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Significant genetic correlations among
Caucasians at forensic DNA loci
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Although the effect of population differentiation on the forensic use of DNA profiles has been
the subject of controversy for some years now, the debate has largely failed to focus on the
genetical questions directly relevant to the forensic context. We re-analyse two published data
sets and find that they convey much the same message for forensic inference, in contrast with
the dramatically differing conclusions of the original authors. The analysis is likelihood-based
and combines information across loci and across populations without assuming constant
genetic differentiation. Our results suggest that the relevant genetic correlation coefficients are
too large to be ignored in forensic work: although DNA profile evidence is typically very
strong, the effect of genetic correlations can be important in some cases. Such correlations can,
however, be accommodated in an appropriate assessment of evidential strength so that popula-
tion genetic issues should not present a barrier to the efficient and fair use of DNA profile
evidence.

Keywords: DNA profile, FST, forensic science, Metropolis algorithm, population genetics.

Introduction

Human populations differ in their genetic composi-
tion, including in some cases populations which are
geographically close. Such differentiation can be
helpful in inferring plausible historical patterns of
migration and interbreeding (see for example
Barbujani et al., 1994; Cavalli-Sforza et al., 1994). In
the use of DNA profiles for forensic identification,
however, genetic differentiation is potentially prob-
lematic: although a particular DNA profile may be
rare overall, it might be substantially more common
in an ethnic group which contains both the true
perpetrator of a crime and an innocent defendant. It
follows that, if it is possible that the defendant is
innocent but has an ethnic background similar to
that of the actual culprit, then forensic assessments
which ignore population differentiation may over-
state evidential strength.

This effect is generally acknowledged in principle,
but there has been disagreement over whether or
not its magnitude is sufficient to warrant concern.
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Levels of genetic differentiation may well be smaller
for the molecular genetic markers in forensic use
than at traditional loci, because of their higher
mutation rates and, possibly, less intense selection.
Although there has been substantial theoretical
discussion and some presentation of data, very little
data analysis to date bears directly on the issues
relevant to forensic identification, which differ some-
what from the usual interests of population genetics.

Two recent studies investigating genetic differ-
entiation among Caucasians have drawn dramatic-
ally differing conclusions for the forensic debate. In
a controversial study (Krane et a!., 1992; henceforth
KASPH), DNA profile frequency estimates for
Finnish and Italian individuals tended to be substan-
tially smaller when obtained from a mixed Caucasian
sample than when based on cognate Finnish or
Italian samples. These authors concluded that '...we
would not endorse the use of ethnically mixed racial
databases (e.g. mixed Caucasians, ...)'. Their study
has been criticized (Budowle et a!., 1994), although
these criticisms have been rebutted (Sawyer et al.,
1996). In contrast, the authors of a different study
also comparing a mixed Caucasian sample with
samples of European origin (from Norway, Spain
and Turkey) concluded that '...there should be little
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chance of wrongful bias in forensic identity cases
if... general population databases were employed'
(Budowle & Monson, 1994; henceforth BM).

The two studies employed differing statistical
methodologies and it is consequently difficult to
make a direct comparison of their results and iden-
tify the reasons behind their conflicting conclusions.
Correlation coefficients quantifying population
differentiation were not estimated in either study.
Correlations between the DNA profiles of distinct
individuals are crucial to forensic identification
(Balding & Donnelly, 1995a,b). This is because,
after observing that a defendant has a DNA profile
which matches a crime-scene profile, the question of
central interest is whether or not other particular
individuals might also have a matching profile. This
question could in principle be answered in terms of
the appropriate allele frequencies, but these are
generally not known. Approximations of the appro-
priate frequencies by those obtained from forensic
databases tends to be unfair to defendants (see the
discussion of Fig. 2 below). This bias against defend-
ants can, however, be compensated for using genetic
correlation coefficients.

In this paper we estimate the genetic correlation
coefficients from the KASPH and BM datasets, and
thus provide a direct comparison of the two appar-
ently contradictory studies. We do not consider
other important, but nongenetical issues, such as the
possibility that errors occur in the collection and
evaluation of forensic samples, although we note
that courts must consider such alternative explana-
tions to assess fully DNA profile evidence. For a
discussion of the role of laboratory errors in some
particular cases, see Thompson (1995).

Estimating genetic correlations

Forensic applications

Once a particular allele has been observed in a
locality then, because of shared ancestry, it becomes
more likely that other individuals in that locality also
have the allele. The strength of this effect is meas-
ured by a correlation coefficient: if PA denotes the
probability that the first gene sampled is allele A,
then the probability that a second gene sampled in
the locality is also allele A can be written as
PA + (1 —pA)F, where F denotes the correlation
coefficient, similar to that known to population
geneticists as Wright's FST.

Forensic calculations require the probability of
matches involving four genes: two from the defend-
ant and two from an alternative possible source of

the crime sample. The correlations among all four
genes must therefore be assessed, and these can be
approximated in terms of F only (Nichols & Balding,
1991; Morton, 1992; Weir, 1994).

Established methods for estimating FST often
reflect the traditional interests of population genet-
ics rather than the requirements of forensic work. In
particular, the value of FST usually measures differ-
entiation among populations rather than the differ-
entiation of populations away from the allele
frequencies in a forensic database, which is the
comparison required in forensic applications. More-
over, FST is often equated to the standardized
variance over populations, which requires the popu-
lations to be comparable in terms of sizes, migration
rates and evolutionary history. Such an assumption
is inappropriate for the diverse human populations
which are encountered in forensic work. These prob-
lems can be overcome in the flexible likelihood
framework which we now describe.

Likelihood-based inference for F

For a wide range of structured populations, Balding
& Nichols (1995) obtain a formula for the likelihood
of a sample of genes from a particular locus and
population. By viewing the sample as a sequence of
genes drawn one by one, the formula can be
expressed in a simple, recursive form as follows. If,
after n genes have been drawn, flA have been
observed of allele A, then the probability that the
next gene sampled is of allele A is

(1)

By successively applying eqn (1) to each gene in the
sequence, and multiplying together the resulting
expressions, a formula for the joint likelihood of the
entire sample is obtained. This likelihood, techni-
cally a special case of the multinominal-Dirichlet
likelihood, was also used by Rannula & Hartigan
(1996), although these authors did not make use of
the recursive formula (1).

Some intuitive insight into the likelihood formula
may be obtained by considering a sample of n genes
each of which reproduces itself at rate F, while
migrant genes arrive at rate 1—F. The migrants are
allele k with probability Pk, and the migration and
reproduction processes are mutually independent.
Then the rate at which k-genes are generated is
nkF+(1—F)pk, whereas the total rate at which
genes are generated is nF+(1—F). These two
expressions are, respectively, the numerator and
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denominator of (1). Note that when flA and n are
both large, (1) depends only weakly on F, reflecting
the fact that little additional information about the
value of F can then be obtained from further obser-
vations. Effort expended in the collection of very
large sample sizes may, therefore, not be rewarded.

Combining in formation

Likelihood curves based directly on (1) are usually
not sharply peaked and the resulting estimates of F
are imprecise. One approach to improving the esti-
mation is to combine information across loci (within
populations) by multiplying together the likelihoods
at distinct loci. This procedure would, however, be
appropriate only if F were constant across loci and
we will see (Fig. 1) that such an hypothesis is not
supported by the data (see also Balding et a!., 1996).
Possible reasons include differing mutation rates or
selection processes at distinct loci. Similarly, it is not
possible to combine directly the information from
different populations, because of varying population
sizes and demographic histories.

A method for obtaining more precise estimation
without inappropriate assumptions of constancy was
introduced by Balding et a!. (1996). The value of F
in the i th population at the jth locus is modelled by
the formula

1=
1+ +

in which c and /3 are non-negative parameters
which incorporate, respectively, a population and a
locus effect. This formulation reduces the number of
parameters to be estimated from lxm to l+m,
where 1 and m are the numbers of populations and
loci.

Model (2) reflects the underlying biological
processes in that, for example, if the migration rates
into subpopulation j are high then the value of f3,
will be large and thus F will be small for every locus
1. Similarly, a high mutation rate at locus i can lead
to a small value of F, for each population j. Eqn (2)
holds exactly in the so-called island model of popu-
lation subdivision and is approximately valid for a
variety of population structures (Takahata, 1983;
Slatkin & Barton, 1989).

To investigate the robustness of the likelihoods
based on (1) and (2) for the data discussed here, we
also examined the general model in which an addi-
tional parameter Y was added to the denominator of
(2). The postdata distributions of the y were all
centred near the value corresponding to the simpler
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model, thus giving no indication that the model is
inadequate.

ResuJts

Estimates

The data consist of measured restriction fragment
lengths at five VNTR (variable number tandem
repeat) loci reported by KASPH and BM, except
that some errors present in the KASPH data were
subsequently corrected by those authors. For direct
comparability, the data from KASPH were reclassi-
fied into the same bins as those used by BM. The
posterior densities shown are affected by the arbi-
trary binning, but broad conclusions are unchanged.
Samples were taken from a number of different
European countries: Finland and Italy (KASPH)
and Norway, Spain and Turkey (BM), in addition to
mixed databases of US individuals of European
ancestry. Because the databases are large, the
Laplace estimate (nA+ 1)/(n +k), where k is the
number of alleles (bins), can be used to estimate p
(Balding & Nichols, 1994). Sample sizes are indi-
cated on the plots (number of chromosomes scored).
Combining data from the locus in common between
the studies (D2S44) created a database of size 3326
at this locus. This required adjustment for the
lengths of the flanking regions excised by the
different restriction enzymes, after which the bin
frequencies from the two databases were summed.

' -' For the other loci the database sizes were 634
(D16S85 and D10S28) and 2706 (D12S11 and
D7S21).

Previous human genetic studies of FST give some
guidance to the values of F appropriate here. Such
studies (e.g. Cavalli-Sforza et a!., 1994) have rarely
found values of FST in excess of 5 per cent among
Caucasians, and in large populations they are usually
less than 1 per cent. For VNTR loci, mutation rates
in some cases appear to be high enough to obscure
the differentiation between populations, but in other
cases the differentiation is of the same magnitude as
at traditional loci (see, for example, Buffery et al.,
1991). To encompass these observations, we chose
independent, lognormal distributions with para-
meters 3.5 and 1.5 to model the pre-data uncertainty
about the , and flJ (i.e. log(1) and log(fJ) each
initially have the N(3.5, (1.5)2) distribution). These
values imply a prior probability density for F which
has a mode at about 0.25 per cent and has density at
least half the modal value between 0.05 per cent and
1.05 per cent. There are sufficient data that the
results are insensitive to a wide range of alternative
prior densities for the c, and f3. As an illustration,
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setting a = 1 and a = 2 leads to substantial differ-
ences in the prior density for F: the prior modes are
0.6 per cent and 0.05 per cent, respectively (cf. 0.25
per cent with a = 1.5). The posterior mode for
Finland at locus D16S85, for example, varies only
between 0.58 per cent and 0.62 per cent over this
range of a-values.

Figure 1 shows probability densities for F based
on (1) and (2) for the KASPH and the BM data.
The curves were obtained from 10000 iterations of a
Metropolis simulation algorithm (Metropolis et a!.,
1953) using the likelihoods specified by (1) and (2)
and the lognormal(3.5, 1.5) prior densities. Metrop-
olis algorithms generate samples from a probability
distribution via a Markov chain with that stationary
distribution. They are particularly valuable for high
dimensional distributions for which conventional
methods are infeasible. The methodology for imple-
menting the algorithm is described by Smith &
Roberts (1993). The first 1000 simulations were used
to allow the Metropolis process to equilibrate, and
were discarded.

Impilcations for forensic casework

A further simulation was used to illustrate the impli-
cations of genetic correlations for forensic match
probabilities. The simulation modelled four loci each
with k = 15 alleles. The 'global' frequencies (PA),
from which the forensic database is assumed to be
drawn, were generated from the uniform distribu-
tion with E(pA) = 1/k. The distribution of subpopu-
lation gene frequencies in a range of simple genetic
models follows a Dirichlet distribution with the vari-
ance specified by F and each expected frequency
given by the global frequency PA (see Balding &
Nichols, 1995). 'Cognate' frequencies (PA) were
therefore drawn from the Dirichlet distribution with
EQ3A) =PA and variance PA(i pA)F. Finally, 100
four-locus DNA profiles were generated indepen-
dently with the probabilities specified by the PA.

Weight of evidence in forensic applications is
measured by the likelihood ratio (see, for example,
Evett, 1992; Brookfield, 1995), which in identifica-
tion cases can usually be interpreted as a match
probability. If the cognate frequencies (PA) are
known, the match probability can be obtained
directly from them by multiplication. If they are not
known, which is usually the case in practice, the
match probability can be derived from eqn (1) in
terms of the database frequencies (PA) and F:

P(AB JAB) =
(F+(1—F)pA)(F+(1—F)p)

Ignoring genetic correlations is equivalent to setting
F = 0. For each of the simulated profiles, Fig. 2
compares the uncorrected match probability (using
F = 0 in eqn 3) with the appropriate value (using
F = 1 per cent; see discussion), both relative to the
cognate value. The homozygote case is complicated
by the possibility of null alleles, and is treated else-
where (Balding & Nichols, 1994).

Discussion

Both the KASPH and BM data sets display broadly
the same magnitude of genetic correlations, with the
most likely values for F typically between 0.2 per
cent and 1 per cent, but values in excess of 3 per
cent are plausible at one locus (Fig. le), even
though such large values are very unlikely a priori
under our modelling assumptions. The report of the
US National Research Council (1996) describes the
value of 1 per cent as 'conservative' for the US
population. This conclusion is based on unpublished
analyses which seem both to have assumed
constancy of F over subpopulations and to have
ignored the role of forensic databases. Moreover, it
is unclear what the report means by 'conservative' or
how a single F value should be interpreted in the
context of the many diverse ethnic groups which
make up, say, the US Caucasian population. Our
results suggest that further studies and appropriate
analyses are required before firm conclusions can be
drawn.

In view of our results, it is worthwhile asking how
the original authors came to such differing conclu-
sions. The KASPH analysis was based on plots of
cognate versus database frequencies of the sample
genotypes. This gave an indication of the differntia-
tion between populations, but did not quantify it in a
way that could be used directly in match probability
calculations. The BM analysis also made compari-
sons between sample and database frequencies for
genotypes. Their analysis did not, however, address
the issue of genetic correlations directly because the
genotypes were from a set of 'target profiles' of indi-
viduals classified as Caucasian, South Asian and
Afro-Caribbean instead of appropriate targets from
the cognate subpopulation. In their conclusion, BM
quote estimates of F in the range —0.2 per cent to
0.2 per cent, based on other data and obtained using
methods suffering from the problems outlined in the
introduction. The importance of estimating correla-
tions directly can be exemplified by the observation
that our estimates, from their own data, imply F

(3) values outside this range and possibly over 10 times
greater than their upper value.

The Genetical Society of Great Britain, Heredity, 78, 583—589.
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Fig. 1 Probability densities for the
genetic correlation coefficient F at
various loci based on: (a) to (c), a
Finnish and an Italian sample
compared with a mixed Caucasian
database (the KASPH samples); (d) to
(f) a Norwegian, a Spanish and a
Turkish sample compared with a
mixed Caucasian database (the BM
samples).

Figure 1 displays only the marginal distribution of
each F, whereas forensic calculations require the
joint distribution over loci for each subpopulation.
Variation in the value of F across loci, in addition to
positive correlations in these values, means that
employing an average value of F will tend to under-
state forensic match probabilities.

If an F value in the order of 1 per cent were
appropriate, what effect would this have on forensic
calculations? Figure 2 illustrates the effect on
forensic calculations both of ignoring genetic corre-
lations and of allowing for them using eqn (3). The
simulation mimics the situation which often arises in
practice: profile frequency estimates are available

C The Genetical Society of Great Britain, Heredity, 78, 583—589.
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Fig. 2. A comparison of relative errors in match probabili-
ties calculated ignoring genetic correlations (i.e. using eqn
3 with F = 0) and allowing for the appropriate level of
genetic differentiation (here, F = 1 per cent). Each point
on the scatter plot corresponds to a DNA profile, hetero-
zygous at each of four loci, simulated from a subpopula-
tion differentiated from a global population with F =1

per cent. The x-coordinate is the ratio of the correct
(cognate) profile frequency to its frequency in the data-
base population. The y-coordinate is the ratio of the
cognate frequency to the match probability obtained using
eqn (3), with the appropriate value of 1 per cent for F.

relative error in using the database frequencies and
ignoring a value of F of 1 per cent is about 1/2 an
order of magnitude. When F =5 per cent, the rela-
tive error is typically about two orders of magnitude.
An apparent tendency to overestimation of the
corrected match probabilities can be attributed
to the logarithmic transform: it follows from
E[Cognate/Corrected] = 1 that E[1og10(Cognate/
Corrected)] <0.

In practical casework, not only are cognate
frequency estimates unavailable, but also it is usually
impossible to specify the appropriate value of F.
Following these and similar studies, however, the
range of plausible values for actual human popula-
tions can be assessed. In many cases, DNA evidence
is so powerful that even making generous allowance
for possible genetic correlations still allows very
strong statements of evidential value. In some
marginal cases, involving for example partial
profiles, little or no corroborating evidence, or close
relatives of the defendant, consideration of plausible
levels of genetic correlations may, appropriately,

permit reasonable doubt about the source of the
crime stain DNA (Balding & Donnelly, 1995a).
Values of F suggested by the present analyses are
not necessarily those appropriate in any particular
case: other sources of uncertainty must be taken into
account (Balding & Donnelly, 1995b) and the other
evidence will have implications for the geographical
scale on which genetic correlations should be
assessed. To permit such assessments, further
studies are needed to investigate genetic correlations
on a range of demographic scales, including for
example isolated rural communities and close-knit
migrant and religious groups.
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