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Functional mapping has emerged as a next-generation
statistical tool for mapping quantitative trait loci (QTL) that
affect complex dynamic traits. In this article, we incorporated
the idea of nonlinear mixed-effect (NLME) models into the
mixture-based framework of functional mapping, aimed to
generalize the spectrum of applications for functional
mapping. NLME-based functional mapping, implemented
with the linearization algorithm based on the first-order
Taylor expansion, can provide reasonable estimates of QTL

genotypic-specific curve parameters (fixed effect) and the
between-individual variation of these parameters (random
effect). Results from simulation studies suggest that the
NLME-based model is more general than traditional func-
tional mapping. The new model can be useful for the
identification of the ontogenetic patterns of QTL genetic
effects during time course.
Heredity (2008) 101, 321–328; doi:10.1038/hdy.2008.53;
published online 9 July 2008
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Introduction

Dynamic traits change their phenotypes with time or
other independent variables. A profound understanding
of the genetic control of a dynamic trait should include
the timing of the underlying genes to turn on and off in a
time course, the duration of genetic main and interaction
effects, the pleiotropic effects of the genes on various
developmental events, and sensitivity of the genes in
response to environmental signals. Functional mapping,
emerging as a next-generation statistical method for
genetic mapping, has proven to be powerful for
addressing the above-mentioned issues by mapping
ontogenetic quantitative trait loci (QTL) for complex
dynamic traits (Ma et al., 2002; Wu et al., 2003a, b,
2004a, b, c; reviewed in Wu and Lin, 2006; Yang et al.,
2006; Yang and Xu, 2007). The fundamental idea of
functional mapping is to jointly model the mean
covariance structure within a mixture model framework
for dynamic traits longitudinally measured at different
time points by using parametric or nonparametric
approaches. If there exist biologically meaningful math-
ematical equations for longitudinal curves, such as
growth equation (West et al., 2001), biexponential curve
for HIV dynamics (Ho et al., 1995), Fourier series
approximation for cell cycle (Spellman et al., 1998) and
power equation for allometric scaling (West et al., 1997),
parametric approaches can be implemented to estimate
the mathematical parameters that define the shapes of

curves for a QTL genotype expressed as a mixture
component, instead of directly estimating the QTL
genotypic means at all different time points.
As a type of time series data, longitudinal traits exhibit

a strong autocorrelation between successive time points.
Structuring such a time-dependent covariance matrix by
a stationary or nonstationary approach can increase the
model’s stability, robustness and statistical power to
detect QTL. The approaches for modeling the covariance
structure in functional mapping have been based on
autoregressive (AR; Ma et al., 2002) or antedependence
models (Zhao et al., 2005). In all such modeling work,
repeated measurements are assumed to be independent
among different subjects and, thus, only within-subject
covariance structures have been considered. In a general
setting of longitudinal data analysis, three components of
random variability in the modeling process should be
distinguished, that is, the random effects that stem from
heterogeneity between individual profiles, serial correla-
tion between observations within sampling unit and
measurement error (Davidian and Giltinan, 1995, 2003;
Diggle et al., 2002). Thus, although the approximation of
a covariance structure merely based on serial correlations
in current functional mapping is thought to be parsimo-
nious, it may have serious limitations that would prevent
a wide implication of functional mapping. These limita-
tions are shown in the following aspects.
First, the mathematical parameters for individual

longitudinal curves with the same QTL genotype may
not be independent among subjects. The ignorance of
among-subject dependence for the curve parameters
would overestimate the genetic effect of QTL on long-
itudinal trajectories. To draw a valid statistical inference
for longitudinal data, random effects that capture
heterogeneity among subjects should be considered, in
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a conjunction with direct modeling of the within-subject
correlation (Chi and Reinsel, 1989; Schabenberger, 1995).
Second, the curve parameters may be affected by an
array of biological or demographic covariates, such as
age, sex, race and body weight. For those biological
covariates, it is possible that they are under the control of
genetic systems that are the same as, or different from,
those for the longitudinal traits under consideration.
Testing the difference of genetic control for different
traits or processes presents an interesting and challen-
ging genetic issue (Lynch and Walsh, 1998).

In this article, nonlinear mixed-effect (NLME) models,
or hierarchical nonlinear models, will be incorporated
into the context of functional mapping based on a
mixture model, aimed to circumvent the above-mentioned
limitations of current functional mapping strategies. Since
their first emergence in the early 1980s (Beal and Sheiner,
1982; reviewed in Davidian and Giltinan, 1995), NLME
models have quickly become a popular statistical method for
studying longitudinal data (Lindstrom and Bates, 1990).
More recently, a number of extensions and modifications to
better suit new challenges have been developed (Davidian
and Giltinan, 1995; Vonesh et al., 2002; Wu, 2002, 2004a,b).
The major advantage of NLME models lies in their capacity
and flexibility to model various structures of covariance
matrices. Also, they display a unique ability to accommodate
a general intraindividual covariance structure for unbalanced
data where measurements are sparse for some subjects and
different subjects receive different measurement patterns.

The application of NLME models is a promising
approach for improving parameter estimation and valid
inferences of longitudinal data including pharmacoki-
netics and HIV dynamics. Mixed-effect models may also
be appealing to genetic studies by increasing the
flexibility of QTL mapping for response curves (Rodri-
guez-Zas et al., 2002; Malosetti et al., 2006). However,
because the statistical properties behind this technique
have not been explored, its application lacks sensible
justifications. Also, although these published works can
model interindividual variation in curve parameters,
they have a limited flexibility to model the common
genetic basis shared by biologically meaningful curve
parameters and other biological variables. The purpose
of this study is to develop NLME models for estimating
the ontogenetic pattern of the genetic control of complex
dynamic traits and examine the statistical behavior of
this technique through extensive simulation studies. We
will integrate NLME models and mixture models within
the framework of functional mapping to increase the
vision of this mapping method.

Functional mapping

Nonlinear mixed-effects model
The purpose for the development of functional mapping
is to map the temporal effects of QTL on longitudinal
traits. Consider a mapping population of n individuals,
in which a total of J QTL genotypes at different loci are
segregating to affect time-dependent phenotypes of a
trait. All the individuals are genotyped for multiple
polymorphic markers that construct a genetic linkage
map and phenotyped for a longitudinal trait measured at
a finite set of time points.

Let ti ¼ ftitgTi

t¼1 be the vector of times for individual i
measured at Ti time points and yi ¼ fyiðtitÞgTi

t¼1 be the
vector for longitudinal phenotypic measurements of
individual i. The time points may be unbalanced among
individuals and unequally spaced during measurements.
The phenotypic value of the trait for individual i affected
by the putative QTL can be described by a two-stage
NLME model, expressed as:

Stage 1 (individual-level model): The response value of
individual i across different time points is described by

yi ¼
XJ

j¼1

xijgðbij; tiÞ þ ei ð1Þ

where xij is the indicator variable defined as 1 if
individual i carries QTL genotype j and 0 otherwise, g
is a nonlinear function of bij and ti, bij is a (q� 1) vector of
individual-specific unknown curve parameters and ei is a
(1�Ti) error term, usually assumed to have a normal
distribution with mean vector 0 and within-individual
covariance matrix Si. Note that Si is a (Ti�Ti) serial
covariance matrix, which can be structured by a set of
parameters (Diggle et al., 2002).

Stage 2 (population level): The parameters that define
the curve shape of individual i with QTL genotype j can
be expressed as

bij ¼ Aibj þ Bibij ð2Þ
where bj is a (p� 1) vector of the unknown
population parameters for QTL genotype j, bij is a
(k� 1) vector of the random effects, assumed to be
normally distributed with mean vector 0 and (k� k)
between-individual covariance matrices Dj, and Ai and
Bi are design matrices of size q� p and q� k for bj and bij,
respectively. This stage captures the interindividual
systematic and random variation. This model in a
general form can handle any kinds of nonlinear function
and the design matrices Ai and Bi can vary for different
groups, covariates or even for different individuals.

Mixture model-based likelihood
The statistical foundation for QTL mapping with
molecular markers is a finite mixture model. According
to the mixture model, the trait value of an individual is
assumed to have arisen from one (and only one) of J QTL
genotype groups or mixture components, each compo-
nent with a relative proportion and being modeled by a
normal distribution density.

The likelihood of unknown parameters given the
longitudinal measurements (y) and marker information
(M) for the mapping population is formulated, in terms
of a mixture model, as

Lðo; b;bi; yjy; MÞ ¼
Yn

i¼1

XJ

j¼1

½ojjifjðyijbj; bij; yÞ


¼
Z XJ

j¼1

ojjifjðyijbj; bij; yÞ

0
@

1
A fðbijjDjÞ dðbijÞ

¼
XJ

j¼1

ojji

Z
fjðyijbj; bij; yÞÞ fðbijjDjÞdbij;

ð3Þ

where o ¼ fojjigJ
j¼1 are the QTL genotype frequencies

which are constrained to be nonnegative and sum to
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unity, b ¼ fbjg
J
j¼1 and bi ¼ fbijgJ

j¼1 are the component (or
QTL genotype)-specific parameters, with bj and bij being
specific to QTL genotype j, y is the common parameters
to all QTL genotypes, which is the set of unknown
parameters that construct Dj and Si.

The mixture proportion or QTL genotype frequency
oj|i depends on the type of mapping population, such as
the backcross, recombinant inbred lines, F2 or natural
population. The frequencies of QTL genotypes can be
inferred by observed marker genotypes because markers
and QTL are assumed to be cosegregating in the
mapping population. Assume that a putative QTL is
located between two flanking markers that bracket the
QTL. Thus, the mixture proportions, oj|i, can be
expressed as the conditional probabilities of QTL
genotypes given the flanking marker genotype of
individual i. The conditional probability can be derived
in terms of recombination fractions between the QTL and
each of the two markers and between the two markers.

Computational algorithm
There are three types of parameters that define the
likelihood (3), which are the mixing proportions of QTL
genotypes conditional on marker genotypes (o), QTL
genotype-specific curve parameters (b, bi) and the
covariance-structuring parameters (y). The mixing pro-
portions (o) are expressed in terms of the recombination
fractions between the markers and QTL and, therefore,
the genomic location of the QTL (converted by the map
function). In practice, o, that is, the QTL location, can be
treated as a constant because a putative QTL can be
searched at every 1 or 2 cM on an interval of two flanking
makers throughout the entire linkage group. The log-
likelihood ratio (LR) test statistics are plotted against the
linkage map distance. The linkage map position corre-
sponding to a peak of the log-LR plot will be determined
as the maximum-likelihood estimate (MLE) of the QTL
location. Thus, on each scanning location of a QTL, the
mixture likelihood will only depend on bj, bij and y. This
grid approach is computationally simple, but cannot
provide the estimate of the confidence interval of the
QTL location estimate. Chen (2005) derived an algorithm
for simultaneously estimating the standard errors and
confidence intervals of the estimates of QTL effects and
locations within the mixture model framework.

From the likelihood (3), the estimates of bj, bij and y
will need to jointly maximize the posterior distribution
function fjðyijbj; bij; yÞ fðbijjDÞ weighted by oj|i. But an
inference based on the maximization of this distribution
is difficult because its expectation is not linear for these
unknowns. A few statistical approaches have been
developed to obtain the MLEs of bj, bij and y, and they
include numerical evaluation of the integral (Davidian
and Giltinan, 1995, 2003), Monte Carlo expectation
maximization (EM) algorithm (Wu, 2002, 2004a) and
approximations to the nonlinear likelihood function
(Tierney and Kadane, 1986; Lindstrom and Bates, 1990;
Wolfinger, 1993). Here, we will use a linearization
approximation method by using the first-order Taylor
expansion to approximate the nonlinear expectation
function (Beal and Sheiner, 1982; Lindstrom and
Bates, 1990).

For individual i, the mixture-based NLME models (1)
and (2) are rewritten into a single equation, expressed in

matrix notation as

yi ¼
XJ

j¼1

xijgðbj; bij; tiÞ þ ei: ð4Þ

By taking the first-order Taylor expansion of gðbj; bij; tiÞ,
Equation (4) is linearized to become a linear mixed-effect
(LME) model expressed as

~yi ¼
XJ

j¼1

xijðWibj þ ZibijÞ þ ei ð5Þ

where

~yi ¼ yi �
XJ

j¼1

xijgðb̂j; b̂ij; tiÞ þ
XJ

j¼1

xijðWib̂j þ Zib̂ijÞ;

with the Wi and Zi composed of time-
dependent elements:

WiðtiÞ ¼
qgðbj; bij; tiÞ

qbTj
;

and

ZiðtiÞ ¼
qgðbj; bij; tiÞ

qbT
ij

:

According to Laird and Ware (1982), the estimates of bij

and bj under the LME model are approximated by

b̂ij ¼ D̂jẐ
T

i ðSi þ ẐiD̂jẐ
T

i Þ
�1ð~yi � Ŵib̂jÞ ð6Þ

b̂j ¼
Xn

i¼1

ŴT
i ðSi þ ẐiD̂jẐ

T

i Þ
�1Ŵi

 !�1

�
Xn

i¼1

Ŵ
T

i ðSi þ ẐiD̂jẐ
T

i Þ
�1~yi:

ð7Þ

Also, QTL genotype-specific curve parameters bj can be
estimated, along with covariance matrix parameters y,
by maximizing the approximate-likelihood function
expressed as

Lðb; yj~yiÞ ¼
Yn

i¼1

½ojjifjð~yiÞ
;

where

fjð~yiÞ ¼
1

ð2pÞT=2jSi þ ẐiD̂jẐ
Tj1=2
i

� exp � 1

2
ð~yi � ŴijbjÞT




�ðSi þ ẐiD̂jẐ
T

i Þ
�1ð~yi � ŴijbjÞ

�
:

The simplex algorithm implemented with the MatLab
function fminsearch can be used to obtain the MLEs of bj

and y (Lagarius et al., 1998).

Hypotheses
A significant advantage of functional mapping is that it
can perform a number of biologically meaningful
hypotheses based on the mathematical model of long-
itudinal curves. Most importantly, the existence of a QTL
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that exerts an effect on an overall growth curve should
first be tested and this can be formulated as

H0 : bj � bðj ¼ 1; . . . ; JÞ
H1 : at least one of the equalities above does not hold

� 
ð8Þ

at least one of the equalities above does not hold (1),
where H0 corresponds to the reduced model, in which
the data can be fit by a single mathematical curve, and H1

corresponds to the full model, in which there exist
different longitudinal curves to fit the data. The log-
likelihood values L0 and L1 under the H0 and H1 are
calculated. The test is performed with a log-LR statistic

LR ¼ �2 lnðL0=L1Þ: ð9Þ
To determine the significance of the LR test, we use the
critical threshold generated by permutation tests
(Churchill and Doerge, 1994). By repeatedly shuffling
the relationships between marker genotypes and pheno-
types, a series of the maximum log-LRs are calculated,
from the distribution of which the critical threshold is
obtained. The LR statistic is plotted against test locations
for all the linkage groups. A location of a high peak of LR
that is beyond the threshold is considered corresponding
to the position of QTL.

In addition, the hypothesis test for the time at which
the detected QTL turns on or off its effect on longitudinal
trajectories can be performed, by comparing the difference of
the expected means between different genotypes at various
time points. Within the functional mapping framework, the
effect of the QTL on a period of time course and its
interaction with age can also be tested (Wu et al., 2004a).

A worked example

Mapping population
Here we reanalyzed a published data set for QTL
mapping of growth trajectories (Ma et al., 2002) to
demonstrate the utilization of NLME-incorporated func-
tional mapping. The plant materials used were derived
from the interspecific hybridization (F1) between Eastern
Cottonwood (Populus deltoides) and Canadian poplar
(P. euroamericana). Different from inbred lines that need
an advanced-generation design for mapping, outcrossing
species like trees can make use of a controlled cross of F1,
in which genes are segregating in different patterns
because of heterozygous parents. Grattapaglia and
Sederoff (1994) proposed a pseudotest backcross design
to perform QTL mapping in such an F1 cross for
outcrossing species. This design capitalizes on the so-
called testcross markers that are segregating in one
parent but null in the second parent. Thus, two different
linkage maps can be constructed for an outbred cross,
each derived from a different heterozygous parent.

The hybrid poplars for QTL mapping were planted at
a spacing of 4� 5m at a forest farm near Xuzhou City,
Jiangsu Province, China. Total stem heights and dia-
meters measured at the end of each of 11 growing
seasons are used in this example. A subset (90) of hybrid
trees randomly selected from the original population
were used to construct two parent-specific genetic
linkage maps with random amplified polymorphic
DNAs, amplified fraction length polymorphisms and
inter-simple sequence repeats (Yin et al., 2002). Using

NLME-based functional mapping, we attempt to locate
QTL affecting stem diameter growth trajectories on the
linkage map derived from the P. deltoides parent.
Individuals with missing joint genotypes for a given
pair of markers were excluded from our analysis.

Model formulation
The growth of the stem diameter can be well fit by a
logistic equation expressed as

gðtÞ ¼ a

1þ be�rt
ð10Þ

where a is the asymptotic or limiting value of g when
t-N, a/(1þ b) is the initial value of g when t¼ 0 and
r is the relative rate of growth (von Bertalanffy, 1957).
Given this growth equation, we express the growth of
individual i by

yiðtÞ ¼ x
a1

1þ b1e�r1t

� �
þ ð1� xÞ a0

1þ b0e�r0t

� �
þ eiðtÞ

where indicator x equals 1 or 0 for QTL genotype Qq and
qq, respectively. Growth parameters (a, b, r) are QTL
genotype-specific, subscripted by the genotype notation.
For simplicity, we only model interindividual variation
for parameters a and b by a simple linear regression

a1i ¼ a1 þ bai

b1i ¼ b1 þ bbi

�
for QTL genotype Qq

a0i ¼ a0 þ bai

b0i ¼ b0 þ bbi

�
for QTL genotype qq

where random effects bi¼ (bai, bbi) are assumed to be
genotype-invariant, normally distributed with mean
vector zero and diagonal covariance matrix

D ¼ n2a 0
0 n2b


 �
:

In this analysis, ei(t) is assumed to display a normal
distribution with mean vector zero and the first-order AR
(AR(1)) covariance matrix specified by two parameters r
and s2 (Ma et al., 2002). The AR(1) model assumes that
the variance (s2) is time-invariant and correlation decays
in a proportion r with time lag. These two assumptions
can be relaxed by introducing more complicated non-
stationary models (Zhao et al., 2005).

QTL scanning and estimation
The NLME-based mapping model is used to genome-
wide scan for all possible QTL, their existence and
chromosomal distribution. We detect two QTL on
linkage groups 9 and 10 that affect diameter growth
trajectories in poplar trees. Figure 1 illustrates a plot of
the LRs between the full (there is a QTL) and reduced
model (there is no QTL) across all the linkage groups.
These two detected QTL are located at 111.1 cM from
the first left marker on linkage group D9 and 12 cM
from the first left marker on linkage group D10 because
the LR peaks (34.77 and 33.33) at these positions
far exceed the genome-wide critical threshold (31.64).
Permutation tests were performed to determine the
empirical threshold for declaring the genome-wide
existence of QTL throughout all the linkage groups.

The MLEs of the curve parameters for each of two QTL
genotypes, Qq and qq, and the parameters that model the
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structure of the variance matrix are tabulated in Table 1,
along with the approximate standard errors of these
estimates estimated from Fisher’s information matrix.
All the parameters can be estimated with reasonable
precision. The MLEs of the curve parameters in Table 1
were used to draw growth curves at each QTL for
diameter growth (Figure 2). The pattern of the differ-
entiation in growth curves between two QTL genotypes
at each QTL suggests that these two detected QTL do not
trigger an effect on growth at an early stage of tree
development, but are activated at age 5–6 years and
keep operational afterwards. The timing of QTL to be
switched on seems to be concordant with the emerging
age of intertree competition for resources availability.
These results broadly support those obtained from
traditional functional mapping (TFM, Ma et al., 2002).

Monte Carlo simulation

In order to examine the statistical properties of the
NLME model for QTL mapping, two different Monte
Carlo simulation strategies were performed. The simula-
tion studies mimic the example of poplar trees with two
sample sizes (80 and 200). For the first strategy, data are
simulated according to the NLME model, whereas, for
the second strategy, data are simulated according to TFM
by Ma et al. (2002). In both cases, only serial correlations
are modeled with the AR(1) process. The simulated data
sets under different strategies are analyzed, respectively,
by the NLME and TFM models. Such reciprocal designs
are thought to be helpful for the methodological
comparison of QTL mapping.

As expected, if the data are simulated by the NLME
model, the NLME model displays better estimation
accuracy and precision of parameters than does the
TFM model (Table 2). The NLME model can precisely
estimate the QTL location, but the TFM fails to do so.
Also, compared to the TFM model, the NLME model is
more advantageous for convergence under the same

convergence criterion. For the data simulated under the
TFM model, the two analytical models, NLME and TFM,
perform similarly in the precision of parameter estima-
tion and power (Table 3). The estimates of heritability by
the two models are consistent with the true value. Tables
2 and 3 give the results for a sample size of 80. Increased
sample sizes tend to blur the difference between the two
models (results not shown). In general, it can be
suggested that the NLME model covers the TFM model
and, thus, can be used in a broader range of data types
than the TFM model.

Figure 1 The profile of log-likelihood ratio (LR) between the full and reduced model estimated from the nonlinear mixed-effect (NLME)
model for analyzing stem diameter growth trajectories in an interspecific poplar hybrid progeny across all the linkage groups. The dashed
line is the 1% cutoff point from permutation tests. The linkage map used is one constructed with heterozygous markers from the Populus
deltoides parent (Yin et al., 2002).

Table 1 MLEs of QTL genotype-specific parameters that define
stem diameter growth trajectories in poplar trees from the NLME
model

Parameters MLE

Genotype Qq Genotype qq

D9
aj 28.28 (0.7044) 23.85 (0.6272)
bj 12.24 (0.8472) 11.52 (0.8115)
rj 0.56 (0.0124) 0.63 (0.0156)
s2 4.27 (0.4899)
r 0.91 (0.0117)
na
2 10.50 (1.3069)
nb
2 7.28 (1.0007)
LR 34.77

D10
aj 27.85 (0.6820) 23.66 (0.6923)
bj 12.44 (0.7770) 11.85 (0.8888)
rj 0.56 (0.0117) 0.64 (0.0168)
s2 4.12 (0.4322)
r 0.91 (0.0110)
na
2 11.07 (1.4863)
nb
2 7.83 (1.3992)
LR 33.33

Abbreviations: LR, likelihood ratio; MLE, maximum-likelihood
estimate.
The standard errors of the MLEs are given in the parentheses.
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The two models are similar in computational
efficiency. On a desktop (CPU 2.4 gHz and memory
512mb), both models use about 20min per simulation
round for the data simulated with the NLME model.
Yet, the TFM model uses more time when it has a
convergence problem. For the data simulated with the
TRM model, the NLME model still uses about 20min,
but the TRM model is faster (using about 15min).

Discussion

In all the organisms, the development of morphological,
anatomical and physiological traits takes place in
characteristic ontogenetic periods. Effective modeling of
the genetic control of particular physiological alterations
emerging in the course of the developmental process
(from their early onset until their late consequences)
requires the use of adequate statistical models. Some
basic statistical models for the genetic study of develop-
mental dynamics have been proposed, in an attempt to
identify the ontogenetic genetic factors or QTL that
control the structure and function of a developmental

system (Wu et al., 1999, 2003a, b, 2004a, b, c; Ma et al.,
2002; Zhao et al., 2005; Wu and Lin, 2006; Yang et al., 2006;
Yang and Xu, 2007). These so called functional mapping
models have been expanded into various genetic fields
related to biomedical sciences, such as cancer growth
(Liu et al., 2005), HIV dynamics (Wang and Wu, 2004;
Wang et al., 2006) and drug response (Lin and
Wu, 2005).

The central idea of functional mapping is to model the
mean vector and covariance matrix structure by para-
metric or nonparametric approaches. Previous functional
mapping approaches have modeled the structure of the
covariance matrix by considering autocorrelation com-
ponents, but ignoring other sources that also affect the
covariance structure, such as random effects and
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Figure 2 Two growth curves (foreground) each presenting one of
the two groups of genotypes at the major quantitative trait loci
(QTL) detected on linkage groups D9 and D10. The differentiation
of growth curves shows the effect of the QTL on growth trajectories.

Table 2 MLEs of parameters for data set simulated by NLME
model with a sample size of 80 obtained from NLME-incorporated
and traditional functional mapping

Parameters True values MLE

NLME TFM

a1 28.28 28.06 (0.6863) 27.94 (0.8505)
b1 12.24 12.78 (1.2345) 12.57 (1.0337)
r1 0.56 0.56 (0.0156) 0.57 (0.0190)
a0 23.85 23.53 (0.6424) 24.09 (1.3549)
b0 11.52 12.09 (1.2365) 11.51 (0.8971)
r0 0.63 0.63 (0.0185) 0.62 (0.0199)
r 0.91 0.90 (0.0225) 0.96 (0.0094)
s2 4.27 4.13 (0.8863) 12.61 (1.7198)
na
2 10.25 10.03 (2.2443) —
nb
2 7.28 10.49 (5.7530) —
nc
2 0.001 0.0006 (0.0007) —
QTL
location

111.10 111.65 (4.5246) 102.41 (18.2223)

Convergence
rate

— 100% 60%

Abbreviations: MLE, maximum-likelihood estimate; NLME, non-
linear mixed-effect; QTL, quantitative trait loci; TFM, traditional
functional mapping.
The standard errors of the MLEs are given in the parentheses.

Table 3 MLEs of parameters for data set simulated by the TFM
model with a sample size of 80 obtained from NLME-incorporated
and traditional functional mapping

Parameters True values MLE

NLME TFM

a1 28.28 28.32 (0.3799) 28.32 (0.3775)
b1 12.24 12.31 (0.9705) 12.29 (0.9670)
r1 0.56 0.56 (0.0148) 0.56 (0.0149)
a0 23.85 23.82 (0.3376) 23.82 (0.3392)
b0 11.52 11.72 (0.8351) 11.70 (0.8579)
r0 0.63 0.63 (0.0169) 0.63 (0.0174)
r 0.91 0.90 (0.0122) 0.91 (0.0108)
s2 4.27 3.99 (0.4732) 4.17 (0.4462)
na
2 0.0 0.23 (0.3609) —
nb
2 0.0 0.58 (1.1707) —
nr
2 0.0 0.0001 (0.0002) —
QTL location 111.10 110.67 (3.5292) 110.57 (3.3062)
Convergence rate — 100% 100%

Abbreviations: MLE, maximum-likelihood estimate; NLME, non-
linear mixed-effect; QTL, quantitative trait loci; TFM, traditional
functional mapping.
The standard errors of the MLEs are given in the parentheses.
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measurement errors (Diggle et al., 2002). The study
presented in this article is aimed to generalize functional
mapping to model the effects of random effects on the
parameter estimation of functional mapping and its
relevant hypothesis tests, thus broadening the visibility
of functional mapping. The incorporation of random
effects with functional mapping based on NLME models
(Beal and Sheiner, 1982; Lindstrom and Bates, 1990;
Davidian and Giltinan, 1995, 2003; Vonesh et al., 2002;
Wu, 2002, 2004a, b) is robust; in that it can provide
sufficient power to detect ontogenetic QTL for longi-
tudinal data measured at uneven spaces and irregularly
for different subjects.

The NLME-incorporated functional mapping model
has been used to analyze a published growth data set in
poplar trees. As compared to previous simpler functional
mapping (TFM) (Ma et al., 2002), the new model
generates agreeable results for the detection of QTL,
their chromosomal locations and ontogenetic effects
during a time course. However, simulation studies based
on reciprocal designs, that is, the data simulated and,
then, analyzed by NLME and TFM models, respectively,
suggest that whereas QTL contained in the TFM-
simulated data can be detected by both models, QTL in
the NLME-simulated data can only well be detected by
the NLME model. All this implies that the NLME model
is more general and can be used more widely in practice
than the TFM model.

Perhaps, the most significant advantage of NLME-
based functional mapping is its flexibility to extend the
idea of functional mapping to a broad spectrum of
biological and biomedical areas (see also Malosetti et al.,
2006). NLME models include two-stage hierarchical
characterization of intra- and intersubject variation. In
the first stage, any form of parametric models can be
incorporated that are defined by biologically meaningful
mathematical parameters; for example, growth rate
parameter in the growth equation (West et al., 2001) is
related to the developmental status of an organism in a
time period. These mathematical parameters may be
correlated with other physiological variables or ex-
pressed differently under different environmental con-
ditions or genetic backgrounds. The genetic control of
these biological phenomena can be integrated into the
second stage of the NLME model at which specific
underlying QTL can be modeled, estimated and tested.

Statistics inference of longitudinal measurements
based on the NLME model has received considerable
attention in recent years because of its flexibility to
incorporate the correlation within repeated measure-
ments, between-individual variation and covariates
(Vonesh et al., 2002; Wu, 2002, 2004a, b; Davidian and
Giltinan, 2003). The NLME model has been recently
extended to take into account censoring and covariate
measured with errors (Wu, 2002), missing covariates
(Wu, 2004a) and nonignorable dropouts (Wu, 2004b). In
addition, to clearly describe the NLME model, we
constructed our model framework in the context of
interval mapping. More recently, Xu and group have
developed a series of shrinkage models that allow a
genome-wide search for all possible QTL (Xu, 2003, 2007;
Wang et al., 2005). These multiple QTL models taking
into account epistatic interactions between different QTL
can be incorporated into the NLME model. All these
statistical and genetic extensions can be incorporated

into functional mapping, which will provide a powerful
means for characterizing the developmental machinery
of the genetic control of complex traits at the interplay
between trait formation and progression and the
environment in which the organism is grown. The
computer code for the statistical method proposed in
this article can be available from the corresponding
author.
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