike the se of
eQTL model, we consider scp1

2 to be very small.
Similarly, we assume a prior for the genetic effects
pðbc s2

c

�� Þ ¼
QNp

j¼1 ½ pðb
M
j s2

MðjÞ

��� Þ�pðbE
j s2

EðjÞ

��� Þ�pðbME
j s2

MEðjÞ

��� Þ 
;
where p(bjK|sK(j)

2 ) for each (coefficient at) component j
and K¼ {M,E,ME} is a normal distribution with mean 0
and variance sK(j)

2 . The prior for genetic variances is
assumed to be pðs2

c Þ ¼
QNp

j¼1 ½pðs2
MðjÞÞ�pðs2

EðjÞÞ�pðs2
MEðjÞÞ


and p(sK(j)
2 ) for each component j and K¼ {M,E,ME} is an

inverse Gamma (1,1) without any boundaries. The prior
p(a) is assumed to be flat normal distribution with mean
0 and variance 10 000. The prior for residual variance
p(se

2) is assumed to be inverse Gamma (1,1) restricted to
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the range (0.5, 10 000). It is useful to note that our earlier
eQTL model constitutes a missing data model within this
large hierarchical cQTL model specified above. More-
over, the likelihood of the eQTL model is the prior in the
cQTL model.

Applications

Before presenting analyses using the complete cQTL
model with simulated data, we focus clearly on eQTL
model as independent model structure. Thus, in follow-
ing, we first present several trials by using only eQTL
model in our analyses. With simulated (complete) data,
we consider both the performance under a single
realization of a data set and the average performance
by analyzing 50 data replicates. In addition, we consider
the performance of two realizations of data sets in
presence of missing values. Then we present the eQTL
model analyses using previously analyzed real double
haploid data on Saccharomyces cerevisiae (Brem et al., 2002)
in the original and transformed scales as well as the
accuracy assessment of the predicted expression values.
Finally, we study performance of eQTL model with
simulated data in presence of dependence between
transcripts. For data simulation and for the MCMC
estimation of eQTL model (1) parameters in these
experiments, we have systematically used the Open-
BUGS 2.2.0 software (Spiegelhalter et al., 2005; Thomas
et al., 2006) if not stated otherwise. In the analyses, the
first 10 000 MCMC iterations were discarded from the
chain as ‘burn-in’. The posterior estimates are based on
the next 100 000 MCMC iterations. To summarize the
results of continuous parameters, we have preferred to
use posterior median instead of posterior mean (avail-
able in OpenBUGS) as our point estimate approximating
posterior mode (Hazelton and Gurrin, 2003). For discrete
parameters (and product of discrete and continuous
parameters), we have used the posterior mean. In eQTL
analyses, the key criterion of assessment of performance
has been the estimation and the prediction error.

Simulated eQTL data
Simulating markers: The linked marker data G (over
102 marker points) was simulated using the WinQTL
Cartographer program (Wang et al., 2006) for 200
backcross individuals resulting from an inbred line
cross experiment. The marker data spanned three
chromosomes of length 99 cM, so that there were 34
evenly spaced markers on every chromosome. The
distance between every two markers was 3 cM.

Simulating expressions: The gene-expression value Ei,j,
for each individual i and for each marker gene pair j, was
simulated in the OpenBUGS conditionally on the marker
data Gi,j and the parameters according to the eQTL
model (1). At each locus j, the selection indicator Ij was
generated from a Bernoulli distribution, with Bernoulli
parameter se¼P(Ij¼ 1)¼ 0.9, which means that majority
(90%) of the pairs are likely to have regulatory effect. The
residual variance was set to s0

2 ¼ 1 and the overall mean
to a0¼ 0. For every pair j, the effect size mj was generated
from a truncated flat normal distribution with mean 2
and variance 100, which was restricted to the range [0,4].
Thus only moderate positive values of mj were possible.

All regulatory effects were set to be positive by having
Aj¼ 1 for each pair j.

Most of the pairs (G,E) in the simulated data follow the
typical bimodal gene-expression frequency distribution
(Figure 3a). In some cases (Figure 3b) the resulting
frequency distribution does not strictly follow the
bimodal shape because of some overlapping between
the two mixture components.

In the cases when mj is near to 0, the tails of the two
mixture components of Ej almost completely overlap
(Figure 3c).

Analysis of the single simulated eQTL data set: Note
that the known values of s0

2 ¼ 1 and a0¼ 0 were assumed
in the analysis of the simulated backcross data. The
weakly informative prior (a truncated normal
distribution) was considered for the effect size
mjBN(2,100) with the restriction [0,N[. From the eQTL
model (1) it becomes clear that when there is no
regulatory effect (bj¼ 0), the parameter Aj does not
have any interpretation. Excluding such positions, the
estimated values of Aj match perfectly well with the true
simulated values. In Figure 4a, based on the posterior
estimates (the median bj

med and 95% credible interval) for
the regulatory effect bj¼ Ij� mj of pair j, we present the
estimation error qj¼ bj

med�bj
t (such as, a deviation from

the true simulated value bj
t) and the corresponding

credible interval as a summary of the analysis.

Analysis of 50 simulated eQTL data replicates: Next, 50
replicated data sets (simulated replicates) of size N¼ 200
were simulated using the same generating eQTL model
as above. Every data set (d¼ 1,y,50) was analyzed using
OpenBUGS similarly as above. For data set d, let us
denote the posterior median of the estimated regulatory
effect at position j as bj

med(d) and its estimation error as
qj(d)¼bj

med(d)�bj
t(d) (viz. a deviation from the true

simulated value bj
t(d)). Figure 4b presents the mean

Mj(qj), the median mj(qj), and the standard deviation
SDj(qj) of the estimation error for every marker j over 50
simulation replicates (note the scale of the y-axis). These
summaries indicate that the estimation errors are very
small supporting the conclusion that our method can
provide reliable eQTL effect estimates (when s0

2 and a0

are known).

Analysis of the single simulated eQTL data set in
presence of missing data: To check the sensitivity of
the method to randomly occurring missing values we
have analyzed here the same simulated backcross data
(explained above) in two different cases: (1) when 10% of
backcross data were coded (in random locations) as
missing among both the marker (Gi,j) and the expression
(Ei,j) measurements, and (2) when 10% of the marker
data (Gi,j) and 50% of the expression data (Ei,j) in the
simulated backcross were coded (in random locations) as
missing.

The two data sets with missing values were analyzed
using OpenBUGS similarly as above. We assume that
values of the outcome variable (here the gene expres-
sions) are missing at random. This is a default assump-
tion in OpenBUGS implying that the posterior
distributions of the eQTL model parameters are influ-
enced only by the observed part of the outcomes
Eo (Rubin, 1976).
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From Figure 4c, it becomes clear that the obtained
estimates are reliable in presence of 10% missingness. The
same conclusion is valid also in the case when 50% of the
expression measurements and 10% of the marker data are
missing (Figure 4d). As expected, the credible interval (for
the estimation error) becomes wider with increasing
amount of missingness. Although it is visible in
Figure 4d that the posterior median has a larger amplitude
than in A and C, we found out that this was not the case
for the relative estimation error (calculated for non-zero
coefficients), which practically stays a constant level at
these three cases (results not shown). Thus the results
suggest that the performance of the method is generally
robust to the presence of missing observations.

Real yeast data
We selected the publicly available data from a double
haploid experiment on S. cerevisiae, described in Brem
et al. (2002), and used as test data in Hoti and Sillanpää
(2006). The data contain the gene expressions (a dye
swap pair of arrays) and the marker genotypes measured
from 40 individuals (segregant samples) obtained from a
cross between a laboratory (BY4716) and a wild strain of
Yeast. The expression data represent the background
corrected and normalized log ratios, which have been
centered over all the microarray spots, that is, the mean
of the expression data is 0. For each gene we took simply
an average of two expression values (a dye swap pair of
gene expressions) if both values were available and

marked it as missing otherwise; this procedure did not
significantly change the centering from 0.

Analysis of yeast data using eQTL model: Brem et al.
(2002) found 570 eQTLs, which we simply took together
with the appropriate expressions as our input data
(marker gene pairs) here. (Note that we are aware of the
potential selection bias that may appear as a consequence
of using data twice.) To validate these eQTLs, the four
different analyses with the eQTL model were executed
for the data: (1) the eQTL analysis of the original data
assuming the known values of s0

2 ¼ 1 and a0¼ 0, (2) the
eQTL analysis of the transformed data (the expression
values of each gene were rescaled to have an unit
variance by the common scaling factor) again assuming
the known values of s0

2 ¼ 1 and a0¼ 0, (3) the eQTL
analysis as 1 above with unknown s0

2 and (4) the eQTL
analysis of the transformed data (the expression values
of each gene were rescaled to have an unit variance by
the locus-specific scaling factor) assuming the known
values of s0

2 ¼ 1 and a0¼ 0. The uninformative prior (a
uniform distribution; unlinked loci) was assumed for the
genotype data in p(G). In addition, two different priors
(truncated normal distributions) were considered for the
effect size in all four analyses: mjBNþ (0,100) (a neutral
prior) and mjBNþ (2,100) (a nearly neutral prior), where
the subscript þ indicates the positive [0,N[ region of
support. This resulted in the eight different analyses in
total. A data transformation was performed using
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Figure 3 Three typical cases of the simulated gene-expression (Ej) data: (a) the well-distinguished bimodal frequency distribution when mj is
high (mj¼ 3.586); (b) the case when the simulated Ej data components overlap, but it is still possible to distinguish two parts (mj¼ 1.315);
(c) two parts of the distribution overlap almost completely when mj is small (mj¼ 0.071). The expression values are shown on the x-axes and
the frequencies on the y-axes.
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the formula Est
j ¼ Edata

j =ŝ0 in analysis 2 and the formula
Est

j ¼ Edata
j =ŝEj

in analysis 4. Here ŝ0E1.29 is the common
empirical standard deviation of all the expressions and
ŝEj is the empirical standard deviation of the expressions
at gene j. By including the missing outcomes in
the OpenBUGS analysis, one obtains the posterior
predicted values for them based on the posterior
distributions of the parameters. In Table 1, we show the
posterior (median) estimated proportion of eQTLs,
Pð
P

Ij=570jdataÞ; for all eight analyses corresponding to
different prior assumptions for se¼P(Ij¼ 1). In the table,
the observed proportion of non-zero posterior (median)
estimated regulatory effects is also shown. The Monte
Carlo error of the quantity

P
Ij was estimated to be

around 0.12 and 0.13 resulting to very accurate estimates
for

P
Ij=570; that is, error around 0.12/570. The Monte

Carlo error for bj varied and was usually smaller than
0.003 but to estimate the observed proportion, this error
should be multiplied with the number of non-zero
positions. In other words, the posterior proportions,
Pð
P

Ij=570jdataÞ; are much more accurate than the
observed proportions in Table 1.

In Table 1, the analyses with the original data and the
transformed data (by a common scaling factor) seem to

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

0

10 20 30 40 50 60 70 80 90 100
Marker-gene pairs

βmed-βt β2.5-βt

β97.5-βt
β97.5-βt

β2.5-βtβmed-βt
β2.5-βt

βmed-βt

β97.5-βt

M(q)+SD(q)

M(q) M(q)-SD(q)

m(q)

E
st

im
at

io
n

 e
rr

o
r

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

0

10 20 30 40 50 60 70 80 90 100
Marker-gene pairs

E
st

im
at

io
n

 e
rr

o
r

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

0

10 20 30 40 50 60 70 80 90 100
Marker-gene pairs

E
st

im
at

io
n

 e
rr

o
r

10 20 30 40 50 60 70 80 90 100
Marker-gene pairs

E
st

im
at

io
n

 e
rr

o
r

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

0

Figure 4 Summary of the estimation error of the posterior estimated regulatory effect bj¼ Ij�mj over 102 marker gene pairs. (a) The analysis
of the single simulated data set. (b) The analysis of 50 simulation replicates. (c) The analysis of the single simulated data set with 10% of both
the markers and the expressions missing. (d) The analysis of the single simulated data set with 10% of the markers and 50% of the expressions
missing. In (a, c, and d) the estimation error (of the posterior median and 2.5 and 97.5% quantiles) around the true simulated value bj is
presented at each position j. In (b) the mean Mj(qj), the median mj(qj) and the standard deviation (around the mean) Mj(qj)±SDj(qj) of the
estimation error are shown for every marker gene pair j over data sets. The pairs are shown on the x-axis and the estimation error on the
y-axis.

Table 1 Summary of the posterior and the observed proportions of
eQTLs for different values of prior proportion se¼P (Ij¼ 1) in four
analyses of yeast data (which each are evaluated at two priors of m) :
the original data with the known s0

2¼ 1 (top left), the transformed
data (by using a common scaling factor) with the known s0

2¼ 1
(top right), the original data with unknown s0

2 (bottom left),
the transformed data (by using a gene-specific scaling factor) with
the known s2

0¼ 1 (bottom right)

Prior se Posterior proportion Observed proportion

mBN+(0,100) mBN+(2,100) mBN+(0,100) mBN+(2,100)

0.75 0.444 0.388 0.428 0.374 0.374 0.319 0.363 0.298
0.486 0.851 0.470 0.840 0.440 0.870 0.421 0.856

0.80 0.447 0.393 0.458 0.402 0.405 0.342 0.386 0.325
0.517 0.869 0.500 0.858 0.456 0.882 0.451 0.875

0.85 0.517 0.461 0.498 0.442 0.449 0.372 0.426 0.353
0.558 0.888 0.539 0.879 0.502 0.912 0.472 0.896

0.90 0.579 0.524 0.558 0.502 0.519 0.435 0.481 0.412
0.617 0.912 0.596 0.903 0.574 0.942 0.544 0.928

0.95 0.686 0.637 0.663 0.612 0.661 0.591 0.632 0.546
0.716 0.944 0.695 0.937 0.703 0.968 0.668 0.965

The posterior proportion, Pð
P

Ij=570jdataÞ; is calculated as the
posterior (median) estimate of proportion of indicators being one
among 570 pairs. The observed proportion is calculated as a
proportion of non-zero posterior (median) estimate of bj¼ Ij�mj

among 570 pairs.
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lead to large deviation from the prior so that the
posterior/observed proportion of eQTLs is always much
smaller than the prior proportion. This means that data
strongly support the conclusion of the absence of the
regulation for a large number of pairs. In contrast, the
analyses with the transformed data (by a gene-specific
scaling factor) lead to the estimated proportions extre-
mely close to the prior, indicating the lack of information
in the transformed data.

The estimated (posterior/observed) proportion of
eQTL is slightly smaller for the model with the prior
assumption mjBNþ (0,100) than for the model with
mjBNþ (2,100), the exception being the case of se¼ 0.80
(Table 1). Because two priors are almost equal, this result
can be explained by the fact that the model assuming
mjBNþ (0,100) prefers to ‘find’ neutral (or extremely
small effect) eQTLs rather than requiring them to be any
larger. For this to be true, the information content of the
data also need to be extremely low and/or supportive for
small-effect eQTLs. Moreover, the observed proportion is
always smaller than the posterior proportion which may
indicate that it is more easy to have the posterior median
of bj¼ Ij�mj equal to 0 for few j (to downweight the
observed proportion) than to downweight the posterior
median of

P
Ij (influencing on the posterior proportion).

Note also that the estimated (posterior/observed) pro-
portion of eQTL is somewhat larger for the analysis of
the transformed data (by a common scaling factor) than
the analyses of the original data (Table 1). This may
indicate better fit (perhaps even overfit) of the model to
the data, because the scaled data perfectly correspond to
the model assumption s0

2 ¼ 1.

Model assessment: To assess the goodness-of-fit of the
model, we want to assess how well one can predict
values of the gene expressions based on the model and
the posteriors of the parameters. These posterior

predictions Ei,j
* are then compared to the observed data

of each individual Ei,j and one obtains the prediction
error PEi,j¼ (Ei,j

* �Ei,j) as a simple difference between the
two. In general—for robust predictions—instead of using
the best-case scenario (that is, to evaluate posterior
predictive distribution only at a point estimate, for
example the posterior mode or median), one should
use the whole predictive posterior distribution (that is,
include uncertainty of the whole posterior distribution)
and thus utilize the Bayesian model averaging (West
et al., 2006). However, we are here more interested in
checking the best-case scenario, that is, to sample a gene-
expression value for each individual from its posterior
predictive distribution p(E*|I,m, A, G, s0

2) conditionally on
the genotype data and the posterior estimates of the
parameters (I, m, A, s0

2) using posterior medians of the
continuous parameters. To handle missing genotype
data, we again assumed a uniform prior p(G). We can
then calculate the mean and the variance of the
prediction errors under the different models
considered. Such summaries are presented in Figure 5.
Because the observed gene-expression values contained
some missing observations, the mean and the variance
were calculated only over individuals with the
observations.

It becomes evident that the analysis of the transformed
data (with a gene-specific scaling factor) resulted in
predictions where all the existing information is lost
(Figure 5a). The same was true for the prediction error
variance (picture not shown). Because the mean predic-
tion errors from analyses of the original data with both
the known and unknown s0

2 as well as of the transformed
data (by using a common scaling factor) with the known
s0

2 all resulted into very similar pictures with minor
numerical differences in the mean prediction errors,
only one of them is shown in Figure 5b. In Figures 5c, d,
and e, one can see how the prediction error variance
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Figure 5 The mean and the variance of the individual-specific prediction error, which is a difference between the predicted and the observed
gene expression of individual i at pair j. The quantities are calculated based on 1000 Markov Chain Monte Carlo (MCMC) samples from the
posterior predictive distribution evaluated at the median (point estimate) of the posterior distribution of the model parameters from the
model with mBNþ(0,100). (a) The mean prediction error from the analysis of the transformed data (by using a gene-specific scaling factor)
with the known s0

2 ¼ 1. (b) The mean prediction error from the analysis of the original data with the known s0
2 ¼ 1. (c) The prediction error

variance from the analysis of the original data with the known s0
2 ¼ 1. (d) The prediction error variance from the analysis of the original data

with unknown s0
2. (e) The prediction error variance from the analysis of the transformed data (by using a common scaling factor) with the

known s0
2 ¼ 1.
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decreases by treating s0
2 as an unknown variable or by

using a data transformation and a common scaling
factor. Even if the results suggest that the data
transformation (scaling) is a reasonable way to proceed
in this type of analysis, one should proceed with caution
because some biological interactions may be lost or
destroyed by the scaling (Jansen, 2003; Vormfelde and
Brockmöller, 2007).

Simulated eQTL data with dependence between

transcripts
Here we study prediction of the missing gene expres-
sions based on the linked marker data and the observed
values of the gene expressions on the flanking tran-
scripts. We use the eQTL model with spatial dependen-
cies here. Albeit this model may appear to be unrealistic,
the results presented here arguably correspond to the
more realistic case (for example, analysis of pathway
membership model).

Simulating expressions: We use the same simulated
marker data described above, but instead of utilizing all
102 markers we use only the 34 markers (evenly spaced
at every 3 cM) on the first chromosome. Conditionally on
the markers, we simulated 100 data sets with the
correlated expression data, using the mean vector
Õ¼ (2, 2,y, 2)T, and the smoothing parameter values
t0¼ 4 and l¼ 10. This resulted in the average correlation
of 0.7417 between any adjacent pair of effect sizes (mj,
mjþ 1) in the data sets. Similarly, we also obtained the
average correlation of 0.9722 by changing the smoothing
parameter to l¼ 1. In a following we refer to these two
different generating models as ‘a weak dependence
(l¼ 10)’ model and ‘a strong dependence (l¼ 1)’
model. All simulations were carried out in OpenBUGS
using eQTL model with spatial dependencies.

Analysis of simulated eQTL data using the spatial
dependence model for transcripts: Two simulated data
sets were analyzed, a single realization generated with a
weak dependence (l¼ 10) model, and other obtained
with ‘a high dependence (l¼ 1)’ model. In the analysis
stage, all the expression values at every other marker (in
even numbers) in both data sets were coded as missing.
These two data sets were both analyzed using two
different eQTL models differing in the structure of the
prior p(m). The two eQTL models are the spatial
dependence model (with the values Õ¼ (0, 0,y, 0)T,
t0¼ 100, and the known l¼ {1,10}) and the
independence model (1) (with the uninformative prior
mjBN(0,100) in the positive range [0,N[, and the known
values of s0

2 ¼ 1 and a0¼ 0).
In addition, to depict an interval of maximum estima-

tion error, all the expressions were deleted from the first
data set and analyzed using the independence model. The
estimation using the spatial dependence model requires
markedly more computational efforts because the model is
more complicated. (Thus, for any practical settings, one
should seriously consider some other computational tool
than OpenBUGS.) All these analyses are summarized in
Figure 6, except the independence model analysis of
weakly correlated pair data with 100% of the expression
measurements missing at every other marker (the picture
is almost identical to d).

In general, the credible intervals (of the estimation
error) of Figure 6 are constantly wide at every other
marker in all cases because 100 % of the expressions were
missing at those positions (that is, all the information
comes through the dependence structure). However it
becomes clear that the predictive properties of the spatial
dependence model are slightly better than the indepen-
dence model and its accuracy improves along with the
increasing amount of dependence in the data (cf. the
scales at the y-axis). On the other hand, the predictive
accuracy of the independence model seems to stay
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Figure 6 Summary of the estimation error of the posterior estimated regulatory effect bj over 34 marker gene pairs. (a) The spatial
dependence model analysis of weakly correlated pair data with 100% of the expression measurements missing at every other marker. (b) The
spatial dependence model analysis of strongly correlated pair data with 100% of the expressions missing at every other marker. (c)
The independence model analysis of weakly correlated pair data with all the expression measurements missing at every marker. (d) The
independence model analysis of strongly correlated pair data with all the expression measurements missing at every other marker.
The estimation error (of the posterior median and 2.5 and 97.5% quantiles) around the true simulated value bj

t is presented at each position j.
The pairs are shown on the x-axis and the estimation error on the y-axis.
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practically constant while the amount of dependence in
the data increases.

Simulated cQTL data
To test how well the cQTL model can handle the missing
values among genotypes and expressions, we simulated
eQTL data on backcross (N¼ 200, Np¼ 102) as before (see
details above) except that mBN (0, 100) and Aj¼ 1. On
the basis of the complete data and the cQTL model (2),
nine components (1 marker, 5 expressions, and 3
genotype� expression interactions) were used to gener-
ate the phenotypic values (that is, those components
should exhibit non-zero cQTL effects with respect to the
phenotype in the analysis). We used fixed value se

2¼ 1/
0.065E15.3846 resulting to the joint heritability of the
trait which was approximately 0.68. The actual effect
sizes and types of the components are shown in Table 2.
In the analysis stage, we again (in random locations)
deleted 5% of the marker genotypes (Gi,j) and 50% of the
gene expressions (Ei,j) from the complete data set. All
phenotypes were assumed to be available and the
genotypes and the expressions were assumed to be
missing at random.

Analysis of simulated cQTL data: The data set was
analyzed using two cQTL models, differing in the
complexity of the missing data model for the missing
values of expressions. The first model (MD1) is the one
including the eQTL model (1) as missing data model, as
presented in this article, and the second one (MD2) uses
a much simpler model to handle the missing expressions,
Ei,jBN(0,s0

2), where p(E|I,m, A, G, s0
2) is replaced simply

by p(E|s0
2). Note that the latter is close to the missing

data model of Hoti and Sillanpää (2006), and it follows
by assuming the additive polygenic (infinitely many loci)
basis for gene expression. For the first model, the
truncated normal prior: mBN(0,100) in the positive
range [0,N[ is assumed and for the both of these two
models, a0¼ 0 and the prior p(s0

2) is assumed to be an
inverse Gamma (1,1) restricted to the range [0.5, 10 000].
In both cases, 306 candidate terms (102 markers, 102
expressions, and 102 marker� expression interactions)
were considered in the model. For a Bernoulli parameter,
we set sc¼ 0.0033E1/306 which roughly corresponds to
a single a priori associated component among the
candidates. Note that because the phenotypes represent
an outcome variable in the large cQTL model, the

posterior distributions of the eQTL model (1)
parameters are now influenced by all (the missing and
observed) expression values. This is contrary to
modeling expressions as outcome variable in the plain
eQTL model (see Equation (1) above). To estimate the
parameters in MD1 and MD2, the OpenBUGS 2.2.0 was
ran for 110 000 MCMC iterations, with 10 000 burn-in.
Surprisingly, we encountered a slight mixing problem in
the sense that locations of the false positive cQTL signals,
with small effect sizes, varied somewhat from one
analysis to the next. However, there was only few such
locations. It seemed that running longer chains did not
influence to this property much. The convergence was
inspected by comparing the results of different smaller
runs. This was complicated by the fact that the running
times for both analyses took more than a week on a
personal computer. Unlike Hoti and Sillanpää (2006), we
did not consider standardized effect sizes here. In
Table 2, one can see the posterior weighted cQTL
effects found for different genetic components under
the two models. To define what is a cQTL, we had to
choose rather high noise level (0.05 in analyses of
Table 2). Among the markers, MD1 found weak cQTL
evidence for the correct locus (the pair 31) but it strongly
supported also for the locus that is a false positive (the
pair 15). For a comparison, all putative cQTL findings of
MD2 were false (the pairs 14, 15, 24, and 57), except a
weak signal near the noise level (the pair 31). Because of
the huge false positive signal at pair 14, we further
checked the proportion of missing data at pair 14, which
was unexpectedly less than an average (B4.5 % of the
marker data and B47% of the expression data). Among
the expression effects, MD1 correctly identified three out
of five gene expressions (the pairs 14, 15 and 57) where,
however, the cQTL evidence for the pair 57 was
negligible. In addition, although negligible, also the
cQTL was correctly estimated to have non-zero effect
(�0.011) at position 100. Among the same candidates,
MD2 found only some negligible cQTL evidence (0.014)
for the incorrect position (the pair 88, which
was simulated to have an interaction effect).
Finally, MD1 correctly identified two out of three
genotype� expression interactions (the pairs 50 and 88)
while MD2 found none of them. It is good to emphasize
here that although some marker gene pairs (14, 15 and
57) were interpreted as false positives among marker
effects above, the same pairs originally had expression

Table 2 Posterior estimated (mean) and true cQTL effects under two models (MD1 and MD2) for pairs where the true or estimated effect was
nonnegligible (all values less than 0.05 are set to 0 or not shown)

Effects Pair j

12 14 15 24 31 50 57 69 88 100

Zj
M true 0 0 0 0 �2.065 0 0 0 0 0
Zj

M MD1 0 0 1.089 0 �0.232 0 0.068 0 0 0
Zj

M MD2 0 �26.87 1.249 0.319 �0.070 0 0.538 0 0 0
Zj

E true 0 1.020 0.318 0 0 0 0.988 0.238 0 �0.976
Zj

E MD1 0 1.040 0.150 0 0 0 0.081 0 0 0
Zj

E MD2 0 0 0 0 0 0 0 0 0 0
Zj

ME true 1.021 0 0 0 0 4.056 0 0 �2.817 0
Zj

ME MD1 0 0 0 0 0 5.009 0 0 �3.940 0
Zj

ME MD2 0 0 0 0 0 0 0 0 0 0

The cQTL effects, at pair j, are shown for marker genotypes (Zj
M¼ Ij

M� bj
M), gene expressions (Zj

E¼ Ij
E�bj

E) and genotype� expression
interactions (Zj

ME¼ Ij
ME�bj

ME). The correctly identified pairs are highlighted in bold.
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effects. Thus, they actually are false positives only in the
sense of their effect types rather than their positions. To
further experiment with MD1, we analyzed the same
data with different missing data pattern (5% of the
marker data and 30% of the expressions missing at
random). This data was ran for 110 000 MCMC rounds
with 10 000 burn-in. The results were quite similar to the
ones of MD1 in Table 2, except the huge marker effect
(�26.46) and no expression effect at pair 14, similar to
MD2 above (results not shown). As a conclusion, it
becomes clear that the more complicated model, MD1,
outperforms the simpler model, MD2, and leads to better
identification of cQTLs. Actually the poor performance
of MD2 indicates that the amount of missingness is very
large, and it is helpful in such cases to utilize marker and
phenotype information jointly to predict the missing
values of expressions.

Discussion

We have presented here a new method for simulta-
neously estimating cis- and trans-acting eQTL effects as
well as the cQTL effects among the preselected set of
marker gene pairs. The method is based on hierarchical
modeling so that the eQTL model is a part of the larger
cQTL model. The both (eQTL and cQTL) models were
tested as separate analyses in presence of missing data
by assuming missing at random (Rubin, 1976). However,
there is one important difference in these two analyses
that needs more attention. Namely, in the plain eQTL
analysis, the posterior distributions of the eQTL model
parameters are influenced only by the observed part of
the expression data, whereas in cQTL analysis imputed
expression values also influence the posterior. Therefore,
in cQTL analysis, one should be careful that the amount
of missing data does not become larger than the
observed part of the data (cf. Kilpikari and Sillanpää,
2003). Even if not detected here, there may still be some
unwanted biases present in the estimates when the
amount of missing data exceeds 50%. The presented
method is, to our knowledge, the first attempt to model
these two tasks simultaneously within a single modeling
framework. Therefore, we want to here briefly discuss
different future directions that we feel are central in this
context.

Multiple trait analysis
In this article we have considered only a single
phenotype at a time. However, using several traits
simultaneously would be interesting extension to be
considered in the future that definitely can provide more
information on locating the cQTLs and eQTLs as well as
on separating pleiotropy from close linkage. In case of
pleiotropy, we can further consider separating marker
effects from expression effects at same location. In
addition, an interesting issue here is the comorbidity,
association of two or more traits, which would provide
insight on direct and indirect genetic effects (Smoller
et al., 2000; Robins et al., 2001; Corander and Sillanpää,
2002; Grünewald, 2004; D Remington, North Carolina,
personal communication). To study this issue, Li et al.
(2006) presented the structural equation model, where
hierarchical regression relationships between variables
are determined. Verzilli et al. (2005) considered see-
mingly unrelated regressions model, where different sets

of single nucleotide polymorphisms can be taken as
explanatory variables for each trait. As of their flexibility,
these models could provide adequate framework for
future extensions of our setup to multiple traits.

The central technical issue (for MCMC estimation and
convergence of the Bayesian approach) due to the small
sample size (number of individuals) is the efficient
parametrization of the multiple trait model. The useful
parametrization, in terms of restricting (between trait)
effect ratio to be constant over alleles at each locus and
gene correlations always to be either �1 and 1, has been
proposed by Goddard (2001). For implementation, see
Meuwissen and Goddard (2004). Also, an application of
Bayesian variable selection for estimating non-zero
elements of the covariance matrix has been suggested
(Smith and Kohn, 2002).

Multiple gene models and model choice
The presented method is based on a single-eQTL model,
which may limit an application of the method for eQTL
mapping purposes, but it provides a new source of
information for handling of missing gene expressions in
the cQTL mapping context. In their real data application,
Hoti and Sillanpää (2006) considered the eQTL model for
a single expression phenotype, where an associated
subset of multiple markers and expression levels (as
well as their interaction components) were determined
using Bayesian adaptive model selection. Perez-Enciso
et al. (2007) proposed the use of support vector machines
and stepwise regression approach for similar purpose.
They also showed how the use of other expression levels
as potential covariates in the model can improve the
performance of eQTL mapping. Bhattacharjee and
Sillanpää (2008) proposed the Bayesian cQTL model
with the indicator variables (for model selection) to study
stratified allele and expression effects to the phenotype
using different clinical variables (for example, sex and
onset) as stratifying factors. Recently, Jia and Xu (2007)
presented a new Bayesian eQTL approach to simulta-
neously analyze hundreds of expression levels using a
multiple marker model and model selection. Further
studies are needed in this area, especially from the
viewpoint of small sample size (number of individuals).
This is because a small sample size has a direct impact on
practical identifiability (multimodality of the posterior
distribution) of the parameters and it largely determines
what is a reasonable number of putative candidates and
effects to be considered in the model (Hoti and Sillanpää,
2006). In such (sample size) assessment, one should also
account for colinearity (correlateness) between candi-
dates.

Pathway/dependence information
The pathway information is usually utilized to reduce
the number of candidates in the cQTL analysis (Thomas,
2005), but we have presented here another way to
incorporate dependence information between transcripts
to the eQTL and cQTL analyses. If the eQTL model is
omitted from the cQTL model, it is possible to model
dependence between transcripts directly in their values
of gene expressions. This represents again an alternative
formulation of missing data model for expressions in the
cQTL model context. Other than the missing data model,
the dependence between candidates (markers/gene
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expressions) of the cQTL model can be modeled also
indirectly by introducing dependence prior for the
model selection indicators (Sillanpää and Bhattacharjee,
2005).

See also the approach of Malo et al. (2008). To model
dependence due to pathway membership in the cQTL
analysis, Hung et al. (2004) have suggested the approach
where the effects, of the markers (genes) being members
of the same pathway, are exchangeable and arise from a
common distribution. To consider more about pathway-
based approaches, see Wang et al. (2007), and Luan and
Li (2008).

The model specification code (written in OpenBUGS)
is freely available for research purposes at http://
www.rni.helsinki.fi/~mjs/.
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Appendix: eQTL and cQTL models for F2

Here we consider F2 offspring resulting from a cross
between two inbred lines, in which case the genotype
value Gi,j of individual i at marker j is 1 for genotype AA,
�1 for genotype aa, and 0 for Aa. By assuming that only
single marker (a major gene) is controlling each expres-
sion phenotype, there will be two equal sized (small)
modes and one large mode in the tri-modal gene-
expression frequency distribution following genotypic
offspring ratio, which is 1:2:1 for the genotypes AA, Aa
and aa, respectively. We assume that the mean of two
homozygotes aj¼ 0 is located between the two smaller
modes and mj is an additive effect (a deviation from the
mean). In case mj¼ 0 both distributions (modes) of AA
and aa genotypes coincide. For F2, we need also the
dominance parameter Dj to describe the effect of a
heterozygote genotype Aa at each pair j. How far (and in
which side) the large mode is from the mean aj¼ 0,
is depending on a magnitude (and a sign) of the
dominance Dj. In case Dj¼mj¼ 0 the distributions
of all genotypes coincide and cannot be distinguished.
Now, given the model parameters (Ij,mj, Dj, Aj, Gi,j, aj,s0

2),
we can assume a following linear eQTL model
Ei,j¼ ajþ Ij(mjAjGi,jþDj(1�|Gi,j|))þ ei,j. Again the resi-
duals ei,j (over pairs) are normally distributed with mean
0 and variance s0

2, and the model selection indicator Ij is
defined as before. The assignment variable Aj of pair j
defines the sign of the additive effect, corresponding to
the two orderings of the genotypes AA and aa. Note that,
like in backcross, the dependence between transcripts is
modeled only in the additive effects mj.

In case of F2 intercross, the cQTL model is similar to
before except that, bj

M ¼bj,1
M , bj,2

M and bj
ME ¼bj,1

ME, bj,2
ME are

vectors containing two elements. In each case, the two
elements are assumed to be exchangeable and arise from
a common distribution.
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