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Revealing cryptic spatial patterns in genetic
variability by a new multivariate method

T Jombart, S Devillard, A-B Dufour and D Pontier
Laboratoire de Biométrie et Biologie Evolutive, UMR-CNRS 5558, Université de Lyon, Université Lyon 1, Villeurbanne Cedex, France

Increasing attention is being devoted to taking landscape
information into account in genetic studies. Among land-
scape variables, space is often considered as one of the
most important. To reveal spatial patterns, a statistical
method should be spatially explicit, that is, it should directly
take spatial information into account as a component of the
adjusted model or of the optimized criterion. In this paper we
propose a new spatially explicit multivariate method, spatial
principal component analysis (sPCA), to investigate the
spatial pattern of genetic variability using allelic frequency
data of individuals or populations. This analysis does not
require data to meet Hardy–Weinberg expectations or
linkage equilibrium to exist between loci. The sPCA yields
scores summarizing both the genetic variability and the

spatial structure among individuals (or populations). Global
structures (patches, clines and intermediates) are disen-
tangled from local ones (strong genetic differences between
neighbors) and from random noise. Two statistical tests are
proposed to detect the existence of both types of patterns. As
an illustration, the results of principal component analysis
(PCA) and sPCA are compared using simulated datasets
and real georeferenced microsatellite data of Scandinavian
brown bear individuals (Ursus arctos). sPCA performed
better than PCA to reveal spatial genetic patterns. The
proposed methodology is implemented in the adegenet
package of the free software R.
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published online 30 April 2008

Keywords: landscape genetics; Moran’s I; multivariate analysis; principal component analysis; spatial genetics

Introduction

Recently, growing attention is being devoted to taking
landscape information into account in genetic studies
(Manel et al., 2003). Among landscape features, space is
most likely to influence the genetic structuring of a set of
individuals or populations (Manel et al., 2004; Coulon
et al., 2006). This structuring can exhibit different
patterns, such as isolation by distance (Wright, 1943),
clines (Haldane, 1948), metapopulations (Hanski and
Simberloff, 1997; Kerth and Petit, 2005) and barriers to
gene flow (Slatkin, 1985). Moreover, as technological
advances have made obtaining spatial information
easier, there is strong interest in including this informa-
tion in the analysis of genetic data.

Exploiting the geographic dimension of genetic data is
not new. Spatial information can be used a posteriori for
graphical display purposes (for example, Bertranpetit
and Cavalli-Sforza, 1991; Manel et al., 2004) or to measure
spatial autocorrelation (for example, Sokal and Warten-
berg, 1983; Sokal et al., 1986; Bertorelle and Barbujani,
1995; Smouse and Peakall, 1999). Such methods are
useful descriptive tools to visualize, quantify and test
spatial structure, but are not properly designed to
investigate spatial patterns. For instance, ordinary

ordination methods (Bertranpetit and Cavalli-Sforza,
1991) may reveal spatial patterns wherever they are
obvious, but they are not constrained to do so. To
investigate spatial structures other than the most evident,
a method should be spatially explicit, that is, it should
directly take spatial information into account as a
component of the adjusted model or of the optimized
criterion, thereby focusing on the part of the variability,
which is spatially structured.

Such methods have been developed using different
approaches. Within the analysis of molecular variance
(AMOVA) framework (Excoffier et al., 1992), the spatial
analysis of molecular variance (SAMOVA; Dupanloup
et al., 2002) has proven useful for phylogeographic
studies (Pramual et al., 2005; Tolley et al., 2006) to assess
the spatial structure of a known number of populations.
Within the Bayesian clustering framework, GENELAND
(Guillot et al., 2005) and, more recently, a hierarchical
Markov random field (HMRF) model (François et al.,
2006) were proposed as improvements of STRUCTURE
(Pritchard et al., 2000; Falush et al., 2003) by integrating
geographic information to infer the number of popula-
tions and detect the genetic discontinuities among these
populations (Coulon et al., 2006). Combining wombling
and Bayesian assignment, Manel et al. (2007) proposed a
method to detect genetic boundaries among multilocus
genotypes. However, these approaches rely on a genetic
model and require populations to meet Hardy–Weinberg
equilibrium expectations (although the HMRF model
allows inbreeding) and for linkage equilibrium to exist
between loci (see Kaeuffer et al., 2007). This might be a
problem as such expectations are unrealistic in many
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cases and robustness of these methods have not been
evaluated yet. Another, maybe more concerning, issue
with these methods resides in the clustering approach
itself: assigning individuals to groups is a likely
inappropriate strategy when individuals are genetically
structured as a cline. A last approach would be to use
a Mantel correlogram (Legendre and Legendre, 1998, pp
736–738) to assess the variation of spatial autocorrelation
in allelic frequencies across scales. However, this method
is not wholly satisfying as it would only allow to detect
spatial structuring, but would not permit to visualize the
corresponding spatial patterns.

An appealing alternative for exploring genetic data is
offered by reduced space ordination methods because
their utilization is not contingent on a particular genetic
model. Hardy–Weinberg equilibrium or linkage equili-
brium are thus no longer required. Basically, these
methods aim at summarizing strongly multivariate data
into a few uncorrelated components, forming the so-
called ‘reduced space’. For this summary to be mean-
ingful, the components are chosen so as to reflect most of
the variability in data, as defined by an optimized
criterion (for example, variance among observations).
Such methods can be applied on allelic frequency data to
obtain a summary of the genetic variability among
individuals or populations. A great illustration of such
practice was offered by Menozzi et al. (1978), who used a
principal component analysis (PCA; Pearson, 1901) to
investigate the spatial patterns of the genetic variability,
obtaining the well-known synthetic maps of human gene
frequencies. More recently, PCA proved useful to correct
for population stratification (Price et al., 2006) and to
infer and test the number of subpopulations represented
in a set of genotypes (Patterson et al., 2006). However,
PCA can be criticized when applied to reveal spatial
patterns. Indeed, this method finds synthetic variables
on which the variance among genotypes is maximized,
but does not take spatial information into account. PCA
seeks genetic variability, not spatial structures; it is not
a likely optimal method for revealing cryptic spatial
patterns, that is, spatial patterns that are not associated to
the highest genetic variation.

In this paper, we propose a new method, the spatial
principal component analysis (sPCA), as a tool to
investigate cryptic spatial patterns of genetic variability
using georeferenced multilocus genotypes. Our method
relies on a modification of PCA so that not only the
variance between the studied entities (individuals or
populations), but also their spatial autocorrelation is
taken into account. The main results of the analysis are
maps of entities scores allowing a visual assessment of
the spatial genetic structures. The obtained scores reveal
two types of patterns, which we define as global and local
structures (sensu Thioulouse et al., 1995). Although both
types express a fair amount of genetic variability, global
structures display positive spatial autocorrelation
whereas local ones display negative spatial autocorrela-
tion. In other words, a global pattern would differentiate
between two spatial groups or find a cline (or any
intermediate state), whereas local scores would retrieve
stronger genetic differences among neighbors than
among random pairs of entities. As the studied entities
can be genotypes or groups of genotypes (later referred
to as ‘populations’, in a broad sense), global and
local structures encompass a wide range of biological

situations. For instance, global patterns of genotypes
could indicate population patches in an island model, as
well as cline wherever isolation by distance occurs. Local
structures could arise when individuals from the same
genetic pool are selected to avoid each other (repulsion)
or to be attracted by individuals from other genetic
pools. Similarly at the population level, global and local
patterns may result from stratification (Price et al., 2006)
or from adaptations to environmental variables that are
inherently spatially structured (‘spatial dependence’;
sensu Wagner and Fortin, 2005).
First, we explain how the spatial information is

modeled explicitly through a connection network
(Legendre and Legendre, 1998, pp 752–756) to be used
in further computations. Then, we detail the meaning of
Moran’s index of spatial autocorrelation (I; Moran, 1948,
1950) which is incorporated into the sPCA criterion, and
show how it can identify global and local patterns in
allelic frequency data. We then demonstrate how sPCA
yields independent components optimizing the product
of the variance and Moran’s I. As an aid to choose the
sPCA scores to be interpreted, we developed two
multivariate tests against the absence of global and local
patterns. Our approach is illustrated and compared to
PCA using simulated and real datasets. We conclude
by discussing the prospective applicability of this
method for the analysis of genetic data. The developed
methodology is implemented in the adegenet package
(Jombart, 2008) of the free software R (Ihaka and
Gentleman, 1996; R Development Core Team, 2008).

Methods

Modeling spatial information
The first step of a spatially explicit method is to define
how spatial information is introduced in the method. In
sPCA, the detection of spatial structures uses the well-
known Moran’s I (Moran, 1948, 1950), which relies on the
comparison of the value of a quantitative variable (for
example, allelic frequency) observed at one site (that is,
individual or population) to the values observed at
neighboring sites. This approach thus requires ‘neigh-
boring sites’ to be defined. This is usually achieved by
building a connection network (also called neighboring
graph) which uses an objective criterion to define which
entities are neighbors, and which are not. To simplify the
definition of spatial structures provided in this paper, the
term ‘neighbors’ is here restrained to immediate
neighbors, that is, two vertices of the same edge of the
connection network.
Several algorithms, whose review is beyond the scope

of the present paper, can be used to build a connection
network (Legendre and Legendre, 1998, pp 752–756).
Although other spatially explicit methods, such as
SAMOVA (Dupanloup et al., 2002) or GENELAND
(Guillot et al., 2005), impose a specific connection
network (the Delaunay triangulation; Upton and Fingle-
ton, 1985), sPCA can use any graph. This plasticity
makes sPCA adaptable to various spatial distributions.
For instance, Delaunay triangulation or Gabriel graph
(Gabriel and Sokal, 1969) would be adapted to evenly
distributed entities, whereas distance-based neighbor-
hood would be more appropriate to aggregated distribu-
tions. Moreover, connection networks can be refined

A new multivariate spatial method
T Jombart et al

93

Heredity



manually to include empirical knowledge of the spatial
connectivity among entities. Once the connection net-
work is defined, the spatial information is stored in a
binary connection matrix M, which is symmetrical and
its lines and columns correspond to the same biological
entities (as in a distance matrix). The values of M are 1 if
the two considered entities are connected, and 0
otherwise. This matrix is used in the computation of
Moran’s I and therefore in sPCA.

Measuring spatial autocorrelation of an allelic frequency
Let us consider one allelic frequency measured on n
individuals or populations. Once the binary connection
matrix M is obtained, the spatial autocorrelation of this
frequency can be quantified using Moran’s I. The general
form of this index can be written using matrix notation
(Cliff and Ord, 1981, p 119), where x is the vector of n
centered allelic frequencies and W is the sum of all the
terms of M:

IðxÞ ¼ xTMx

W

n

xTx
ð1Þ

The meaning of this index depends only on its first
component; the effect of the second component n/xTx
(which is the inverse of the variance of x) is to scale the
variable so that I only reflects its spatial structure, not its
variability. In this paper we use a version of I in which M
is standardized so that the rows sum to one (Cliff and
Ord, 1973, p 13). Denoting by L the resulting matrix, (1)
becomes:

IðxÞ ¼ xTLx

n

n

xTx
¼ xTLx

xTx
ð2Þ

The expected value when the frequency observed at a
site is independent of its neighbors (the null value,
denoted I0) equals �1/(n�1) under a nonparametric
model of the n! possible permutations of the data (Cliff
and Ord, 1973, pp 29 and 32). Note that if I is to be
interpreted quantitatively, its range of variation, which
depends on the connection network, should be taken into
account (De Jong et al., 1984).

This index has a straightforward interpretation. Let i
and j indicate a row and a column of L (i¼ 1, n; j¼ 1, n).
The row i contains positive values if i and j are neighbors,
and 0 otherwise. As the terms of row i sum to one, these
values are weights. Hence, the lag vector Lx computes,
for a given entity, the mean frequency of its neighbors
(Anselin, 1996). It follows that xTLx is the scalar product
of the allelic frequencies and their lag vector (xTLx¼
/x|LxS): the frequency observed for any entity is
multiplied by the mean frequency of its neighbors, and
the obtained values are added over all entities.

Two types of spatial structuring can be observed in
individuals or populations, whenever allelic frequency
observed among neighbors are more similar or more
dissimilar than expected in a random spatial distribu-
tion. These cases are illustrated using 20 fictitious
populations (Figure 1). Patches of similar allelic frequen-
cies (Figure 1a) lead to a highly positive I because the
allelic frequency observed in a population is positively
correlated to the allelic frequency of its neighbors
(Figure 1c). Conversely, different neighbor to neighbor
allelic frequencies (Figure 1b) lead to a highly negative I,
as the value taken by any population is negatively
correlated to those taken by its neighbors (Figure 1d).

These two patterns are global and local structures as
defined by Thioulouse et al. (1995). In the sPCA context,
we define global and local patterns as entities being more
genetically similar (respectively dissimilar) to their
immediate neighbors than expected in a random spatial
distribution.

As we have shown, Moran’s I can be used to
numerically detect such patterns using the frequencies
of a single allele. Now we tackle the following question:
how to reveal these patterns using a complete set of
alleles?

Spatial principal component analysis
Two different objectives arise when analyzing a set of
georeferenced allelic frequencies. On the one hand, we
would like to summarize the genetic variability among
the biological entities (individuals or populations) into a
few informative components. On the other hand, we
would also like to reveal existing spatial patterns.

A convenient solution to the first problem is to
use a centered PCA (Pearson, 1901; Menozzi et al.,
1978). This method analyzes a table X of p centered allelic
frequencies (displayed in columns) measured on n
biological entities (rows). The allelic frequencies define
Euclidian distances between the n entities in Rp, the p-
dimensional space of real numbers. Finding the line of
closest fit through the n points (Pearson, 1901) is the
same as finding an axis in Rp on which the projections of
the n entities are as widely scattered as possible, that is,
where the Euclidian distances between the entities are
best preserved. To fulfill this property, PCA seeks a
scaled vector u (8u82¼ 1) containing p loadings (one per
allele) so that the entities scores onto this axis (/¼Xu)
have a maximum variance. This can be reformulated as
the maximization of:

k Xu k21=n¼
1

n
ðXuÞTXu ¼ 1

n
uTXTXu ð3Þ

where 8Xu81/n2 ¼var(/). The solution is given by the first
eigenvector of ð1nX

TXÞ, which yields scores whose
variance is maximized and equates to the highest
eigenvalue. The second objective can be tackled by
testing the spatial autocorrelation of the PCA scores, to
assess whether they display significant spatial structure
(Wartenberg, 1985b). However, these scores are appro-
priate only to summarize genetic variability and are in no
way designed to reveal spatial patterns. Thus, there is a
need for a methodology summarizing the genetic
diversity and revealing spatial structures at the same
time.

sPCA encompasses these two objectives. This new
method finds a few independent synthetic variables that
no longer optimize the variance of the entities’ scores (as
in PCA), but the product of their variance and of Moran’s
I. sPCA is closely related to Wartenberg’s multivariate
spatial correlation (MSC; Wartenberg, 1985a), but MSC
constrains all alleles to have the same variance. This has
the undesirable effect of masking the variability of the
most informative alleles. Our method is also linked to
that of Thioulouse et al. (1995), which also focuses on
global and local structures. However, their method
differs from sPCA in two ways. Firstly, it introduces
nonuniform row weights giving more importance to the
entities with many neighbors, whereas sPCA gives equal
weights to all entities. Secondly, Thioulouse et al. (1995)
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used a globally standardized connection matrix instead
of the row-standardized matrix L, and thus lost the
meaning of the lag vector Lx.

sPCA seeks scaled axes v (8v82¼ 1) in Rp so that entity
scores w¼Xv are both scattered and spatially autocorre-
lated. Similarly to the centered PCA (3), this relies on
identifying the extreme values of a function (denoted C
for ‘criterion’):

CðvÞ ¼ varðXvÞIðXvÞ ¼ 1

n
ðXvÞTLXv ¼ 1

n
vTXTLXv ð4Þ

We show that the solution is given by the eigenvectors of
the symmetric matrix 1

2nX
TðLþ LTÞX associated with the

highest and lowest eigenvalues (Supplementary Appen-
dix A). As with PCA, other eigenvectors associated with
less extreme eigenvalues display weaker structuring
under the orthogonality constraint.

Although PCA and sPCA rely on a common approach,
two major differences between these analyses must be
underlined. Firstly, sPCA does not decompose the total
variance into decreasing additive components. Instead,
the product of the variance var(w) and the spatial
autocorrelation I(w) is separated into positive, null and
negative components. Indeed, if the variance is always
positive, the spatial autocorrelation can be positive as

well as negative. Hence, while PCA focuses on the scores
associated to the highest eigenvalues, sPCA encompasses
two types of informative scores, both reflecting an aspect
of the spatial patterning of the genetic variability. On the
one hand, scores with a strong variance and a highly
positive spatial autocorrelation (that is, global structures)
correspond to highly positive eigenvalues. On the other
hand, scores with a strong variance and a highly negative
spatial autocorrelation (that is, local structures) corre-
spond to highly negative eigenvalues. Note that these
negative eigenvalues are thus useful tools to detect local
patterns, and should not be ignored, as it was done in
MSC (Wartenberg, 1985a).
Secondly, it makes no sense to compare a sPCA

eigenvalue to the sum of all eigenvalues (as done in
PCA) because this sum itself has no meaning: it can be
low if there is no structure at all, as well as when there
are strong global and local structures. Therefore, the
percentage of total criterion associated to a given
eigenvalue cannot be used as a rule to choose the
structures to retain. However, as in other multidimen-
sional methods, an abrupt decrease of the eigenvalues is
likely to indicate the boundary between strong and weak
structures (Legendre and Legendre, 1998). The interest-
ing patterns are displayed graphically, and their spatial
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Figure 1 Illustration of global and local patterns of an allelic frequency for 20 fictitious populations overlying their sampling area. Each
square represents the frequency of a population. Edges correspond to the connection network (Gabriel’s graph). (a) Example of global
structure, corresponding to I(x)4I0. (b) Example of local structure, corresponding to I(x)oI0. (c) Moran’s scatterplot showing that in the
global structure (a), the allelic frequency x of a population is positively correlated with the mean frequency of its neighbors, Lx. The line
corresponds to the linear regression of Lx on x. (d) Conversely, the Moran’s scatterplot associated with the local structure (b) shows that
frequency x of a population is negatively correlated with the mean value of its neighbors, Lx.
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autocorrelation is measured using Moran’s I. Note that it
is meaningless to test the I of the sPCA scores, as is done
in PCA (Wartenberg, 1985b) because the sPCA scores are
already optimized regarding spatial autocorrelation.

Multivariate tests to detect global and local structuring
Sometimes, the sPCA eigenvalues may not clearly
indicate if global and/or local structures should be
interpreted. A first aid would be to assess if there are
significant global and local patterns in the data. We
developed two statistical tests (a global and a local test)
to answer to these questions.

These tests rely on the spectral decomposition of the
row-standardized connection matrix L into Moran’s
eigenvector maps (MEMs; Griffith, 1996; Dray et al.,
2006). These vectors are uncorrelated variables modeling
different spatial structures; they were initially used in
geography for spatial filtering purposes, that is, to
remove spatial autocorrelation from the residuals of a
statistical model (Griffith, 2000). In ecology, MEMs are
used as explanatory variables in linear modeling
approaches to model complex spatial patterns (Dray
et al., 2006; Griffith and Peres-Neto, 2006). Each of these
spatial predictors is associated to a Moran’s I and can
therefore be characterized either as a global or a local
pattern. We denote Eþ the matrix whose columns are the
global MEMs of L, and E� the matrix storing local MEMs.
As there are always (n�1) MEMs for n locations, these
vectors can fully decompose a centered allelic frequency
x into global and local spatial structures using simple
linear regression. Note that this decomposition is not
subject to multicollinearity troubles because MEMs are
orthogonal: each MEM explains a different part of the
variance of x, which is measured by the corresponding
coefficient of determination (R2). This can be applied to
the p centered allelic frequencies of matrix X, yielding
px(n�1) coefficients of determination (one for each
allele/MEM combination) which are stored separately
for Eþ and E� (see detailed computations in Supple-
mentary Appendix B). The R2 of alleles with vectors of
Eþ are used in the global test, whereas R2 computed with
MEMs of E� are used in the local test.

The basic idea behind our testing procedures is that if
a global (respectively local) pattern exists among
individuals (or populations), a large number of alleles
is expected to be fairly correlated to at least one vector of
Eþ (respectively E�). To detect this, the mean R2 across
alleles is computed for each MEM. Denoting these means
by tj (j¼ 1, q), a vector t containing all tj is then obtained
(t¼ [t1 y. tj y. tq]T). To detect an eventual MEM with
which all alleles would be significantly correlated, the
test statistic used in both procedures is the maximum of t
values, denoted max(t). The null hypothesis (H0) is that
allelic frequencies of the individuals (or populations) are
distributed at random on the connection network.
Alternative hypotheses are that allelic frequencies of
the studied entities display at least one global (respec-
tively local) spatial structure. The distribution of max(t)
under H0 is obtained by a Monte Carlo procedure
involving a large (say at least 999) number of permuta-
tions. For each permutation, the rows of X are rando-
mized and max(t) is computed. In both tests, the P-value
is defined as the relative frequency of permuted statistics
equal to or higher than the initial value of max(t).

We verified that the type I errors of both tests were
correct using simulated datasets (see Supplementary
Appendix B).

Illustrations

Simulated data: simple structures
This illustration compares the results of PCA and sPCA
on three simulated datasets containing simple spatial
structures: two global patterns (patches, cline) and one
local structure (repulsion). For discontinuous patterns
(patches and repulsion, Figures 2a, b, e and f), three
populations of 500 diploid individuals were simulated
using EASYPOP version 2.0.1 (Balloux, 2001), using a
hierarchical island model to have different levels of
genetic differentiation. Migration rate between popula-
tions 1 and 2 was set to 0.005 and to 0.002 between
population 3 and the other two. Genotypes consisting in
20 microsatellite-like loci were obtained after 1000
generations using a KAM mutation model (that is, loci
mutate to any new allelic state with the same probability)
with a mutation rate of 0.0001 and 50 possible allelic
states. For the continuous pattern (cline, Figures 2c
and d), 4 populations of 500 diploid genotypes were
simulated under an isolation-by-distance process. Spatial
coordinates of the four populations were set in a two-
dimensional space to (0, 0), (0, 2), (2, 0) and (2, 2).
Dispersal distances were drawn from a negative ex-
ponential distribution with a mean of 1. EASYPOP
computes the migration rates as exp(�r*dij), where dij is
the distance between populations i and j, and r is the
inverse of the dispersal distance. The other input
parameters of this simulation were the same as in the
simulation of discontinuous patterns. All analyzed data
were obtained by randomly sampling genotypes from
the created populations. Spatial coordinates were de-
fined using the R software to create the various spatial
structures.

Three datasets of 80 georeferenced genotypes were
created: (1) two patches of 35 individuals from popula-
tions 1 and 2 with 10 individuals from population 3
randomly distributed; (2) 40 individuals from popula-
tions 1 and 2 forming a cline with 40 individuals from
population 3 and 4 randomly distributed; (3) 30
individuals from population 3 distributed in repulsion
among a total of 50 individuals of populations 1 and 2.

Data were analyzed using the R software, especially
the ade4 package for multivariate analysis (Chessel et al.,
2004; Dray et al., 2007), spdep for spatial methods (Bivand,
2007) and adegenet for genetic data handling, sPCA and
global/local tests (Jombart, 2008). The same procedure
was applied to each dataset: first, data were analyzed by
PCA, using Moran’s I test to detect spatial structuring in
the PCA scores; second, data were analyzed by sPCA
using global and local tests (with 9999 permutations) as
an aid to select the structures to be interpreted. All
connection networks were defined using the Delaunay
triangulation (Upton and Fingleton, 1985), a common
graph that underlies several other methods (Dupanloup
et al., 2002; Guillot et al., 2005; François et al., 2006). The
patches of the first dataset were retrieved by the first
PCA scores (Figure 2a), which were significantly auto-
correlated (I¼ 0.228, P¼ 0.0005). However, these patches
appeared more clearly on the first global scores of sPCA
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(Figure 2b). The global test confirmed the existence
of global pattern (max(t)¼ 0.0166, P¼ 0.0011), whereas
the local test did not detect any local structure
(max(t)¼ 0.0140, NS). In the second dataset, PCA over-
looked the cline, showing a weak spatial pattern on

the third principal component (Figure 2c; I¼ 0.128,
P¼ 0.022), whereas sPCA completely retrieved it
(Figure 2d). Note that the first global structure is indeed
a cline—and not patches—because genotypes situated in
the middle of the distribution have less extreme scores
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Figure 2 Analyses of simple global and local structures among 80 genotypes from three different populations by principal component
analysis (PCA) and spatial PCA (sPCA). Each square represents the score of a genotype and is positioned by its spatial coordinates. The
eigenvalues corresponding to the displayed scores are filled in black on the screeplots. Numbers indicate the population to which genotypes
belong. (a, b) Two patches with random noise. (c, d) A cline with random noise. (e, f) Repulsion with random noise. (a, c, e) First PCA scores.
(b, d) First global scores of sPCA. (f) First local scores of sPCA.
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(smaller squares). The global test confirmed the presence
of global structure (max(t)¼ 0.0161, P¼ 0.0038), whereas
the local test detected no local pattern (max(t)¼ 0.0117,
NS). In the third dataset, the local pattern (repulsion
among genotypes from population 3) was not identified
by PCA (Figure 2e; I¼�0.054, NS). On the contrary, the
first local score of sPCA revealed this pattern: large black
squares (population 3) are rarely found as neighbors and
tend to be surrounded by white ones (genotypes from
other populations) more often than at random. The
global test did not detect any global pattern
(max(t)¼ 0.0132, NS), whereas the local test was sig-
nificant (max(t)¼ 0.0174, P¼ 0.0008).

Simulated data: complex structures in individuals
This illustration compares the results of PCA and sPCA
using a simulated dataset in which different structures
are mixed. Four populations of 500 diploid individuals
were simulated using EASYPOP, following a hierarchical
island model. Migration rate between populations 1 and
2 was set to 0.005, and to 0.002 for other populations.
Otherwise, all parameters were those used in the
previous illustration. A random sample of 80 genotypes

was obtained, with unequal sample sizes (from popula-
tion 1 to 4, sizes were 30, 30, 10, 10). Spatial coordinates
were defined so that: (1) the 60 individuals from
populations 1 and 2 were structured as a cline; (2) the
10 individuals from population 3 were distributed
randomly; (3) the 10 individuals from population 4 were
structured in repulsion.

This dataset was analyzed as previously, first by PCA
and then by sPCA. The Delaunay triangulation was
employed to model the spatial connectivity among
genotypes. Two axes were retained for PCA (Figures 3a
and c). No clear spatial pattern was revealed by PCA.
The cline between populations 1 and 2 seemed split
between the first (Figure 3a) and the second scores
(Figure 3c), whereas the local structure induced by
individuals from population 4 does not appear clearly
on either axis. The Moran’s I tests did not detect
significant autocorrelation in either scores (I¼ 0.081,
NS; I¼�0.014, NS). On the contrary, sPCA revealed
both structures. The first global and local scores
were retained (Figures 3b and d). The global scores
clearly differentiated populations 1 and 2, even if it
was not clear whether this global structure consisted
in two patches or in a cline (Figure 3b). The global
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Figure 3 Analyses of complex global and local structures among 80 genotypes from four different populations by principal component
analysis (PCA) and spatial PCA (sPCA). Each square represents the score of a genotype and is positioned by its spatial coordinates. The
eigenvalues corresponding to the displayed scores are filled in black on the screeplots. Numbers indicate the population to which genotypes
belong. (a) First PCA scores. (b) First global scores of sPCA. (c) Second PCA scores. (d) First local scores of sPCA.
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test confirmed that a global structure existed
(max(t)¼ 0.0200, P¼ 0.0005). The first local score clearly
emphasized to genetic differences of individuals from
population 4 (large white squares) from their immediate
neighbors (other populations). The local test was
consistently significant (max(t)¼ 0.0270, P¼ 0.0001).

Simulated data: complex structures in populations
This illustration had the same objective as the previous
one, but involved populations rather than individuals.
Three populations of 500 diploid individuals were
simulated using EASYPOP, following an island model
with a migration rate of 0.01. Other parameters of
simulations were the same as in previous illustrations.
Subpopulations (16) were created by taking random
samples of 30 individuals from a given population; 10
subpopulations were thus obtained from population 1
and 2, and 6 were drawn from population 3. Spatial
coordinates of subpopulations were defined so that: (1)
the 20 subpopulations from populations 1 and 2 were
structured in two patches; (2) the 6 subpopulations from
population 3 were distributed following a local pattern.

After transforming the data into allelic frequencies for
each subpopulation, a PCA and an sPCA were per-
formed. The Delaunay triangulation was used to model
the spatial connectivity among subpopulations. The PCA

eigenvalues showed that two strongly structured axes
were to be retained (Figures 4a and c). This was likely
due to the fact that the variability among subpopulations
was essentially an interpopulation variability: only two
axes are required to differentiate three populations. The
first PCA scores displayed a significant spatial structure
(Figure 4a; I¼ 0.265, P¼ 0.0096), but it was merely as a
by-product: it simply differentiated the population 1
from the two others. Similarly, the second PCA scores
differentiated the population 3 from the others
(Figure 4c), but these scores were not spatially structured
(I¼ 0.031, NS). The sPCA eigenvalues clearly showed
that one global and one local axes were to be retained
(Figures 4b and d). The first global scores (Figure 4b)
found the two patches of subpopulations from popula-
tions 1 and 2, giving rather low values to the scores of
population 3 (small squares). The global test detected the
existence of spatial pattern (max(t)¼ 0.131, P¼ 0.0065).
The local scores highlighted the differences between
subpopulations from population 3 with the neighboring
subpopulations (Figure 4d). The local test was also
significant (max(t)¼ 0.133, P¼ 0.0053).

Scandinavian brown bear data
The Scandinavian brown bear dataset illustrated other
methods such as the wombling approach of Manel et al.
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Figure 4 Analyses of complex global and local structures among 16 subpopulations from three populations by principal component analysis
(PCA) and spatial PCA (sPCA). Each square represents the score of a subpopulation and is positioned by its spatial coordinates. The
eigenvalues corresponding to the displayed scores are filled in black on the screeplots. Numbers indicate the population to which
subpopulations belong. (a) First PCA scores. (b) First global scores of sPCA. (c) Second PCA scores. (d) First local scores of sPCA.
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(2007). These data contain the georeferenced genotypes
of 964 brown bears sampled over 200 000 km2 and typed
for 18 microsatellite markers. A more complete descrip-
tion of the data will be found in Waits et al. (2000).
Former studies stressed the need for identifying manage-
ment units (MUs) among Scandinavian brown bear for
conservation purposes (Waits et al., 2000). Using density
indicators, Swenson et al. (1998) suggested four different
MUs. There seems to be a general agreement that the
southernmost group is strongly differentiated from all
the others because of different lineages (Manel et al.,
2004). Nonetheless, the number of MUs to be considered

is still discussed: using microsatellites, Waits et al. (2000)
confirmed the four groups suggested previously (Swen-
son et al., 1998), whereas more recent studies found only
three MUs (Manel et al., 2007), considering northern
individuals as from one MU instead of two. Expressed in
terms of sPCA, different MUs would appear as global
structures, each global score potentially differentiating
between two MUs. Thus, these data seem appropriate to
illustrate how sPCA can identify several spatial groups.

First, a centered PCA was performed on the allelic
frequencies of the individuals. The first three scores were
significantly positively autocorrelated, but only the first
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Figure 5 Analyses of Scandinavian brown bears data. (a) First and (b) second scores of the centered principal component analysis (PCA),
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two had biologically meaningful I values (I¼ 0.647,
P¼ 0.001; I¼ 0.125, P¼ 0.001; I0E0). The first PCA scores
differentiated the southern MU from all the others
(Figure 5a). The second PCA scores (Figure 5b) were
more difficult to interpret, but seemed to correspond in
part to the middle MU identified in previous studies
(Swenson et al., 1998; Manel et al., 2004). The third scores
displayed a very small spatial autocorrelation, and the
associated map was not interpretable (result not shown).

Second, we proceeded to sPCA. We used a distance-
based connection network because the spatial distribu-
tion was fairly aggregated; such a graph ensures that
genotypes inside aggregates have more neighbors than
outliers. The threshold distance between any two
neighbors was chosen as the minimum distance so that
no individual was excluded from the graph. We call the
resulting graph a minimum distance neighboring graph. The
first sPCA eigenvalue was strikingly large compared to
the others, but with no doubt the first three eigenvalues
and corresponding scores were to be retained (Figure 5c).
The first scores revealed the same pattern as in PCA
(Figure 5d) and separated individuals from the southern
MU from all the others, like in previous studies. This
pattern was associated to a strong spatial autocorrelation
(I¼ 0.686). The second sPCA scores (I¼ 0.147) clearly
differentiated individuals from the ‘middle’ subpopula-
tion (Waits et al., 2000) from the others (Figure 5e). By
combining the first two global scores we thus recovered
the three subpopulations found in previous studies (for
example, Manel et al., 2007). But more interestingly, our
analysis retrieved an additional weaker structure: un-
doubtly the third global scores (I¼ 0.122) showed an
east–west differentiation among northern individuals
(Figure 5f). Contrary to the first pattern (Figure 5d), this
structure does not show sharp boundaries between
patches, but rather progressive changes from one patch
to another, suggesting an isolation-by-distance process or
progressive introgression. This may be the reason why a
method based on boundary detection (Manel et al., 2007)
overlooked this structure. The global test confirmed the
existence of at least one global pattern (max(t)¼ 0.0533,
P¼ 0.0001) without detecting local structuring
(max(t)¼ 0.0043, NS).

Discussion

We propose a spatially explicit multivariate method,
sPCA, as a new tool to explore georeferenced multilocus
genotypes and, therefore, to try to understand how
geographical and environmental features structure ge-
netic information. Although ordinary centered PCA
yields scores that summarize the genetic variability
among considered entities (individuals or populations),
sPCA adds the constraint that the provided scores
should be spatially autocorrelated and, thus, focuses on
the spatial pattern of genetic variability. Two types of
patterns are discriminated: global and local structures,
corresponding respectively to large positive and large
negative eigenvalues. Maps of sPCA scores are used to
visually assess these patterns. As an aid to the
interpretation of sPCA results, two Monte Carlo tests
are proposed to detect the existence of global and local
patterns. Simulated data illustrated that sPCA can
retrieve simple structures (patches, clines, repulsion) as
well as more complex patterns among genotypes or

populations, and performs better in this task than PCA.
The global and local tests efficiently detected the existing
patterns, with a reliable type I error, and can therefore be
used to assess which kind of pattern should be
interpreted. sPCA also retrieved already known patterns
in Scandinavian brown bear dataset, as well as more
cryptic structures, which were overlooked by another
method (Manel et al., 2007), but were biologically
expected (Swenson et al., 1998).
Several points relative to the method should be

discussed. Firstly, the spatial information is integrated
using a connection network. This widely used approach
allows taking virtually any type of spatial information
into account. Contrary to other spatially explicit methods
(Dupanloup et al., 2002; Guillot et al., 2005), we do not
impose a specific connection network; one would have to
choose from existing algorithms, and refine it according
to what is known about the ecological connectivity in the
system. It is important to keep in mind that sPCA is not
intended to study the spatial connectivity among the
considered entities; it aims at finding spatial structuring
given that connectivity.
Secondly, sPCA is proposed mainly as an exploratory

tool. For this purpose, our approach seems relevant as it
is a reduced space ordination method; no assumptions
are made about the data model. It is thus free, for
instance, from modeling constraints like Hardy–Wein-
berg equilibrium assumptions, which are often violated
when considering markers involved in selection pro-
cesses. This is in contrast to, for instance, STRUCTURE
(Pritchard et al., 2000; Falush et al., 2003), which assumes
both Hardy–Weinberg equilibrium and linkage equili-
brium. Nonetheless, further investigations should be
devoted to link sPCA to existing population genetics
models. Indeed, the ability of spatial autocorrelation
based methods (of which sPCA is one) for inferring
genetic processes has been a controversial topic (Sokal
and Wartenberg, 1983; Sokal et al., 1989; Slatkin and
Arter, 1991a, b), but useful studies have shown that
Moran’s I can be linked to population genetics models
(Hardy and Vekemans, 1999). Similarly, a recent study
demonstrated that the number of significant eigenvalues
of PCA can be directly related to the number of
subpopulations in a set of genotypes (Patterson et al.,
2006). Such development with sPCA would surely
enhance the interpretation of the provided results.
Thirdly, the efficiency of sPCA in different population

genetics scenario remains to be investigated further, as it
was done with spatial autocorrelation. For instance, we
did not tackle the relative power of the analysis to reveal
patterns due to directional selection (Epperson, 1990) or
isolation by distance (Barbujani, 1987; Epperson, 1995).
The influence of other parameters, such as the connection
network or the level of genetic differentiation, should
also be evaluated. These topics as well as comparisons of
sPCA to other methods will be investigated using
simulations in a next paper.
To conclude, we have shown that sPCA can be used

and is useful at the scale of individuals as well as at a
population scale. This suggests that our method could be
an appropriate tool in different domains. As sPCA can be
performed on data from individuals with no a priori
knowledge of the studied system, our method should
become a useful tool in landscape genetics studies
(Manel et al., 2003), to link the revealed genetic patterns
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to landscape features and to explain genetic disconti-
nuities in terms of environmental, behavioral or physio-
logical barriers. Indeed, the sPCA scores can be
correlated to other variables or included as dependent
or independent variables in models, as long as their
spatial autocorrelation is taken into account (Anselin,
2002). Moreover, sPCA can assess the genetic structuring
of a set of fragmented populations, which seems
especially relevant in conservation biology where this
is common. It is particularly important to identify the
most isolated populations, when introducing new
individuals to maintain genetic diversity or to predict
the spatial spread and maintenance of an introduced
disease to control pest species. In these cases, sPCA may
help to develop appropriate management and surveil-
lance strategies for a disease. Therefore, the proposed
method can be seen as a versatile tool for investigating
the genetic structuring of set of individuals or popula-
tions, within different contexts.
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