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Comparison of several confidence intervals
for QTL location
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The confidence interval for the map location of quantitative trait loci (QTL) is a very
important quantity for geneticists. The one LOD support interval has been proved to be a
biased confidence interval. Moreover the distribution of the LOD score has been shown to
depend on the value of the QTL effect, which is why the LOD score cannot be used to build
an unbiased confidence interval when the value of the QTL effect is unknown. A new confi-
dence interval based on a maximun likelihood ratio test and using statistics whose asymptotic
distribution does not depend on the QTL effect, has been proposed and proved to lead to an
asymptotically similar confidence interval. The major difficulty of this method is the computa-
tion of the correct threshold for the maximum likelihood ratio test. An approximation for the
threshold is proposed in this paper. When the value of the QTL effect is known, an unbiased
confidence region could be built using the LOD score. A simulation study is carried out to
compare the average length of this region, which is unobtainable for an unknown value of the
QTL effect, to the average length of the asymptotically similar confidence interval. It shows
that the required property of similarity does not increase the confidence interval length
significantly for QTL having a small effect, and leads to an increase of about 5cM length for
a 1 Morgan chromosome when the value of the QTL is great. An empirical symmetrical
confidence interval could be constructed with the empirical distribution function of the
maximun likelihood estimation for the QTL position. The simulation study shows that, when a
QTL is detected, the average length of the asymptotically similar confidence interval could be
half the length of the empirical symmetrical one. This great difference can be explained by the
fact that the asymptotically similar confidence interval is dependent of the interval mapping
test of detection whereas the empirical symmetrical one is independent of the actual data.
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Introduction

The advent of maps of molecular markers enables
geneticists to detect and map loci affecting quanti-
tative traits (QTL). Since the work of Lander &
Botstein (1989) a widely applied QTL mapping
method is interval mapping, which leads to
maximum likelihood estimation of the QTL map
location. Lander & Botstein (1989) proposed to use
as a confidence interval of the QTL position on the
chromosome a one LOD support interval. Van
Ooijen (1992) studied this type of confidence inter-
val for backcross and F2 populations. He found that
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a two LOD support interval is necessary to ensure a
95 per cent confidence interval in his simulation
study.

Mangin et a!. (1994) proved that, from a theoret-
ical point of view, a confidence interval could not be
built out of the LOD score. The reason is that the
LOD score is not similar to the value of the QTL
effect, that is, the distribution of the LOD score
depends on the value of the QTL effect, and there-
fore information on this value is necessary to build
an unbiased confidence interval. We propose to
build a new confidence interval using statistics for
which the asymptotic distribution does not depend
on the value of the QTL effect. With these statistics,
at each position along the chromosome, a maximum
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likelihood ratio test is computed to answer the ques-
tion of the presence of a putative QTL. The set of
positions not 'rejected' is an asymptotically similar
confidence interval.

One of the major difficulties for a practical use of
this method is the computation of the correct
threshold for the maximum likelihood ratio test to
ensure a given type I error. The first aim of this
paper is to propose an approximate analytical
threshold that could be computed for any map.

The length of the asymptotically similar confi-
dence interval is of interest. For breeding purposes,
as well as for the molecular biologist, a large confi-
dence interval is unusable. In order to test if the
required property of similarity does not lead to a too
large interval, we build, when the value of the QTL
effect is known, an unbiased LOD support interval.
With a simulation study, we compare the length of
the asymptotically similar confidence interval to the
length of this unobtainable (when the value is
unknown) LOD support interval. Another simula-
tion study is carried out in order to compare the
length of the Darvasi et a!. (1993) empirical symmet-
rical confidence interval to the length of the asymp-
totically similar confidence interval. It shows that
our confidence interval leads to more optimistic
results, for the correct determination of the QTL
location, than those published by Darvasi et al.
(1993).

Model and asymptotically similar confidence
interval

In a backcross population of size n, we consider a
QTL present at the position d on a chromosome of
length L. The trait value has a normal distribution
with means g and for the two QTL genotypes
present in the backcross population and the same
variance o.2 for both genotypes. We will use
a = UA — 11B, which is the value of the QTL effect,
and (itA + /IB)/2, the global mean. For each indi-
vidual k = 1,..., n, the phenotypic value of the trait
Yk and a set of marker genotypes M for j= 1,..., J
taking values A or B depending on the allele marker,
are scored. In the following, we assume no inter-
ference in recombination events and therefore use
Haldane's mapping function.

A similar confidence interval for a QTL position,
built out of a test statistic T and a significance level, is the set of values d0 such that T(d0) c(d0),
where c(d0) verifies P(T(d0) c1 (d0)) = 1—ct what-
ever the values of the nuisance parameters (it, a,
ô.2)

Note that the property of similarity for a confi-
dence interval is a strong property that implies
unbiasedness. The nuisance parameters i and o2
could be estimated consistently, so there is no diffi-
culty in ensuring similar (or invariant) procedures
for them. The main difficulty is to obtain similar
statistics for the a parameter, because a cannot be
estimated consistently for QTL having a small effect.
The idea of Cox & Hinkley (1974) for obtaining
similar statistics is, in our model, to use only that
part of the data which is conditional on sufficient
statistics for the a parameter when the QTL is
supposed to be located at d0. The second idea is to
work in a local asymptotic framework for a, that is
a ,.,/ tends to a finite constant when n goes to infin-
ity. Following these two ideas, Mangin et al. (1994)
found asymptotically and locally similar statistics
that are

1 / S S.+1 \
________ — I,

\l—2r. l—2r1+Id(J

where 1,d denotes the recombination rate between
the marker j and a QTL located at d0, &2 denotes
the classical estimator of the variance and

Yk1IM,,kfi]
k k

2
1[M1k_A] 1[M1]

where ![M.k = is the indicator of the events [M1 k = .1.
Note that the S statistics are the least square statis-
tics for parameter a at each marker when they are
divided by

A score test of detection T (d0), asymptotically
equivalent to the maximum likelihood ratio test, is
then computed out of the Z1 (d0) statistics, leading to

w2 (d,d0)T (d0) = sup
o dLVar (W(d,d0))

where W(d,d0) is a linear function of Z (d0) and
Var (.) denotes the asymptotic variance. Expres-
sions of W(d,d0) and Var, (W(d,d0)) are given in
the Appendix.

The asymptotically similar confidence interval is
then defined by the set of points not 'rejected'.

Mangin et a!. (1994) proved that under the
hypothesis 'The QTL is located at position d0', Z(d0)
is asymptotically normal with mean 0 and variance V
(given in Appendix). So T(d0) is asymptotically the
supremum of a process.
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Threshold approximation
To obtain a 1— o confidence interval it is necessary
to compute the threshold function c,(do). This func-
tion depends on the length of the chromosome and
the marker map. Mangin et a!. (1994) gave values of
threshold function for various numbers of equally
spaced markers, obtained by simulations. However,
an upper bound function, denoted c(do), could be
found using Davies' (1977) approximation. This
leads to the computation of c(do) as the solution of
the following equation:

=

1

(c(do))
('L __________

+—exp
2

.f(t,d0)dt,
2ir

where L• is the length of the jth interval, t denotes
the standard normal cumulative distribution function
and

— a2Cor(W(t,do), W(t',d0))
p1(t,do) —

at'2

for t, t' in the jth interval, where Cor(.) denotes
the asymptotic correlation. Using MAPLE (Char et a!.,
1988), we found for the integral in each interval an
analytical expression, given in the Appendix for the
cases where d0 is not on a marker.

Note that RebaI et a!. (1994) used the same
approximation to compute an upper bound thresh-
old for the interval mapping test of detection and
showed by simulations that the upper bound thresh-
old is very close to the correct threshold for most
experimental marker maps (maps with markers
every 50 cM to 5 cM).

The c(do) threshold function has discontinuity
points at each marker. This can be explained by the
fact that when testing a putative QTL on a marker,
the genotypes of individuals observed are known
exactly, so such positions are more informative than
the other positions of the linkage group. In practice,
considering a discontinuous threshold function could
lead to a confidence interval with holes at markers
inside the interval. This type of interval could seem
very strange for a user, so we prefer to build a
continuous threshold function considering at marker
points the right and left limits of the function.

Figure 1 presents the threshold functions c(d0)
for 3, 6 and 11 markers equally spaced on a 1
Morgan chromosome for a 10 per cent probability
type I error. The plotted points are the empirical
thresholds obtained by simulations over 50000 repli-
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DrolflCe in Morgan

Fig. 1 Upper threshold function (lines) and empirical
threshold (points) for 3, 6 and 11 markers equally spaced
in a 1 Morgan chromosome.

cations. For equally spaced marker maps, the thresh-
old function is symmetrical about the middle of the
chromosome, so half of the threshold function is
drawn. The difference between c(do) and the
empirical threshold increases with the number of
markers. The use of c.1(d0) gives approximately a
90.5 per cent confidence interval for the 6 marker
map and a 91 per cent confidence interval for the 10
marker map. This change in the coverage probability
could be considered as negligible compare to the
computation facilities provided by the use of c(do).
Instead of time consuming simulations an analytical
function could be programmed that provides a
threshold function for any map. However, for dense
maps, other approximate thresholds should be
studied.

Comparison with other confidence intervals

An important point raised in our previous paper
(Mangin et a!., 1994) is the possibility of a loss in
power when using the asymptotically similar test for
constructing a confidence interval. Such a loss could
imply an increase of the length of the confidence
interval if it is compared to an unbiased confidence
interval built out of statistics that are not imposed to
be similar. Indeed, the asymptotically similar confi-
dence interval is built with statistics that use only the
part of the data that does not depend on the
nuisance parameters so objectively it loses part of
the information. On the other hand, the LOD score
is not similar but uses the whole data information.
When information is available on the value of the
QTL effect, it could be used to find a correct thresh-
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old for the LOD score in such a way that an
unbiased confidence interval is built out of the LOD
score and this threshold. Obviously, the most precise
piece of information is the actual value of the QTL
effect, and the objective of this section is to compare
the length of the asymptotically similar confidence
interval to the length of the LOD support interval,
in the idealized case where the value of the QTL
effect is known.

Darvasi et al. (1993) proposed an empirical
symmetrical confidence interval obtained with the
empirical distribution of the maximum likelihood
estimation for the QTL position. Their simulation
study gave a very pessimistic impression on the
possibility of correctly locating a QTL for experi-
mental populations. We perform a part of their
simulation study to compare the asymptotically
similar confidence interval to the empirical symmet-
rical one.

Comparison with the support interval built out of
the LOD score and using information on the value
of the QTL effect

There are many difficulties in studying analytically
the length of this support interval and the length of
the asymptotically similar confidence interval, so
simulations were carried out to obtain insights into
the response.

The LOD support interval uses the statistics

sup L,(Y; t,c2,a,d)

supL(Y; p,cr2,a,d=d0)

where L,, (Y; j,a2,a,d) denotes the likelihood of
the observations given the information markers .lf.

When the value of the QTL effect, a, is known, a
threshold noted c could be found, that verifies

P(T(do)>c) = o.

The unbiased confidence interval built out of T(d0)
and this threshold is the set of points d0 not
'rejected'.

There are two major difficulties for the compari-
son of the lengths of the two intervals. The first is
that we can obtain disconnected sets of points as a
confidence interval and the second is that we must
perform the comparison for exactly the same cover-
age probability. To avoid disconnected sets of
points, we compare the sets

I = [mm (T(d) <c), max (T(d) <c)]d d

and

Iz, = [mm (T(d) <c(d)), max (T(d) <c(d))]
d d

that give connected confidence intervals for both
methods. In each simulation, we try many values of
thresholds c and c' (.). We then perform the
comparison for the thresholds that give approxi-
mately the same empirical coverage probabilities for
both the intervals.

Table 1 presents for different values of parameter
a the empirical average length of the two intervals
and the empirical power for the LOD score test of
detection, obtained with 1000 replications. Empirical
powers are given for a 5 per cent (1 per cent) prob-
ability type I error per linkage group. Thresholds for
the LOD score test of detection, that ensure a given
type I error, are calculated using the proposition of
Rebal et a!. (1994). For each replication, data for
200 backcross progeny were simulated with six
markers equally spaced on a 1 Morgan chromosome
and a QTL located in the middle of the
chromosome.

Except for a = 0.3 the average lengths of the two
intervals are significantly different. The asymptot-
ically similar confidence interval is, on average,
about 5 cM bigger for QTL detected with a 90 per
cent power. This increase in the length is the price
to be paid to be sure of getting an asymptotically
unbiased confidence interval when the value of the
QTL is unknown.

Comparison with Darvasi's resufts

We carried out part of the Darvasi et al. (1993)
simulation study. This has 500 and 1000 backcross
progenies with = 0, a2 = 1 and a 0.25 for 10, 20
and 50 cM map density and a QTL located in the
middle interval at a relative position of 0, 1/4 and
1/2. Our goal is to compare the average length given
by the asymptotically similar confidence interval to
the length of the 95 per cent empirical symmetrical
confidence interval given by Darvasi et a!. (1993). In
their paper, they proposed two other types of confi-
dence interval, and it is clear that they are biased
because they too are symmetrical and generally give
a lower length.

We do not try to get exactly a 95 per cent confi-
dence interval but prefer to use a naive procedure
that is to fix c = 0.05 and compute 'Z,O.05 with the
upper bound function c05. We know that this proce-
dure is conservative for two reasons: the threshold is
an upper bound and a connected confidence interval
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Table 1 Empirical average length (in cM) of I, and J, and empirical power of
LOD score test of detection over 1000 replications. Data for 200 backcross
progeny were simulated with a 100 cM chromosome with markers each 20 cM.
The QTL was located in the middle of the chromosome, p = 0, a-2 = 1 and
empirical coverage probability was 90 per cent

a

ía

Average
length

'Z,a

Average
length

Power

Type I error

5% 1%

0.3 70.1±1.9 72.1±1.9 36% 17%
0.4 58.3±1.8 63.8±1.8 59% 32%
0.5 43.1±1.5 50.1±1.5 80% 59%
0.6 34.7±1.2 40.7±1.3 93% 81%
1 16.9±0.4 21.7±0.4 100% 100%

Table 2 Empirical average length (in cM) and coverage probability (in %) for 'Z,O,05 for 500 backcross progeny with
a = 0.25 over 1000 replications and given the fact that a QTL is detected with the LOD score test of detection for a 5%
(1%) probability type I error. Empirical power of the LOD score test of detection for both the levels is also given

Length of marker intervals in cM

10 20 50

0 1/4 1/2 0 1/4 1/20 1/4 1/2

50 47.5 45 40 45 50 50 37.5

All replications
Average length 72 74 75 67 75 75 69 80 83

Coverage 97 96 95 97 97 96 98 96 96

Only replications with QTL detected (Type I error 5%)
Power 61 59 58 66 57 57 69 52 41

Average length 56 58 58 52 59 59 59 67 64

Coverage 96 95 92 95 95 94 98 94 91

Only replications with QTL detected (Type I error 1%)
Power 37 36 35 44 34 33 48 26 21

Average length 43 46 47

Coverage 95 94 91
43
94

47
93

47
91

53
98

58
92

56
87

a Relative location of the QTL in the marker interval.
hDistance of the QTL from one end of the chromosome.

is considered. So we compute for each simulation
the empirical coverage probability.

We use the simulations to obtain information
about a natural procedure involving building the
confidence interval only if a QTL is detected using
the LOD score test of detection for a 5 per cent (1
per cent) probability type I error per linkage group.
The results for 500 backcross progeny obtained with
1000 replications are presented in Table 2.

The Genetical Society of Great Britain, Heredity, 78, 345—353.

In this case, Darvasi et al. (1993) found an empiri-
cally symmetrical confidence interval of length equal
to 90 cM for an idealized dense map and varying
from 61 to 95 cM for the map density studied. It is
clear that this confidence interval is too large. One
reason is of course the required property of
symmetry. But the main reason why this confidence
interval gives a very pessimistic impression for the
possibility of accurately locating a QTL is that it is
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independent of the interval mapping test of detec-
tion. That is not the case for 'z,O05• Its average length
given that a QTL is detected (for a 1 per cent prob-
ability type I error) is about half (for 10 cM and 20
cM map density) that of the empirical symmetrical
one, whereas the coverage probability remains
acceptable.This important decrease of the average

Fig. 2 Histogram for the distribution of length
(black + grey boxes) and histogram for the ditribution of

length given the fact that a QTL is detected for a 1
per cent probability type I error (grey boxes).

length could be explained by the fact that when the
QTL is not detected 'Z,O05 is often equal to the
entire chromosome. Figure 2 illustrates this point,
presenting for a QTL located in the middle of the
chromosome, a map density of 10 cM and 500 back-
cross progeny, the histogram of length distribu-
tion over 1000 replications (grey + black boxes) and
the histogram of 'z,o05 length distribution for the
replicates for which a QTL is detected (grey boxes).

Table 3 presents the results for 1000 backcross
progeny obtained with 1000 replications. In that
case, the two confidence intervals seem to be more
similar. The reason is that the power of the interval
mapping test of detection is about 90 per cent (80
per cent) for a 5 per cent (1 per cent) probability
type I error. However, the average length of the
asymptotically similar confidence interval for
detected QTL with a 1 per cent probability type I
error, is about 15 cM smaller than the average
length of the empirical symmetrical confidence
interval.

Discussion

Software for the computation of the asymptotically
similar confidence interval for a backcross popula-
tion is not yet available but could be programmed

Table 3 Empirical average length (in cM) and coverage probability (in %) for 'Z,o.05for 1000 backcross progeny with
a = 0.25 over 1000 replications and given the fact that a QTL is detected with the LOD score test of detection for a 5%
(1%) probability type I error. Empirical power of the LOD score test of detection for both the levels is also given

Length of marker intervals in cM

10 20 50

0 1/4 1/2 0 1/4 1/2 0 1/4 1/2
50 47.5 45 40 45 50 50 37.5 25'

All replications
Average length 44 48 50 44 52 55 52 67 69
Coverage 96 96 96 96 95 95 98 97 97

Only replications with QTL detected (Type I error 5%)
Power 92 90 89 91 88 87 95 96 72
Average length 40 43 44 38 46 50 50 61 59
Coverage 96 95 95 95 94 95 98 96 95

Only replications with QTL detected (Type I error 1%)
Power 80 76 75 81 73 68 84 64 50
Average length 34 37 38 34 41 43 47 56 54
Coverage 95 94 94 95 94 94 98 94 94

a Relative location of the QTL in the marker interval.
bDistance of the QTL from one end of the chromosome.
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without great difficulty. At each position along the
chromosome, the computations needed for
constructing this interval are algebraic computations
and one maximization of a one-parameter function.
The time required for computation is not great
compared to the interval mapping test of detection.

The methodology that leads to the asymptotically
similar confidence interval could be extended to
other breeding populations. For F2 populations,
asymptotically sufficient statistics using the mean
differences between homozygous and heterozygous
individuals at each marker could be found. Statistics,
whose asymptotic distributions do not depend on the
additivity and dominance parameters, are linear
combinations of these sufficient statistics. Work is
needed to derive their algebraic expression and the
upper bound threshold, using Davies's (1987)
approximation for the supremum of the process.
For more complicated breeding populations, such as
the diallele cross described in RebaI & Goffinet
(1993), or for dominant markers, the methodology
could be generalized using the linear regression
model for QTL detection with flanking markers
(Knapp et a!., 1990; Haley & Knott, 1992). Note that
even in backcross or F2 populations with codominant
markers, if there is a lot of missing marker data, the
construction of the asymptotically similar confidence
interval must use the generalized methodology via
the linear regression model. Linear regression with
flanking markers has been proved to be asymptot-
ically and locally equivalent to an interval mapping
method based on the maximum likelihood ratio test
(Rebal et al., 1995).

For QTLs having great effect, i.e. those detected
with power equal to one, the T(d0) statistic is asymp-
totically similar, so that the LOD support interval is
asymptotically unbiased (Mangin et al., 1994) and
compares well to the asymptotically similar confi-
dence interval. The question is how could we know
if the detected QTL is a QTL with a great effect?
Common thinking is that insights of the response
could be found by looking at the LOD curve. A
sharp LOD curve with a great maximum is probably
linked to a large QTL. Simulation studies could give
knowledge like, for example, a maximum LOD score
reaching 10 with fewer than 500 individuals (15 with
fewer than 1000 individuals) is the sign of a great
value for the QTL effect, because these quantities
are never observed with QTLs having small effect,
but theoretical work is needed in this field. This
question will become more and more important if
the use of multiple QTL methods as decribed by
Jansen (1993) and Zeng (1993) becomes common.
Indeed, use of markers as cofactors tends to reduce

The Genetical Society of Great Britain, Heredity, 78, 345—353.

the environmental variance as power of detection
increases. We can say, using a figure of speech, that
a QTL with a small effect in a single QTL analysis
could become a QTL with a great effect in a multi-
ple QTL analysis.

This paper has studied the confidence interval for
the QTL location map. An unbiased confidence
interval for the value of the QTL effect is also of
interest and requires new methodology to take into
account QTL having small effect.
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Appendix

[Al] The expression of W(d,d0) is

—1

W(d,d0) = Vid(Zid( (d0) + vjdZjd(do) + Z(d0) for 1d <(do
j = d +1

W(d,d0) = Zid(do) for d =

W(d,d0) =iidZid0 (d0) +ijdZjd(do) + Z(d0) for 1d>d
j= + 1

with

x + 1,d0 (1 —x,,d0)
d0

x0,do(1 —x + l,d0) +x& + 1,d0(l —x0,do)

2 2X,dj Xjd+j,,J
via

=
1 —X,j+1

= 1 —VId0

Xj4+Id(l—Xjd)
via=

1 —X,i+1

where Xa,b = 1 —2ra,b and d (d,) denotes either the interval of the point d (d0) or the left marker of this interval.
Because V is a diagonal matrix with diagonal element equal to

1 x..+1 1
+

2
Xf,d Xi,dJ+ id0 j+ Id0

the algebraic expession of Var, (W(d,d0)) is easily found.
[Al] For d0 not on a marker

0

JLJ(td)dt / / A
forf =

arctan I / I else
\'V Var(Z(d0)))

where

'do—I

A = v Var(Zd(dO))+ Var(Z(d0)) forj<id
k=j+1

f—I

A =, Var, (Zid(do)) + Var(Zk(dO)) forj>id0.
k= + I

Proof: the case J = 1d0, is trivial so we leave it.
First it can be proved that instead of working in terms of distance t, any one-to-one twice-derivable func-
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tion of t could be used for the computation of the integral because

a Cor (W(t, d0), W (t', d0))
at' II'=t=o.

Using Haldane's map function and

—4t 2e —x1,11t—+u =
2 forj <id.

1

—4(L—:) 2

tu =e X,+i forj>id.
1

leads to

1-p(t,do)dt = 10 a2u,u')1 ,' du,

where

A1+Var (Z(d0))uu'
C(u,u )

,/A1+ Var (Z1(do))u2 JA +Var(Z(do))u
,2

IfA1O, differentiating twice C1(u,u') and integrating gives the result.
A could be equal to 0, only when Vid = 0 andj = 1d— 1 or id = 0 and] =d+ 1. These two cases correspond

to d0 on a marker. This remark finishes the proof.

The Genetical Society of Great Britain, Heredily, 78, 345—353.


	Comparison of several confidence intervals for QTL location
	Introduction
	Model and asymptotically similar confidence interval
	Threshold approximation
	Comparison with other confidence intervals

	Discussion
	References


