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A simple method for calculating the statistical
power for detecting a QTL located in a marker
interval

Z Hu and S Xu
Department of Botany and Plant Sciences, University of California, Riverside, CA, USA

We developed a simple method for calculating the statistical
power for detecting a QTL located in an interval flanked by
two markers. The statistical method for QTL detection is
assumed to be the Haley and Knott’s simple regression
method of interval mapping. This method allows us to
answer one of the fundamental questions in designing a
QTL mapping experiment: What is the minimum marker
density required to detect a QTL explaining a certain

heritable proportion of the phenotypic variance (denoted by
h2) with a power g under a Type I error a in an F2 or other
mating designs with a sample size n? Computing the
statistical power only requires the ability to evaluate a non-
central F-distribution function and the inverse function of this
distribution.
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Introduction

Simple methods for calculating the statistical power for
detecting a QTL that overlaps with a marker have been
developed (Soller et al., 1976; Muranty, 1996). When the
QTL of interest is located further away from a marker,
which is used to detect the QTL, the power will be
decreased (Soller and Genizi, 1978; Lynch and Walsh,
1998). Simple methods for calculating the statistical
power for a QTL located in an interval flanked by
two markers have not been available. Statistical methods
for power calculation based on the likelihood ratio
test statistic using markers of the entire genome
(interval mapping) have been developed by Dupuis
and Siegmund (1999). However, the methods depend on
some assumptions such as infinitely high marker density
or equal distance of marker distribution, and thus
they can be very complicated. Simple regression method
for QTL mapping (Haley and Knott, 1992) is a good
approximation of the maximum likelihood method.
Therefore, statistical power may be calculated based on
the simple regression method. Because of the simplicity
of the regression method, calculation of statistical power
under this method is also simple. If the QTL of interest
does not overlap with a marker, the power of detecting
this QTL will be decreased. The worst-case scenario is
that the QTL sits in the middle of the largest marker
interval. If we can compute the statistical power for
detecting such a QTL, the inverse power function will
allow us to design a QTL mapping experiment regarding
the sample size and the minimum marker density

required. This article will introduce such a simple
method.

Methods

We now use an F2 mating design as an example to
develop the method. Extension to other mating types
will be described later in the Discussion section.
Although t-test is commonly used for the simple
regression analysis, F-test is used here to discuss the
power calculation because we can avoid the confusion
between one-tailed and two-tailed tests that occur in the
t-test. With the F-test, only a single tail of the distribution
is concerned. In addition, when only additive effect is
considered, the F-test statistic is simply the square of the
t-test statistic. Let A1A1, A1A2 and A2A2 be the three
genotypes of a QTL in an F2 family. Let

xj ¼
þ1 for A1A1

0 for A1A2

�1 for A2A2

8<
: ð1Þ

be the genotype indicator variable for individual j for
j¼ 1,yn, where n is the sample size. Let a be the
additive genetic effect (the difference between
the genotypic values of A1A1 and A1A2). Assume that
the QTL of interest overlaps with a fully informative
marker, the test statistic under the regression analysis is

l ¼
Xn
j¼1

ðxj � �xÞ â
2

ŝ2
ð2Þ

where â is the least square estimate of the genetic effect
and ŝ2 is the estimated residual error variance. Under
the null hypothesis (a¼ 0), the above test statistic will
follow a central F-distribution with degrees of freedom 1
and n (assuming that n is sufficiently large). Under the
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alternative hypothesis (aa0), the test statistic will follow
a non-central F-distribution with degrees of freedom 1
and n and a non-centrality parameter

d ¼ ns2x
a2

s2
ð3Þ

where sx2¼ 1/2 is the variance of variable x across all
individuals within the F2 family (assuming that there is
no segregation distortion). Let F(l|1, n, 0) and F(l|1, n,
d) be the central and non-central F-distribution functions
for variable l, respectively. Define l1�a as the 1�a
percentile of the central F-distribution, that is,
a¼Pr(l4l1�a|d¼ 0)¼ 1�F(l1�a|1, n, 0) or

l1�a ¼ F�1ð1� aj1; n; 0Þ ð4Þ
where a is the Type I error. The Type II error is defined as
b¼Pr(lpl1�a|d40), that is,

b ¼ Fðl1�aj1; n; dÞ ð5Þ
The statistical power is

g ¼ 1� b ð6Þ
To calculate the statistical power for a given Type I error
a, we first use equation (4) to find the critical value l1�a
and then use equation (5) to calculate the Type II error b,
and finally use equation (6) to get the statistical power g.

The three steps used to calculate the statistical power is
general for all experiments using the F-test statistic. The
non-centrality parameter d, however, depends on the
experimental parameters of the specific experiment. In
addition, if the QTL of interest does not overlap with a
marker, the non-centrality parameter should be revised
to take into account the linkage information between the
QTL and markers.

Let m1 and m2 be the genotype indicator variables
(similarly defined as variable x) for two flanking
markers. Let r1 and r2 be the recombination fractions
between m1 and x and between x and m2, respectively. The
recombination fraction between m1 and m2 is
r12¼ r1þ r2�2r1r2. Let x̂¼E(x|m1,m2) be the conditional
expectation of x given m1 and m2. The non-centrality
parameter for F-test using x̂ as the independent variable is

d ¼ ns2x̂
a2

s2 þ a2ðs2x � s2x̂Þ
ð7Þ

where sx2¼ 1/2 in the F2 population and

s2x̂ ¼
1

2ð1� r12Þ
� ðr1 þ r2Þ2 þ 4r1r2ð1� 2r12 � 2r1r2Þ

2r12ð1� r12Þ
ð8Þ

is the variance of x̂ across individuals within the
mapping population. The denominator of the non-
centrality parameter is increased by a2(sx2�sx̂2), which is
the inflation parameter for the residual variance due to
uncertainty of the QTL genotype (Xu, 1995).

Assume that the QTL of interest sits in the middle of
the interval between markers m1 and m2 so that r1¼ r2¼ r
and r12¼ 2r(1�r). The above variance for x̂ is simplified to

s2x̂ ¼
ð1� 2rÞ2

2� 4rð1� rÞ ð9Þ

One can verify that when the QTL overlaps with both
markers (the marker interval is infinitely small), that is,
r¼ 0, we get sx̂2¼ 1/2, leading to the same non-centrality
parameter given in equation (3). However, if the QTL sits

in the middle of an infinitely large marker interval, that
is, r¼ 0.5, we have sx̂2¼ 0, leading to a zero non-centrality
parameter and thus zero power.
Given the statistical power and the Type I error, one

can find the non-centrality parameter using the following
inverse function,

d1�g ¼ F�1ðl1�aj1; n; 1� gÞ ð10Þ
where F�1 is the inverse F-distribution function with the
inverse referring to the non-centrality parameter, not the
quantile. We use a subscript �1 to distinguish the non-
centrality inverse F-distribution function from the tradi-
tional quantile inverse F-distribution function (with a
superscript �1). Once the non-centrality parameter is
calculated, we can find the sample size required given
the size of a marker interval or the marker interval
required given a fixed sample size.

Examples

We now show a few examples for calculating the
statistical power and various experimental parameters.
Let us define

h2 ¼ s2xa
2

s2xa2 þ s2
ð11Þ

as the proportion of the phenotypic variance explained
by the QTL. The squared QTL effect can be expressed as
a function of h2, as shown below,

a2 ¼ h2

s2xð1� h2Þ s
2 ð12Þ

Since the squared QTL effect a2 is only meaningful
when compared with s2, we will assume s2¼ 1.0 in all
subsequent examples.
Example 1: Calculate the statistical power at a Type I

error rate a¼ 0.01 for detecting a QTL that is located in
the middle of a 20 cM marker interval and explains
h2¼ 0.10 of the phenotypic variance with n¼ 100 F2
individuals.
We first need to find the recombination fraction

between the QTL and the flanking markers using the
Haldane (1919) mapping function,

r ¼ 1

2
1� expð�2�10=100Þ
� �

¼ 0:0906

We then calculate sx̂2 using equation (9),

s2x̂ ¼
ð1� 2�0:0906Þ2

2� 4�0:0906ð1� 0:0906Þ ¼ 0:4013

The squared QTL effect is

a2 ¼ 0:10
1
2ð1� 0:10Þ

�1 ¼ 0:2222

The non-centrality parameter is

d ¼ 100�0:4013� 0:2222

1þ 0:2222�ð0:5� 0:4013Þ
¼ 8:7267

Corresponding to the Type I error a¼ 0.01, the critical
value for the test statistic is

l1�0:01 ¼ F�1ð1� 0:01j1; 100; 0Þ ¼ 6:8953
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The Type II error is

b ¼ Fð6:8953j1; 100; 8:7267Þ ¼ 0:3710

Therefore, the statistical power to detect such a QTL is

g ¼ 1� 0:3710 ¼ 0:6290

Since the QTL is assumed in the middle of the marker
interval (the worst-case scenario), this power is an
underestimation of the actual power.

Example 2: Calculate the minimum marker density
required to detect a QTL explaining h2¼ 0.10 of the
phenotypic variance in an F2 mating design of n¼ 200
individuals with g¼ 0.90 of the power under a Type I
error rate a¼ 0.01.

The worst-case scenario is that the QTL is located
in the middle of the largest marker interval. Let D be
the largest marker interval measured in centiMorgan.
Assume that the recombination fraction between
the QTL and each of the flanking markers is r. The
recombination fraction between the two markers is
r12¼ 2r(1�r). We first calculate r using the method given
below. We then get r12 and convert r12 into D to obtain the
largest marker interval that allows the detection of such a
QTL. Given a¼ 0.01 and n¼ 200, we found that

l1�0:01 ¼ F�1ð1� 0:01j1; 200; 0Þ ¼ 6:7633

The non-centrality parameter is calculated using equa-
tion (10),

d1�0:90 ¼ F�1ð6:7633j1; 200; 1� 0:90Þ ¼ 15:1299

Given d1�0.90, we can solve for sx̂2 using the inverse
function of equation (7),

s2x̂ ¼
d1�0:90ðs2 þ s2xa

2Þ
a2ðnþ d1�0:90Þ

¼ 15:1299�ð1þ 0:5�0:2222Þ
0:2222�ð200þ 15:1299Þ

¼ 0:3516

ð13Þ

Using the reverse function of equation (9), we calculate

r ¼
1� s2x̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x̂ � s4x̂

q

2ð1� s2x̂Þ

¼ 1� 0:3516�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3516� 0:35162

p

2�ð1� 0:3516Þ ¼ 0:1318

ð14Þ

The recombination fraction between the two markers is

r12 ¼ 2rð1� rÞ ¼ 2�0:1318�ð1� 0:1318Þ ¼ 0:2288

Finally, the size of the interval measured in cM is

D ¼ � 100

2
lnð1� 2r12Þ

¼ � 100

2
lnð1� 2�0:2288Þ ¼ 30:5904

ð15Þ

Example 3: Assume that a QTL is located in the middle
of a 10 cM marker interval. Calculate the minimum
sample size required to detect a QTL explaining h2¼ 0.05
of the phenotypic variance in an F2 mating design with
power g¼ 0.80 under a Type I error rate a¼ 0.01.

Let n be the sample size required to detect such a QTL.
The distance between this QTL and each of the flanking
markers is 5 cM, and thus r¼ 0.0476 and sx̂2¼ 0.4502.
Given h2¼ 0.05, we have a2¼ 0.1053. Therefore, the

non-centrality parameter is

d ¼ n�0:4502� 0:1053

1þ 0:1053�ð0:5� 0:4502Þ
¼ 0:0471�n

Let us denote the threshold of the test statistic by

l1�0:01 ¼ F�1ð1� 0:01j1; n; 0Þ;
which is a function of n. We now solve the following
equation with respect to n,

0:0471�n ¼ F�1ðF�1ð1� 0:01j1; n; 0Þj1; n; 1� 0:80Þ
The solution can be found through iterations as shown
below,

nðtþ1Þ ¼ 1

0:0471
F�1ðF�1ð1� 0:01j1;nðtÞ; 0Þj1;nðtÞ; 1� 0:80Þ

The final solution is n¼ 251.7995E252. Only seven
iterations were required to converge when n(0)¼ 100
was used as the starting value. Therefore, we need 252
individuals for the F2 family to guarantee an 80% power
to detect such a QTL.

Simulation

Although the theoretical power was derived based on
solid statistical and mathematical foundation, it is always
a good idea to verify the result via Monte Carlo
simulation. We simulated a QTL located in the middle
of a 20 cM interval. The flanking markers have full
information. Again, we set s2¼ 1 so that a2¼ 2h2/(1�h2).
Two levels of h2 were used to simulate the size of the
QTL, which are h2¼ 0.05 and h2¼ 0.10. The sample size
varied from n¼ 50 to 500 with an increment of 10. For
each simulated sample, we calculated the F-test statistic.
The critical values used to declare statistical significance
were chosen from the central F-distributions at a¼ 0.05.
Under each situation, the simulation was replicated 1000
times. The empirical power under each specific situation
was defined as the proportion of the replicates with the
F-test statistics larger than the corresponding critical
value. The empirical powers obtained from the simula-
tions were compared with the theoretical powers, as
illustrated by the plots given in Figure 1. The empirical
powers fit the theoretical powers very closely, validating
the theoretical derivation.

Numerical evaluation

As stated earlier, the worst situation for QTL mapping is
that the QTL sits right in the middle of a marker interval.
This can be verified by evaluating the power for a given
QTL when the position of the QTL varies from one
marker to the other marker of the interval. We assumed
that the QTL explains h2¼ 0.10 of the phenotypic
variance. The sample size was n¼ 100. The marker
interval was 40 cM. The position of the simulated QTL
varied from 0 cM (overlaps with the left marker) to 40 cM
(overlaps with the right marker). Figure 2 represents the
power change as the position of the QTL changes within
the marker interval. When the QTL overlaps with a
marker, the power is about 63% (the maximum value
cross the interval). The lowest power is about 43%, which
occurs when the QTL is located in the middle of the
interval (position 20 cM).
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We now assume that the QTL of interest is located in
the middle of a marker interval. We then change the size
of the interval from 0 cM (all three loci, two markers and
a QTL, overlap) to 60 cM (the QTL is located at position
30 cM). We also allow the sample size to vary from n¼ 50
to n¼ 1000. We evaluated the power under two levels of
the QTL size, h2¼ 0.05 and h2¼ 0.10. The power surfaces
are plotted in the 3D graph shown in Figure 3. The
following three conclusions were obtained from the
result. (1) Increase of the sample size can significantly
improve the statistical power. Although this conclusion
is trivial, it serves as a partial validation for the formula
to calculate the statistical power. When the QTL overlaps
with the markers and the population is 200 or more, we
will have high confidence (90%) to detect a small QTL
that only contributes 5% of the phenotypic variance.
(2) Change of interval size also affects the statistical
power. When the interval size is increased from 0 to
60 cM, the power for detection of the same QTL is
decreased from 100 to 60%. The effect of marker interval
size on the power is certainly less than the effect of the
sample size on the power. (3) Neither a large sample size
nor a high marker density is absolutely necessary for
detecting a large QTL, for example, when the QTL
contributes 10% or more of the phenotype variance, the
theoretical power is as high as 60% even if the QTL is in
the middle of a large interval (60 cM) and only 100
individuals are used in the experiment.

Discussion

Simple methods for calculating the statistical power
apply to other mating designs of line crossing experi-
ments. As long as the genotype indicator variables are
defined in the same scale for all experiments, the powers
can be compared. Here, we extend the power calculation
to the following mating designs: BC (backcross), DH
(double haploid) and RIL (recombinant inbred line). The
additive genetic effect (a) in all cases is defined as
the difference between two genotypes that differ by only
one allele. If two genotypes differ by two alleles, the

difference is expressed by 2a. Different mating designs
have different powers because they have different non-
centrality parameters.

BC design
There are only two genotypes, A1A1 and A1A2. Therefore,
the x variable is defined as x¼ 1/2 and x¼�1/2,
respectively, for the two genotypes. The true variance
of x is sx2¼ 1/2. This leads to the following variance of x̂,

s2x̂ ¼
ð1� 2rÞ2

4� 8ð1� rÞr ð16Þ
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Figure 1 Comparisons of the statistical powers obtained from
Monte Carlo simulations (open circles and triangles) with those
predicted from the theory (dotted and solid lines). The plots with
open circles and solid line (upper plots) represent the situation of
h2¼ 0.10, while the plots with open triangles and dotted line (lower
plots) represent the situation of h2¼ 0.05.
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Figure 2 Changes of statistical power as QTL position changes from
one end to the other end of a marker interval of 40 cM in length. The
sample size is n¼ 100 and the size of the QTL is h2¼ 0.05. The
lowest power occurs when the QTL is in the middle of the marker
interval.
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Figure 3 Change of statistical power as the sample size and marker
interval change. The gray surface (upper) represents the statistical
power under h2¼ 0.10 while the surface with dark grids (lower)
represents the statistical power under h2¼ 0.05. The horizontal
plane represents the power of g¼ 0.90.

Statistical power for QTL detection
Z Hu and S Xu

51

Heredity



where r is the recombination fraction between the QTL
and a flanking marker (the QTL is in the middle of the
two flanking markers).

DH design
The two genotypes in a DH family are A1A1 and A2A2.
Therefore, the x variable is defined as x¼ 1 and x¼�1,
respectively, for the two genotypes. The variance of x is
sx2¼ 1. The variance of x̂ is

s2x̂ ¼ 2� 1

1� 2ð1� rÞr ð17Þ

RIL design
The two genotypes for an RIL family are A1A1 and A2A2.
Therefore, the x variable is defined as x¼ 1 and x¼�1,
respectively, for the two genotypes. The variance of x is
sx2¼ 1. The variance of x̂ is

s2x̂ ¼ 1� 4r

1þ 4r2
ð18Þ

Current methods for power calculation are primarily
based on the assumption that the QTL overlaps with a
fully informative marker (Soller et al., 1976; Muranty,
1996; Lynch and Walsh, 1998). When the QTL does not
overlap a marker, that is, it is away from a marker. The
power can still be calculated using the nearest marker
(Soller and Genizi, 1978; Lynch and Walsh, 1998). This is
a single marker analysis. However, interval mapping that
uses flanking marker is more efficient than the single
marker analysis, and power calculation using flanking
markers has not been developed. This study explores the
possibility of using a simple method to calculate the
statistical power of QTL detection using flanking
markers. The method has been verified using the
simulated data.

The two flanking markers are assumed to be fully
informative. In situations where they are not fully
informative, we the estimated QTL genotype sx̂2 will be
further reduced. A reduction of sx̂2 will lead to decreased
power. For example, if 5% of the individuals have
missing marker genotypes, the reduced variance of x̂will
be 0.05� 0þ 0.95� sx̂2¼ 0.95sx̂2, where sx̂2 is the variance
of x̂ when no missing marker genotype is assumed. The
reason for this is that when an individual has missing
genotypes, the variance of x̂ is zero, that is, sx̂2¼ 0.

When genome scanning is performed, multiple tests
are involved. A reasonable alpha-value for a genome-
wide QTL analysis was suggested by Muranty, 1996,
which is 0.001pap0.01.

We have developed a SAS program to calculate the
statistical power using the simple method. The following
parameters are considered in the power calculation: the
power (g), the Type I error (a), the size of the QTL (h2), the
sample size (n), the size of the marker interval (D)
denoted as distance between a marker measured in cM
and the type of line cross (F2, BC, DH and RIL). For a
given type of line cross, the program can compute one
parameter given the remaining four parameters. The
program is available on request from the authors or
downloadable from our website www.statgen.ucr.edu.
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