Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon’, Mt. Carmel, Israel

Abstract

Allozymic diversity was studied for proteins encoded by 28 putative loci in 170 plants of wild barley, Hordeum spontaneum, and for 13 loci in 78 different thalli of the lichen Caloplaca aurantia, from the Lower Nahal Oren microsite, Mt. Carmel, Israel, designated by us ‘Evolution Canyon’. The samples of wild barley were collected from six stations: three (upper, middle, lower) on the south-facing slope (SF-slope) and three (lower, middle, upper) on the north-facing slope (NF-slope). The samples of C. aurantia were collected from three stations: two (middle and upper) on the SF-slope and one (upper) on the NF-slope. Higher solar radiation on the SF- than on the NF-slope makes it warmer, drier, spatiotemporally more heterogeneous, and climatically more fluctuating and stressful. Consequently, it exhibits an open park forest representing an ‘African’ savanna landscape. Significant inter- and intraslope allozymic differentiation was found in both organisms with generally higher polymorphism, heterozygosity, allele and gene diversity on the more variable and stressful upper station of the SF-slope, as expected by the niche-width variation hypothesis, and the environmental theory of genetic diversity. Solar radiation, temperature and aridity stress caused interslope and intraslope differences on the SF-slope in genotypes and phenotypes of wild barley and the lichen at the ‘Evolution Canyon’ microsite, as was the case for beetles, diplopods and earthworms tested at the site. Diversifying natural (microclimatic) selection appears to be the major evolutionary driving force causing interslope and SF-intraslope adaptative genetic divergence. ‘Evolution Canyon’ proves an optimal model for unravelling evolution in action, across life and organizational levels.

References

  1. Allard, R W, Kahler, A L, and Weir, B S. 1972. The effect of selection on esterase allozymes in a barley population. Genetics, 73, 489–503.

    Google Scholar 

  2. Apelbaum-Elkaher, I. 1994. Genetic Variation in the Lichen Caloplaca aurantia and in the Wild Barley Hordeum spontaneum in the Nahal-Oren Site, and Detection of Stress Conditions on the Lichen Ramalina duriaei by Physiological Parameters. M.Sc. Thesis, Tel-Aviv University (in Hebrew; English summary).

  3. Brown, A H D, Feldman, M W, and Nevo, E. 1980. Multilocus structure of natural populations of Hordeum spontaneum. Genetics, 96, 523–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Clegg, M T, Kidwell, J F, Kidwell, M G, and Daniel, N J. 1976. Dynamics of correlated genetic systems. I. Selection in the region of the Glued locus of Drosophila melanogaster. Genetics, 83, 793–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cottle, H J. 1932. Vegetation on north and south slopes of mountains in S.E. Texas. Ecology, 13, 121–134.

    Article  Google Scholar 

  6. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. Murray, London.

    Google Scholar 

  7. Endler, J A. 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  8. Galun, M. 1970. The Lichens of Israel. The Israeli Academy of Sciences and Humanities, Jerusalem.

    Google Scholar 

  9. Golenberg, E M, and Nevo, E. 1987. Multilocus differentiation and population structure in a selfer, wild emmer wheat, Triticum dicoccoides. Heredity, 58, 451–456.

    Article  Google Scholar 

  10. Hamrick, J L, and Allard, R W. 1972. Microgeographical variation in allozyme frequencies in Avena barbata. Proc Natl Acad Sci USA, 69, 2100–2104.

    CAS  Article  Google Scholar 

  11. Hamrick, J L, and Holden, L R. 1979. Influence of microhabitat heterogeneity on gene frequency distribution and gametic phase disequilibrium in Avena barbata. Evolution, 33, 521–533.

    CAS  Article  Google Scholar 

  12. Hoffmann, A A, and Parsons, P A. 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford.

    Google Scholar 

  13. Johannesson, K, Johannesson, B, and Lundgren, U. 1995. Strong natural selection causes microscale allozyme variation in a marine snail. Proc Natl Acad Sci USA, 92, 2602–2606.

    CAS  Article  Google Scholar 

  14. Karlin, S. 1979. Principles of polymorphisms and epistasis of multilocus systems. Proc Natl Acad Sci USA, 76, 541–545.

    CAS  Article  Google Scholar 

  15. Karlin, S. 1981. Some natural viability systems for a multiallelic locus: a theoretical study. Genetics, 97, 457–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karlin, S. 1982. Classifications of selection-migration structures and conditions for a protected polymorphism. Evol Biol, 14, 61–204.

    Google Scholar 

  17. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  18. Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available. Am Nat, 87, 311–313.

    Article  Google Scholar 

  19. Mattsson, J E, and Karnefelt, I. 1986. Protein banding patterns in the Ramalina siliquosa group. Lichenologist, 18, 231–240.

    CAS  Article  Google Scholar 

  20. Nei, M. 1972. Genetic distance between populations. Am Nat, 106, 283–292.

    Article  Google Scholar 

  21. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    CAS  Article  Google Scholar 

  22. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nevo, E. 1978. Genetic variation in natural populations: pattern and theory. Theor Pop Biol, 13, 121–177.

    CAS  Article  Google Scholar 

  24. Nevo, E. 1988. Genetic diversity in nature: patterns and theory. Evol Biol, 23, 217–246.

    Article  Google Scholar 

  25. Nevo, E. 1990. Molecular evolutionary genetics of isozymes: patterns, theory and application. In: Ogita, Z.-I. and Markert, C. L. (eds) Isozymes: Structure, Function and Use in Biology and Medicine, pp. 701–742. Wiley-Liss, New York.

    Google Scholar 

  26. Nevo, E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry, P. (ed.) Barley: Genetics, Molecular Biology and Biotechnology, pp. 19–43. C.A.B. International, Wallingford, Oxford.

    Google Scholar 

  27. Nevo, E. 1994. Biodiversity: the ‘Evolution Canyon’ at Nahal Oren, Mt. Carmel, Israel. Isr J Bot, 42, 83. (abstract).

    Google Scholar 

  28. Nevo, E. 1995. Asian, African and European biota meet at ‘Evolution Canyon’, Israel: local tests of global biodiversity and genetic diversity patterns. Proc R Soc, B, 262, 149–155.

    Article  Google Scholar 

  29. Nevo, E. 1997. Evolution in action across phylogeny caused by microscale ecological stresses. Theor Pop Biol, (in press).

  30. Nevo, E, and Beiles, A. 1988. Genetic parallelism of protein polymorphism in nature: ecological test of the neutral theory of molecular evolution. Biol J Linn Soc, 35, 229–245.

    Article  Google Scholar 

  31. Nevo, E, Shimony, T, and Libni, M. 1977. Thermal selection of allozyme polymorphisms in barnacles. Nature, 267, 699–701.

    CAS  Article  Google Scholar 

  32. Nevo, E, Zohary, D, Brown, A H D, and Haber, M. 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution, 33, 815–833.

    CAS  Google Scholar 

  33. Nevo, E, Brown, A H D, Zohary, D, Storch, N, and Beiles, A. 1981. Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae). Pl Syst Evol, 138, 287–292.

    Article  Google Scholar 

  34. Nevo, E, Bar-El, C, Beiles, A, and Yom-Tov, Y. 1982. Adaptive microgeographic differentiation of allozyme polymorphism in landsnails. Genetica, 59, 61–67.

    Article  Google Scholar 

  35. Nevo, E, Beiles, A, Storch, N, Doll, H, and Andersen, B. 1983. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor Appl Genet, 64, 123–132.

    CAS  Article  Google Scholar 

  36. Nevo, E, Beiles, A, and Ben-Shlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect Notes Biomath, 53, 13–213.

    Article  Google Scholar 

  37. Nevo, E, Noy, R, Lavie, B, Beiles, A, and Muchtar, S. 1986a. Genetic diversity and resistance to marine pollution. Biol J Linn Soc, 29, 139–144.

    Article  Google Scholar 

  38. Nevo, E, Beiles, A, Kaplan, D, Golenberg, E M, Olsvig-Whittaker, L S, and Naveh, Z. 1986b. Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild barley. Evolution, 40, 13–20.

    Article  Google Scholar 

  39. Nevo, E, Beiles, A, and Krugman, D. 1988a. Natural selection of allozyme polymorphisms. II. A microgeographic climatic differentiation in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet, 75, 529–538.

    Article  Google Scholar 

  40. Nevo, E, Beiles, A, and Krugman, D. 1988b. Natural selection of allozyme polymorphisms. A microgeographic differentiation by edaphic, topographical and temporal factors in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet, 76, 737–752.

    CAS  Article  Google Scholar 

  41. Nevo, E, Noy-Meir, I, Beiles, A, Krugman, T, and Agami, M. 1991. Natural selection of allozyme polymorphisms: a micro-geographical spatial and temporal ecological differentiation in wild emmer wheat. Isr J Bot, 40, 419–449.

    CAS  Google Scholar 

  42. Nevo, E, Krugman, T, and Beiles, A. 1994. Edaphic natural selection of allozyme polymorphisms in Aegilops peregrina at a Galilee microsite in Israel. Heredity, 72, 109–112.

    CAS  Article  Google Scholar 

  43. Nevo, E, Ben-Shlomo, R, Beiles, A, Ronin, Y, Blum, S, and Hillel, J. 1996. Genomic adaptive strategies: DNA fingerprints reveal ecogenetic parallelism to allozymes, RAPDs, mitochondrial DNA, and chiasma frequency in the actively speciating mole rats in Israel. In: Holmes, R. S. and Lim, H. A. (eds) Gene Families: Structure, Function, Genetics and Evolution, pp. 55–70. World Scientific Publishers, New Jersey.

    Google Scholar 

  44. Ohta, D, and Tachida, H. 1990. Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics, 126, 219–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Olsvig-Whittaker, L S, Naveh, Z, Giskin, M, and Nevo, E. 1992. Microsite differentiation in a Mediterranean oak savanna. J Veget Sci, 3, 209–216.

    Article  Google Scholar 

  46. Parsons, P A. 1994. Habitats, stress, and evolutionary rates. J Evol Biol, 7, 387–397.

    Article  Google Scholar 

  47. Shreve, F. 1922. Conditions indirectly affecting vertical distribution on mountains. Ecology, 3, 269–274.

    Article  Google Scholar 

  48. Siegel, 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Book Co., New York.

    Google Scholar 

  49. Slatkin, M, and Barton, N H. 1989. A comparison of three indirect methods for estimating the average level of gene flow. Evolution, 43, 1349–1368.

    Article  Google Scholar 

  50. Soulé, M, and Stewart, A R. 1970. The niche variation hypothesis: a test and alternatives. Am Nat, 104, 85–97.

    Article  Google Scholar 

  51. Swofford, D L, and Selander, R B. 1989. BIOSYS-1. A Computer Program for the Analysis of Allelic Variation in Population Genetics and Biochemical Systematics. Release 1.7. D.L. Swofford, Illinois Natural History Survey, Champaign, IL.

    Google Scholar 

  52. Ugrinovskii, A, Korol, A B, and Nevo, E. 1995. Ecologi-cal basis of molecular sequence divergence: Rubisco large subunit gene as an example. German-Israeli Symposium on Computing Science Aspects of Molecular Biology, 26–28 November. 1995. Tel-Aviv University, Israel.

    Google Scholar 

  53. Van Valen, L. 1965. Morphological variation and width of ecological niche. Am Nat, 99, 377–390.

    Article  Google Scholar 

  54. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nevo, E., Apelbaum-Elkaher, I., Garty, J. et al. Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon’, Mt. Carmel, Israel. Heredity 78, 373–382 (1997). https://doi.org/10.1038/hdy.1997.60

Download citation

Keywords

  • genetic diversity
  • Hordeum spontaneum
  • lichens
  • microgeographical variation
  • selection
  • wild barley

Further reading