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Gene genealogy in a population of variable
size

BRUCE RANNALA
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.

The genealogical properties of a small population with continuous overlapping generations
that fluctuates randomly in size are studied using a model based on a stochastic birth—death
process. The distribution of the coalescence times is presented, as well as a method for
computing the expected overall length of the genealogy as a function of the individual birth
rate ), the individual death rate t, and the present population size. The relationship between
the birth and death rates and the shape of the resulting genealogy is studied. The total length
of the genealogy is shown to be maximized when ). = . The joint distribution of the coales-
cence times is shown to be invariant in )L and it, conditional on the current population size, so
that exponential growth of a population cannot be distinguished from exponential decline
based on the shape of the resulting genealogy. The model is used to predict the probability
that all genetic variation is lost from a recent founder population.
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Introduction

Changes in population size, whether random or
systematic, may have an important influence on
genetic structure and effective population size. In
growing or declining populations, this is reflected by
changes in the shape of allelic genealogies under a
coalescent process (Kingman, 1982) which traces the
ancestry of alleles. Recently, a number of authors
have studied the genealogical properties of a
Wright—Fisher model with deterministic size varia-
tion (Slatkin & Hudson, 1991; Rogers & Harpend-
ing, 1992; Griffiths & Tavaré, 1994; Nee et al., 1995).
Slatkin & Hudson (1991) showed that genealogies in
populations expanding at an exponential rate have
coalescence times concentrated over a restricted
range of the genealogical tree (i.e. are more 'star-
like'). Griffiths & Tavaré (1994) derived the joint
distribution of the times between coalescence events
in a population undergoing deterministic expansion.

In this paper, I consider the genealogical proper-
ties of a stochastic demographic model for a popula-
tion closed to immigration and with a variable size
determined by a linear birth and death process.
Karlin & McGregor (1967), Kendall (1975), Tavaré
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genetics, founder population, gene coalescent,

(1989) and Rannala (1996) have previously studied
the distribution of marked types (i.e. marking as a
result of either mutation of immigration) for the
linear birth, death and immigration process, origin-
ally proposed by Kendall (1948) as a model of popu-
lations open to immigration and of variable size.
The genetic properties of demographic models of
supercritical branching processes, which are discrete-
time analogues of birth—death (BD) processes (with
).> /1), have also been studied (TaIb, 1992).

The linear birth and death model of population
demography is similar to a model proposed by
Moran (1958) to study genetic structure in popula-
tions with overlapping generations. The Moran
model considers a Markov process in which each
event, in discrete time, is a birth whose parent is
chosen at random from the population, followed
immediately by a random death. The total popula-
tion size under the Moran model remains constant
over time. The BD process allows for random deaths
as well as births; birth and death events occur, for
any particular individual, according to independent
Poisson processes and the total population size fluc-
tuates over time.

The linear BD process provides a reasonable
model for studying populations in which individual
birth and death rates are independent of population
density. This might be expected to be the case in
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populations well below the environmental carrying
capacity; examples could include founder popula-
tions that have invaded new habitats, and relict
populations that are declining because of human
exploitation. The BD process is also potentially
useful for describing the population dynamics of a
newly mutated allele at low frequency in a
population.

For large N, if the change in population size
over time under a BD process is adequately
described using a deterministic model of exponential
population growth L>p) or decline (2<4 The
well-known result for the population size at time t
under the deterministic process is equal to the
expectation under the stochastic BD model (see
below):

E[N(t)] =N(0)e',
where N(0) is the population size at time t =0. Grif-
fiths & Tavaré (1994) provide a general result for
the distribution of coalescence times in a population
with nonoverlapping generations and a population
size that changes as a deterministic function of time.
The results of Griffiths & Tavaré are based on a
diffusion approximation; for large populations the
properties of a birth—death process should be well
described using their results (with an appropriate
change of time-scale). In many cases, however, it is
important to consider specifically the genealogical
properties of small populations for which a diffusion
approximation may not be valid.

In general, populations in nature that satisfy the
density-independent growth assumption of the BD
model will be quite small in size (human populations
are an obvious exception). In particular, many
species of interest to conservation biologists may be
declining in size because of exploitation at rates
roughly proportional to the total population
numbers. For such populations, a demographic
model that takes into account stochastic size fluctu-
ations in modelling the genetic structure may be
expected to be more accurate than a deterministic
model. For moderately small values of N, 2 and p,
the population coalescence times (measured in units
of expected births) are recent enough that mutation
will be of negligible importance as a force determin-
ing genetic variation. In this study, I focus primarily
on the probability that pre-existing variation in a
population is lost under a BD process. The results
presented for the gene genealogy are also relevant
to larger populations and genetic models that incor-
porate mutation, however, and allow some predic-
tions concerning the shapes of genealogies
reconstructed using molecular data.

Theory

Demographic model

The linear BD process was first described by Feller
(1939), and many of its mathematical properties
were studied by Kendall (1949). The process may be
formulated as follows: during an infinitesimal time
interval 5t, the probability that a birth occurs in a
population of size N is N2& and the probability that
a death occurs is NJtht. The probability of two or
more events is of order O(&) and may be neglected.
Note that 2 is the individual birth rate and p is the
individual death rate. There is a positive probability
of population extinction under this process for finite
(and nonzero) values of A and p. Because I am
primarily interested in the genealogy arising under

(1) the model, I consider only cases in which the popu-
lation has not become extinct.

If a population is initiated by a single individual
(i.e. N(0) = 1) the probability that the population is
extinct at time t >0 is (from Kendall, 1949)

p[e" 11
p0(t) = . (2)

The probability that the population consists of N
descendents at time t is

PN(t) = [1 —po(t)}(1_,i),l1N, (3)
where =po(t)(A/p). The expectation and variance
of N (t) are

E[N(t)] = (4)

Var[N(t)] —1). (5)

If N(0)> 1, each individual has an independently
distributed number of offspring (with expectation
and variance as given in eqns 4 and 5) and we obtain
the result for the expected population size presented
in eqn (1).

Gene genealogy
In this paper, I focus on the genealogy of a collec-
tion of N  2 haploid individuals, observed at time
present. Nee et al. (1994) refer to this as the geneal-
ogy of the 'reconstructed process' and it may be
visualized as a tree of ancestors and descendents
under a BD process with the lineages extinct before
time present removed (Fig. 1). To be consistent with
previous work, I will denote the time at present as
zero and the time at which all the lineages coalesce
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pp 1(x)
f(x)=

pa(t1)

A B

p1(t1). The joint density of observing N lineages at
time present that arise at times tN<tN_1< ... <(2 in
the past and are descended from a single ancestral
lineage that appeared at time 11, conditional on the
present population size N, is then

P(tN,...,t2I2,p;tl,N)(t1)fl(i_1)2p(tj)
PN(tI) i=2

N ( p1(t,)
=(N—1)!flp (8)

i=2 po(t)}
An interesting property of eqn (8) is that the joint

Fig. 1 Two possible representations of the genealogy of a density of coalescence times is invariant in p and 2.
BD process. The genealogy at left, denoted as A, is This result has been independently observed by M.
complete and includes six individuals, only four of whom Slatkin (personal communication) who used an
are alive at time t =0. The genealogy at right, denoted as approach different from the one presented in this
B, only includes the four individuals alive at time t = 0. paper. This invariance can be shown by comparing
The waiting times t4 t3and t2 until the four survivors the joint density of coalescence times for a growing
coalesce to three ancestors, two ancestors and one population with parameters 2 >p and a declining
ancestor, respectively, are shown at right, population with parameters P2>2. The densities

are identical if 2 = P2 and 22 = Pi. This implies that
the shape of the genealogy of alleles is identical for

to a single ancestor as t2 >0. A population of N populations either growing, or declining, with identi-
lineages, under this process, coalesces to N—i cal but opposite rates; population growth can there-
ancestral lineages at time tN, N— 2 lineages at time fore not be distinguished from population decline
tN and so on. Coalescence events occur at N—i using only the allelic genealogy. It is clear from eqn
distinct times in total (Fig. ib). The first coalescence (8) that the joint density of coalescence times is
event occurs at time tN and the last at time t2 when equivalent to the joint density of the order statistics
only a single ancestor remains. The joint distribution (i.e. X(2) >X(3)> ... >X) of N—i independent and
of coalescence times under the BD process was identically distributed (iid) random variables with
originally derived in a different context by Thomp- density
son (1975) and later by Nee et a!. (1994). My deriva-
tion differs, however, in that I do not condition on . (9)
the time of the final coalescence event.

The marginal or joint densities of the t2,..., t
Distribution of coalescence times coalescence times are identical to those of the order

statistics of the variables x and various properties of
A population of N individuals, alive at time present, these may be studied using standard methods. In
is descended through N—i coalescence events from particular, the marginal density of the jth coales-
a single ancestor. The probability that an individual cence time is given by
is born to one of i —1 lineages existing at time t, that
ultimately survive to time present, and the new (N—i)!
lineage is represented by a single descendent lineage P(t1 I 2,p) =

(N—j)! —2)!
—F(t )]i —2

at present is
(10)

(i — l)A (t,), (6) where F(x) is the cumulative distribution function
where (from Kendall, 1949), (c.d.f) of the random variable x given by

p (t,) = (i —p(t))(l —(2/p)po(t,)). (7)
F1(x)= f(y)dy

This result follows as the i individuals alive at time t,
that survive to present are equally likely to give birth
to the new lineage; the new lineage survives to leave — ____________________ (11)
a single descendent at time present with probability

—

(etJ(2_/) — 1)(—

The Genetical Society of Great Britain, Heredily, 78, 417—423.



420 B. RANNALA

2().—p)e"'t1 +(et -))._p) log

).p(le'V))
=

(15)
(1+2t1)log(1+2t1)—).t1

ifA=p.

(12)
The expected time of the final coalescence event is

E1t2] = jt2P(t2 I 2, p)dt2, (16)

where P(t2 2, p) is the marginal density calculated
using eqs (9—11). The integral of eqn (16) does not
appear to have an analytical solution, but may be
evaluated numerically using standard methods. In
the examples below, I use numerical integration
routines in the Mathematica computer program
(Wolfram Research, 1992). A Mathematica package
for performing these calculations is available on the
internet web page at http://mw511.biol.berkeley.edu/
homepage.html.

The effect of changing birth and death rates on
the total genealogy length in a population of current
size N= 50 and with t1 = 10 is shown in Fig. 2. The
lower curve is for the case where the death rate is
constant (/1 = 1) and the birth rate is increasing; this
corresponds to an increase in the overall rate of
growth for the population. The effect is an approx-
imately exponential decrease in the total length of
the genealogy with a linear increase in 2. These

Fig. 2 Total length of the population genealogy T as a
(14) function of the individual birth rate ). The population size

is N = 50 in all cases and the age of the ultimate ancestral
lineage is t = 10. The upper curve is for the case where
the individual birth rate ). equals the death rate p (p
the lower curve is for the case p =1.
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The marginal density of t2 is of particular interest;
this is the time at which all individuals coalesce to a
single ancestor and all genetic variation is lost from
the population (see discussion below).

If the ancestor of all individuals arose at a time
t1—6cxJ in the past, by taking the limit of eqn (8) we
obtain

((N—1)!fl2).p(t) if).>p
P(tN,...,t2I).,p,N)= N

(N— 1)!H=2 pp1(t1) if u>).

This is the limiting distribution of coalescence times
in a population, currently of size N, whose ultimate
ancestral lineage arose at a time far in the past.
Using a logic similar to that applied for the case of
finite t, the joint density of t, in the limit as t1—+cx,
is given as the order statistics of a collection of N—i
iid random variables with density f(x) = Bp1(x),
where B =2 if 2> p and B = p if p >2. Marginal
densities may then be calculated using eqn (10)
above.

Genealogy length

The total length of the allelic genealogy (the sum
over all branches) in a population provides a useful
summary of genetic structure (Tavaré, 1984). If one
considers the DNA sequence for a particular gene in
the population, allowing for mutations arising
according to the infinite sites model of nucleotide
substitution (Kimura, 1969), then the expected
number of segregating sites among individuals is a
linear function of the genealogy length (Hudson,
1990). Over shorter time scales, for which muta-
tional effects may be negligible, the genealogy length
is inversely related to the probability that the varia-
bility among individuals for a particular gene is lost
(see below). The total length of the genealogy,
summing over all branches, may be derived as the
following function of the coalescence times:

T= t+t2.

For a BD process, we have the simple result that the
expectation of T is

E[TJ = E[t1] +E[t21

= (N— 1)E[xJ +E[t2],
where the expectation of x is

E[x] =
JYfx(Y)dY

N5080

60Tf
40

(13)

20

r
2 4 6 8 10
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results are similar to those observed by Griffiths &
Tavaré (1994) for a Wright—Fisher model with
deterministic population growth. Their results
predict that the expected coalescence times (on a
time scale proportional to the current population
size) decrease with an increase in the population
growth rate.

The upper curve shows the expected genealogy
length for the case where A = 1u and the magnitude
of A is increased; this corresponds to an increase in
the reproductive variance among individuals (and an
increase in the variance of the total population size
over time), although the expectation of the total
population size over time remains constant. The
effect of this increase in the reproductive variance is
to decrease the total genealogy length, but with less
influence than when p is fixed. The total length of
the genealogy for a population with A = p = c is
always greater than for either A = c> p or p = c >A.

These results agree with classical theory on the
effects of population size fluctuations and variance
in reproductive success on population genetic
variability.

Demography and genealogy shape

To evaluate the effect of a stochastic increase, or
decrease, of total population size on the shape of
the genealogy resulting under a BD process, I
considered the influence of A and p on the function
Var(x = 1). This function gives the variance
among coalescence times t2,..., tN relative to t, the
age of the initial ancestor. If this variance is smaller,
the coalescence times are concentrated over a more
restricted time range and the tree is more 'starlike'.
In the extreme case, where Var(x )t1 = 1) = 0, we

have a star genealogy with all lineages arising at
precisely the same time. For large N, the approx-
imate interval containing 95 per cent of the coales-
cence events is ,.JVar(x (t1 1) x 1.96. The lower
curve in Fig. 3 shows the change in Var(x jt1 = 1)
with increasing A and with p = 10. The coalescence
events become concentrated over a smaller interval
of time relative to t1 (i.e. Var(x T = 1) decreases)
in a population with increasing A (or equivalently
decreasing p). The general effect of increasing A is
then to produce a more starlike genealogy as
predicted by Slatkin & Hudson (1991) for the
genealogy shape expected under a Wright—Fisher
model with deterministic population growth.

The upper curve in Fig. 3 shows the change in
Var (x = 1) with increasing A (or equivalently ji),
but holding the difference between the parameters A
and p constant (i.e. in the example of Fig. 3:
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Fig. 3 Variance of coalescence times relative to t, the
time of origin of the ultimate ancestral lineage
(Var(x It = 1)), as a function of the individual birth rate
A. The population size is N = 50 in all cases. The upper
curve is for the case where the difference between the
birth rate and the death rate is a constant (p= —1); the
lower curve is for the case p = 10.

A—p = 1). In this case, the average rate of popula-
tion growth remains constant, but the variance of
the population size over time increases (as well as
the variance in reproductive success among individ-
uals). This case also results in a reduction of
Var(x )ti = 1) (i.e. an increased concentration of
coalescence times). This finding is different from the
expectation based on a well-known result for the
Wright—Fisher coalescent that shows an increase in
reproductive variance among individuals 0.2 is equiv-
alent to a fixed reduction in population size (i.e. the
time scaling of the overall process is altered by a
factor 1/0.2) but does not otherwise affect the geneal-
ogy shape (Kingman, 1982). For a BD process, an
increase in the reproductive variance among individ-
uals also results in an increase in the magnitude of
population size fluctuations over time; this appears
to affect the genealogy shape as well as the effective
population size, resulting in a genealogy that is more
starlike.

Genetic diversity in a founder population

Consider a population that was founded by an
unknown number of individuals at time tf in the
past. It is assumed that we are able to estimate the
present population size, the birth rate A, and the
death rate p, using ecological field studies, and that
individual age is not an important factor influencing
reproduction and survival. An important question
from the perspective of conservation genetics is
whether all of the original genetic variability among
the population founders has been lost by the present
time. Clearly if all the lineages coalesce before time

N=50

0.05

x

t=1 0
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tf then no genetic variability will remain in the
population. This probability is given by

P(t2tf) = F,2(t1), (17)

where F12 is the c.d.f. of t2 derived using eqs (10 and
12). The probability that all diversity is retained in
the population is equal to the probability that the
first coalescence event occurs after tf (i.e. tN>tf).
This probability is given by

P(tN > tf) = 1— P(tN tf)

= 1—F,N(tf). (18)

The probability that all diversity is lost, as a function
of A, is shown for a growing population L> p) in
Fig. 4 for a range of values of p and N. The prob-
ability that all original diversity is retained
(1 —F(N(tf)) is essentially zero, over most reasonable
ranges of the parameters, suggesting that this is a
less informative measure of genetic structure; the
probability that at least one coalescence event
occurs is virtually certain in most cases. In general, it
appears that the probability of a complete loss of
diversity (i.e. that the populations coalesce to a
single founder lineage) increases with decreasing
population size, increasing birth rate or the time
elapsed since the founder event. This may be
explained by noting that the results are conditional
on the present population size; if the population size
is fixed and the birth rate is increased, this increases
the probability that few founders were present at

time tf. Similarly, decreasing the current population
size and keeping A constant again increases the
probability of few founders.

Discussion

The results of this study suggest that a number of
the general findings of earlier studies that have
considered the genealogical structure of large popu-
lations with deterministic variation in total popula-
tion size will also be true for small, stochastically
fluctuating populations. In particular, the genealogy
shape becomes more starlike with an increase in the
birth rate relative to the death rate (Slatkin &
Hudson, 1991; Rogers & Harpending, 1992).
However, a new finding of this study is that genealo-
gies in populations that are either growing, or
declining, with similar rates are more starlike than
genealogies for populations with a constant expected
size. This suggests that genealogy shape alone is not
sufficient to detect a rapid population growth. It
should be noted, however, that this invariance of the
genealogy shape for growing, or declining, popula-
tions is conditional on the current population size.
The current population size may be much more
probable for A> p or vice versa; the joint density of
coalescence times and population size N is not invar-
iant in A and p.

Two possible predictors of the genetic variability
in an expanding founder population, or a declining
relict population, were also considered in this study.

Fig. 4 Probability that all diversity is
lost from a founder population
(P(t2t). Graph A at the upper left
shows the effect of an increase in the
individual birth rate A on the prob-
ability of a loss ofdiversityP(t2tf),
with the mutation rate p =1, the time
of population founding at tf = 5 and

10 20 o the population size at N = 50. Graph
N B at the upper right shows the effect

of an increase in population size N on
P(t2<t1), with p = 1, tf = 5 and

D
A = 1.1. Graph C at the lower left
shows the effect of the time of the

0.2
population founding event tf on
P(t2tf), with p = 1, A = 1.1 and0.15
N =50. Graph D at the lower right•j t1—5 shows the effect of an increase in the

N =50 individual birth rate A on P(t2tf)
0 . OS

when the difference between the
birth rate and the death rate p is held1.5 2 2.5 constant at p = A—O.1, where t = 5

'I' andN=50.
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The c.d.f. of the final coalescence time gives the
probability that all genetic variability has been lost
from the population, whereas the c.d.f. of the first
coalescence event gives the probability that all origi-
nal genetic diversity has been retained. The prob-
ability of a complete loss of diversity increases with
a decrease in the total population size, an increase
in the individual birth rate, or an increase in the
total time elapsed since the founding event occur-
red. The probability that all diversity among foun-
ders is preserved is effectively zero over the range of
parameters studied, suggesting that this measure is
less informative.

The BD process appears to provide a useful
model for studying the genetic structure arising in
small populations with overlapping generations that
are highly variable in size, are not strongly age-
structured, and are not regulated by density-depend-
ent effects. The model should prove particularly
helpful in studying many problems arising in conser-
vation genetics where a large population size
assumption may not be warranted and stochastic
effects arising from population size variation are
important. The probability distribution of coales-
cence times for the BD process considered in this
study might also be applied to estimate the birth and
death rates in a population using DNA sequences
for one or more genes. The calculation would
involve integrating and summing over large numbers
of variables and would be similar to the method
implemented by Kuhner et al. (1995) to estimate
jointly the effective population size and mutation
rate under a Wright—Fisher coalescent model. Such
calculations for a BD process do not appear feasible
at the present time.
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