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More efficient breeding systems for
controlling inbreeding and effective size in

animal populations
JINLIANG WANG*

College of Animal Science, Zhejiang Agricultural University, Hangzhou 310029, China

A selection scheme and a mating scheme are proposed to control the inbreeding and genetic
drift in conserved or control animal populations with different numbers of males and females.
Recurrence equations for the inbreeding coefficient and formulae for effective size are derived
for autosomal loci, sex-linked loci with males being heterogametic and sex-linked loci with
females being heterogametic under each of four breeding systems. It is shown that both the
selection scheme and the mating scheme proposed in this paper could increase the effective
size and decrease inbreeding in any generation compared with the classical selection and
mating schemes. Among the four breeding systems considered, the most efficient one could
increase the effective size by as much as 19 per cent for autosomal loci and 50 per cent for
sex-linked loci in comparison with the classical breeding system usually utilized in conserved or
control populations.
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Introduction
Finite population size results in two dispersive
processes: inbreeding and genetic drift. The first
process leads to a decrease in heterozygosity and
thus possible inbreeding depression. The second
process leads to random changes in gene frequency
and thus the loss of all possible alleles but one at a
locus. Both processes change the genetic structure of
a finite population drastically and irrecoverably.
Therefore, it is always desirable to minimize
inbreeding and genetic drift in conserved popula-
tions of rare domestic animal breeds and of
endangered wild species and in control populations
of selection experiments.

The intensity of inbreeding and genetic drift is
predicted to depend on the effective size (Ne) rather
than actual size (N). Many factors are known to
affect the effective size (Caballero, 1994). Selection
and mating methods are the most important factors
that could be manipulated easily in conserved or
control populations to increase effective size.

With equal numbers of males and females and
every individual having one male and one female
offspring, the effective size is very nearly twice what
it would be in an idealized population (Wright,
1938; Crow, 1954). When the sexes are unequal in
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numbers, as is usually the case in domestic animals,
Gowe et al. (1959) proposed a selection scheme for
control populations. In this design, each male has
one son and FIM daughters, and each female has
one daughter and a probability of MIF of having one
son, where M and F are the numbers of males and
females, respectively. The effective size for the selec-
tion scheme is

16FMNe = _____
3F+M

(1)

(Gowe et a!., 1959; Cockerham, 1967; Hill, 1972).
Such a selection scheme is known as minimal
inbreeding (Falconer, 1981, p. 67) and is considered
in control populations (Hill, 1972; Pirchner, 1983)
and conserved populations (Rochambeau & Cheva-
let, 1990; Wu, 1990).

Genetic drift may be reduced by practising
nonrandom mating of individuals on the basis of
their relationships to each other (Kimura & Crow,
1963; Robertson, 1964; Wright, 1965; Cockerham,
1967, 1970). In practice, this requires that mates
should be more closely related than the average
relationship within the population and under equal
family size selection (Robertson, 1964). Kimura &
Crow (1963) and Maruyama (1970) have considered
a number of circular mating schemes, in which the
effective size is proportional to the square of the
actual size. However, these schemes can be regarded
as a special type of sublining (Robertson, 1964) and
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are of no practical value for control or conserved
populations. For permanently sublined populations,
an increase in effective size is obtained by mating
relatives and consequently increasing the inbreeding
level of breeding individuals and thus the hazard of
inbreeding depression.

In this paper, I propose a selection scheme which
invokes a negative covariance between the numbers
of male and female offspring per female parent and
thus an increase in effective size. I also propose a
mating scheme, under which the effective size is
increased whereas the inbreeding coefficient is
decreased in any generation compared with those
under random mating. I will show that the newly
proposed breeding system could increase the effect-
ive size by as much as 19 per cent for autosomal loci
and 50 per cent for sex-linked loci compared with
the breeding system of Gowe et al. (1959).

Assumptions and breeding systems

Throughout the paper the assumptions are discrete
generations, stable census size with M males and F
females in each generation, each male mating with
an equal number of FIM females, and the sex ratio
r =FIM being an integer and always larger than or
equal to two. Mutation and selection are absent. We
consider three cases, autosomal loci, sex-linked loci
with males being heterogametic and sex-linked loci
with females being heterogametic.

I will use the following symbols to represent the
selection and mating schemes considered in the
paper.

GS: the selection scheme of Gowe et al. (1959). In
this scheme, each male has one son and r daughters,
each female has one daughter and a probability of
hr of having one son.

WS: the selection scheme proposed in this paper.
In this scheme, among the r females mated with
each male, one is selected at random to contribute
one son, another one to contribute two daughters,
and the remaining r —2 females to contribute one
daughter each.

RM: random mating. Each male is mated to r
females randomly chosen from the whole
population.

NM: random nonsib herd mating proposed in this
paper. The F females are divided into M herds, each
consisting of r individuals. Each male mates at
random with one of the M— 1 nonsib herds. Thus
individuals from within herds are sibs and those
from different herds are nonsibs.

Combining the two selection schemes with the two
mating schemes, we therefore get four breeding

systems GS:RM, GS:NM, WS:RM and WS:NM, the
first being that of Gowe et a!. (1959).

In nonrandom mating populations, effective size is
defined as limiting values (over time) of the rate of
increase of inbreeding. In the first generations, the
changes in genetic variability or the rates of inbreed-
ing are erratic and are not well described by effect-
ive size. It has been shown (Kimura & Crow, 1963;
Cockerham, 1970) that avoiding early inbreeding
may result in high final rates of inbreeding. Thus,
although effective size is an adequate parameter to
study the changes in genetic variability in the long
run, recurrence equations for the inbreeding coeffi-
cient are required for exact predictions of inbreed-
ing in the initial generations. In this paper, I derive
the recurrence equations for each breeding system,
and then derive expressions for asymptotic effective
size from these recurrence equations.

Autosomal loci

Recurrence equations for the inbreeding coefficient

In deriving the recurrence equations for f (the
inbreeding coefficient of a random individual in
generation t), use is made of coancestry. Genera-
tions are measured from a hypothetically infinite
base population (generation zero) in which inbreed-
ing coefficients and coancestry of all individuals are
zero.

Utilizing probability theory, the probabilities that
a random pair of individuals are full-sibs, half-sibs or
nonsibs under different breeding systems can be
derived and are listed in Table 1. The pairs of indi-
viduals of different sexes are distinguished between
actually mated and nonmated ones under nonran-
dom mating, and the pairs of females may come
from within herds or among herds and thus are
distinguished under the NM scheme.

Take the WS:NM as an example to derive the
recurrence equations for the inbreeding coefficient.
Let GFS,t_1, GHS,t_1 and GNS,t_1 be the coancestry of a
random pair of full-sibs, half -sibs and nonsibs,
respectively, in generation t —1. The average
inbreeding coefficient in generation t should be
equal to the average coancestry of mated parents.
For WS:NM, only nonsib matings are possible, thus
we have

ft = (2a)

The corresponding pedigrees for full-sibs, haif-sibs
and nonsibs are diagrammed in Fig. 1. For nonsibs,
the coancestry is

— ,.-' — 1 ii' r c'
'-'NS,t—l — '-'SIDI — —'S2S3 + '-'5203+ '—S3D2 + '-'D2D3
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[ 2 2(M—2) can get the recurrence equations for GFS,,_1 and
=[GNs.t_2+Ml G,_2+ M—1 GNS,!_2 G11,_1,

1 M2
+ GNst_2]

= (1+2)+GNsl_2 +2F(F M)
GFS,!_2

2M—3 1=
2(M—1)

GNs2+ GHS,(2. (2b) F2—FM—2M2
+ HS,,—2, ( c)

Similarly, using the probabilities listed in Table 1, we 4F(FM)
Table 1 Expected probabilities for a random pair of individuals from each sex or both sexes being full-sibs, half-sibs and
nonsibs under different breeding systems

Breeding Kind of pairs Expected probabilities of

system full-sibs half-sibs nonsibs

GS:RM Male with female I F -. M M -
F FM M

F-M F(M-l)Female with female 0 ___________
M(F-1) M(F-1)

Male with female: mated 0 0

GS:NM Male with female: unmated M F — M M 2
F(M-l) F(M-l) M-l

Female with female: within herds 0 1 0

Female with female: among herds 0 0

WS:RM Male with female 0 l M —

M M

Femalewithfemale 2M F2 —FM—2M2 F(M —1)
F(F-l) FM(F-l) M(F-l)

Male with female: mated 0 0

WS:NM Male with female: unmated 0 1 M — 2

M-l M-l
Female with female: within herds 2 M2 F2 — FM — 2M 2 0

F(F-M) F(F-M)
Female with female: among herds 0 0

All the four

I systems Male with male 0 0

Mating-type

Generation (a) (b) (c)

Fig. 1 Pedigrees for (a) full-sib, (b) D s /2 \
half-sib and (c) nonsib matings. i-i Si Di Si Dl Si Di
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Table 2 Inbreeding coefficients in the second and third generations under
different breeding systems

GFS,I_I =(1+2f(_1+ft_2). (2d)
Utilizing eqns (2a)—(2d), we can obtain, after some
algebra, the complete recurrence equation for the
inbreeding coefficient as

ft =f-+ [F2—FM+M2+4(F2M
16F(M— 1)(F—M)

—FM2—2M3—3F2+3FM+2M2)f1
— 2(2F2M—2FM2 —4M3 —5F2 + 5FM

+ 6M2)f2 + (F2 —FM+ 2M2)f3 +M2f,4].
To use eqn (3) for recurrent calculations of the
inbreeding coefficient in any generation, the initial
inbreeding coefficients in the first three generations
must be known. Because generations are measured
from a hypothetically infinite base population
(generation zero) in which inbreeding coefficients
and coancestries of all individuals are assumed to be
zero, it is evident that fo f = 0, GFSl = , =
and GNS,1 = 0. Using eqns (2a)—(2d) we obtainf2 = 0
andf3 = 1/[16(M—1)].

The recurrence equations for the inbreeding
coefficient under other breeding systems can also be
derived by the same procedure as shown above.
These equations are as follows.
GS:RM

ftftl+64FM(Fl)[6F+2FM5F3M
—4F(F—M)f2—(F2 +3FM—2F—2M)f3
+(F—M)f4]. (4)

GS:NM

WS:RM

1
f =f1+ [3F2—FM+2M2—2F+M

32FM(F— 1)
— 16M2f —2(F2—FM—6M2)f2
—(F2+FM—2M2—2F)f3—Mf4]. (6)

The inbreeding coefficients in generations zero and
(3) one are zero under any breeding system. For the

second and third generations, the inbreeding coeffi-
cients under different breeding systems are derived
and listed in Table 2. Utilizing these initial values
and recurrence eqns (3)—(6), we can predict the
inbreeding coefficients at any generation.

For a population with M = 10 and F = 30, the
inbreeding coefficients over the first 21 generations
under different breeding systems are shown in Fig. 2.

Generation Breeding system

GS:RM GS:NM WS:RM WS:NM

2 F+M 0 0
8FM SM

7F+5M F+M 7F2-FM+2M2-6F I
32FM 16F(M—1) 32FM(F—1) 16(M —1)

1

0.2 GS:RM

0.18 GS:NM
WS:RM

0.16 WS:NM
0.14

E 0.12
V

0.1

0.08
V

0.06

0.04

0.02

0
1 3 5 7 9 11 13 15 17 19 21

Generations

Fig. 2 Inbreeding coefficients over the first 21 generations
for a population with M =10 and F 30 under different

(5) breeding systems.
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—4F(2M—5)f_2 + 2Ff3 —Mj4].
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The differences among the four breeding systems
are clear. Conclusions applicable to any values of M
and F are as follows. First, among the four breeding
systems, WS:NM is the most effective and GS:RM is
the least effective to control inbreeding in any
generation. The larger the generation number, the
greater the difference in inbreeding coefficient
among the four breeding systems. Secondly, under
the same mating scheme, the inbreeding coefficient
at any generation is always lower for WS than that
for GS, and the difference increases with genera-
tions. Under the same selection scheme, NM always
gives rise to a lower inbreeding in any generation
than does RM.

Effectivepopulation size

The rate of inbreeding (AF), though variable over
initial generations, will reach an asymptotic value
under any breeding system. Effective population size
(Ne) signifies the asymptotic rate of inbreeding by
the relationship z\F = 1/(2N). Thus effective size is a
simple and adequate parameter for describing the
change in genetic structure of populations at the
equilibrium state.

From the recurrence equations for the inbreeding
coefficient, we can obtain, using a procedure similar
to Robinson & Bray (1965) and Wang (1995), the
formulae for effective size. When second and higher
order terms of l/M and 1/F are omitted in deriving
expressions for AF, we get the approximate expres-
sion for effective size for GS:RM, which turns out to
be the same as eqn (1). Equations for the other
breeding systems are as follows.

12FM
GS:NM Ne= . (7)

2F + M

2M(3F2—3FM+2M2)
WS:NM Ne

F2—FM+M2

Compared with the breeding system of Gowe et
al. (1959), i.e. GS:RM, any of the three systems
proposed in this paper could increase the effective
size. If we denote the effective size for GS:RM,
GS:NM, WS:RM and WS:NM as Ne(l), N(2), Ne(3)
and Ne(4), respectively, then the ratio R, = N(I)I
N(l) —1 (i = 2, 3 or 4) indicates the relative increase
in effective size for the three proposed breeding
systems compared with GS:RM of Gowe et al.
(1959). It is clear that R, only depends on the sex
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Fig.3 Relative increases in effective size for GS:NM (I?2),
WS:RM (R3) and WS:NM (R4) compared with GS:RM.

ratio r. The efficiencies of different breeding systems
are shown in Fig. 3. The relative efficiency of
WS:NM reaches the maximum value of 19 per cent
when the sex ratio is three, and thereafter it
decreases with the increment in sex ratio to asymp-
tote to the minimum value of 12.5 per cent. The
efficiency of GS:NM increases steadily with the
increment in sex ratio, the maximum value being
12.5 per cent when r—ci and the minimum value
being 5 per cent when r = 2. The changes in the
efficiency of WS:RM with increasing values of sex
ratio are opposite to that of GS:NM, with maximum
and minimum values of 16.7 per cent and 0 per cent
when r = 2 and r— x, respectively. When r = 6,
random nonsib herd mating (NM) and the proposed
selection scheme (WS) have exactly the same effect
on effective size. It is clear that for any population
WS:NM is the most efficient breeding system for
increasing effective size. The reason that the relative
efficiency of different breeding systems changes with
sex ratio is explained in the Discussion.

Sex-linked locus with heterogametic males
In dioecious diploid species with a chromosomal

( ) sex-determining mechanism, the X chromosome can
form a substantial part of the genome. In Drosophila
robusta for example, 38 per cent of the euchromatin
is on the X chromosome (Carson, 1955) and thus
many genes may be X-linked. For haplodiploid
insects (such as bees, wasps and ants), all genes in
the genome are effectively sex-linked. Thus it is
important to consider the inbreeding and genetic
drift for sex-linked loci in both conserved and
control populations. For sex-linked loci, the inbreed-
ing coefficient only refers to the homogametic sex,
which is assumed to be females in this part.

R4

R3

2 4 6 8 10 12 14 16 18
Sex ratio

16F 2M
WS:RM Ne

3F2—FM+2M2
(8)
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For sex-linked loci, the situation becomes more
complex for deriving the recurrence equations for
the inbreeding coefficient. The coancestry of full-
sibs, half-sibs or nonsibs must be distinguished
according to the sexes of the individuals. Thus a
total number of nine kinds of coancestry should be
considered. Utilizing the probabilities in Table 1 and
the rules for coancestry for a sex-linked locus
(Wang, 1996), we can obtain the recurrence equa-
tions under different breeding systems following a
procedure similar to the autosomal case. These
equations are more complicated than the corre-
sponding ones for the autosomal case and are not
shown here. For inbreeding coefficients, the features
of the four breeding systems for sex-linked loci with
females being heterogametic are similar to those for
autosomal loci.

From the recurrence equations for the inbreeding
coefficient, we can derive the formulae for effective
size.

GS:RM Ne=M. (10)

27FM
GS:NM Ne

4F+2M

- 9M(3F2—3FM+2M2)WS:NM N. -
4(F2—FM+M2)

The relative efficiencies of different breeding
systems at increasing effective size compared with
GS:RM over different values of sex ratio are plotted
in Fig. 4. It can be seen that the efficiencies of
GS:NM and WS:NM increase with the increment in
sex ratio, and they asymptote to the same maximum
value of 50 per cent when r— although the rates
of change are different. The minimum values of the
relative efficiency are 20 per cent for GS:NM and
33.3 per cent for WS:NM when r = 2. A comparison
between Figs 3 and 4 shows that breeding systems
have a much larger effect on effective size for
sex-linked loci than that for autosomal loci.

The effective size for sex-linked loci is larger than
that for autosomal loci by 12.5 per cent under the
same GS:NM or WS:NM system. Under the GS:RM
system, the ratio of effective size for autosomal loci
to that for sex-linked loci is 32r/(27r+9), which indi-
cates that the effective size for autosomal loci is
always larger than that for sex-linked loci and the
difference increases with increasing values of sex
ratio. Under WS:RM, the corresponding ratio is

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Fig. 4 Relative increases in effective size for GS:NM (R2),
WS:RM (R3) and WS:NM (R4) compared with GS:RM.
The locus concerned is sex-linked and females are the
homogametic sex.

32(r2—r+1)/[9(3r2—r+2)] from eqns (8) and (12);
the effective size for autosomal loci is smaller when

(11) and larger when r 4 than that for sex-linked
loci.

(12)
Sex-linked locus with heterogametic females
For species where males are the homogametic sex,
as in poultry, the inbreeding coefficient and effective
size can also be considered in a way similar to that

(13) shown above. In this situation the inbreeding coeffi-
cient refers to males.

Using the probabilities in Table 1, I have obtained
the recurrence equations for the inbreeding coeffi-
cient under different breeding systems (not shown
here). It turns out that the two equations for
different selection schemes with the same mating
scheme are exactly the same. That is, for males
being homogametic and each male mating with an
equal number of F/M?2 females considered here,
GS and WS have the same effect on inbreeding.
This is because GS and WS only affect the probabili-
ties of a random pair of individuals (two females or
a male and a female) being full-sibs and half-sibs, as
can be seen from Table 1, and the coancestry
between paternal half-sibs is the same as that
between full-sibs when females are heterogametic.

For GS:RM or WS:RM, there are some unex-
pected features. With a fixed number of males, the
inbreeding coefficients in any generation but the first
three are increased with increasing female numbers
(data not shown). Thus with a fixed number of
males, an increase in females does more harm than
good for controlling inbreeding in this situation.

The Genetical Society of Great Britain, Heredity, 79, 591—599.
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From the recurrence equations for the inbreeding
coefficient, we get the effective size for different
breeding systems as follows

9FM
N = for GS:RM and WS:RM.

3F—M

Ne = M for GS:NM and WS:NM. (15)
Equation (14) is also derived by Caballero (1995)

by a different approach. From eqns (14)—(15), the
relative efficiency of NM over RM at increasing
effective size can be expressed as R2 = (r— 1)/(2r)
approximately. It is clear that the efficiency increases
with increasing values of sex ratio, the minimum
being 25 per cent when r = 2 and the maximum
being 50 per cent when r—*cx.

It is clear from eqn (15) that the number of
females does not influence effective size under the
NM scheme. Also, female number has no effect on
the inbreeding coefficient in any generation under
NM, as can be seen from the recurrence equation
(not shown). Inserting N = 2M into the recurrence
equation, we recover the equation for nonsib mating
with equal numbers of both sexes (Wang, 1996,
eqn 15). If the females are subdivided into M herds
of the same size, then each herd, no matter how
many females it consists of, functions like a single
female individual.

Equation (14) indicates that, for a given number
of males, the smaller the female number, the larger
the effective size (Caballero, 1994). The maximum
effective size is achieved with equal numbers of
males and females, where eqn (14) reduces to eqn
(15) approximately. Thus for minimal inbreeding to
be attained, as few females as possible should be
used when mating is at random. However, no matter
how numerous the females are, minimal inbreeding
can always be realized by practising random nonsib
herd mating. The conclusion is interesting and
perhaps also important in practice for conserved or
control populations.

Comparing eqns (14)—(15) with the corresponding
equations for autosomal loci, we see that the effect-
ive size for autosomal loci is always larger than that
for sex-linked loci when females are the heteroga-
metic sex under any of the four breeding systems.
The larger the sex ratio, the greater is the difference
in effective sizes of autosomal loci and sex-linked
loci.

Discussion
In this paper, I have derived recurrence equations
for the inbreeding coefficient under different breed-
ing systems, and from these equations I have
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obtained formulae for effective size. For GS:RM
and WS:RM, the expressions for effective size can
also be derived following the variance of change in
gene frequency approach. Using this approach Hill

(14) (1979) has derived an equation for an autosomal
locus,

1 1 M M2=
[2+am+2(_) ammmf+(_) f]

(16)

where r is the variance in the number offspring of
sex u from parents of sex s (s, u = m or f), asmf is
the covariance between the numbers of sons and
daughters per parent of sex s. For GS:RM, we have
arnu = ff= asm,sf = 0 and a, (M/F)[1 —(M/F)j.
Substituting these into eqn (16) gives eqn (1). For
WS:RM, we have = amm,mf = 0, a = 2M/F,
0m = (M/F)[1 —(MIF)] and crfm,ff = —MIF. Inserting
these into eqn (16) yields eqn (8). Similarly we can
derive eqns (10), (12) and (14) from the general
equations for effective size given by Pollak (1990),
Caballero (1995) and Wang (1996) for sex-linked
loci.

However, it is difficult to obtain the effective size
for the other two breeding systems by the gene
frequency variance approach. Furthermore, the
genetic changes in initial generations before the
equilibrium rate of change is reached are more
important for conserved or control populations.
Using the recurrence equations derived in this
paper, we can predict the exact inbreeding coeffi-
cient at any generation. It is shown that between the
two mating schemes, nonsib herd mating always
gives the lower inbreeding in any generation. Avoid-
ance of sib mating has another advantage. It
decreases the variation in inbreeding coefficients of
different individuals of the same generation. This
effect is especially evident for the first few genera-
tions, and is important for avoiding inbreeding
depression.

Compared with GS, the effect of WS on increas-
ing effective size changes among the three cases
considered here (autosomal loci, sex-linked loci with
male and female heterogamety, respectively). The
largest effect is for sex-linked loci with heteroga-
metic males and the smallest effect (no effect) is for
the case with heterogametic females. This is because
WS increases c and decreases afm,ff compared with
GS, and the importance of the variance and covar-
iance in determining effective size are different
among the three cases. For heterogametic females,
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mothers do not contribute sex-linked genes to
daughters, thus a and afmff are irrelevant and the
two selection schemes are equal in effective size. For
the autosomal case, the selection schemes change
the quantity y = 7f+2(F/M)7fm,ff in eqn (16), which
are YGS = 0 and Yws = (2M/F)—2 for GS and WS,
respectively. For the populations considered in this
paper (F  2M), we always have Yws <YGS, thus we
see from eqn (16) that the effective size for WS is
larger than that for GS. For heterogametic males,
we have the same values of Yws and Yes as the auto-
somal case; these quantities, however, are much
more important in determining the effective size for
heterogametic males than for autosomal loci. Thus
the effect of WS on increasing effective size is the
largest for heterogametic males among the three
cases.

Whereas YG5 = 0 is independent of r, Yws is always
smaller than zero (r 2) and decreases with increas-
ing values of r. However, the importance of the
quantity y declines rapidly with the increment of r.
Thus, from eqn (16), we can see that the relative
efficiency of WS over GS decreases with increasing
r, as shown in Fig. 3 (line for R3).

Unlike the circular mating schemes (Kimura &
Crow, 1963; Maruyama, 1970), the mating scheme
proposed here increases effective size without
increasing inbreeding in any generation. Thus it is of
practical value for control or conserved populations
for controlling inbreeding and genetic drift in both
short periods and in the long-run. The scheme can
be regarded as a special case of population
subdivision with random migration of males and no
migration of females among the subpopulations
(herds). The inbreeding and effective size of
subdivided populations have been considered by
Chesser et a!. (1993) and Wang (1997). However,
the equations for inbreeding coefficient and effective
size derived by them are not applicable to the
present mating scheme. This is because, in the NM
scheme, the herd or subpopulation is special with
only one male individual; whereas the subpopula..
tions considered by these authors contain at least
two males.

It should be pointed out that the division of
females into herds to perform random nonsib herd
mating is only conceptual, and it does not increase
management difficulties in practice. Using pedigree
records, we can recognize each herd of females and
take it as a single unit in carrying out the NM
scheme.

The effect of NM on effective size results from
the particular subdivision of the population, not the
exclusion of sib-matings. In fact, excluding

sib-matings actually decreases effective size slightly,
as discussed below. The effect of population sub-
division increases with increasing sex ratio. For the
special case of equal numbers of both sexes, each
subpopulation consists of one male and one female
individual and NM reduces to unsubdivided random
mating with sib-matings excluded. The larger the sex
ratio, the greater the effect of subdivision of NM, as
shown in Fig. 3 (line for R2).

WS:NM combines the effects of WS and NM on
effective size. For the autosomal case, the magni-
tudes of the effects of WS and NM are similar but
change adversely with values of r. Thus, at a given
ratio r = 3, WS:NM reaches its maximum effect on
effective size (Fig. 3). For the sex-linked case, NM
has a much larger effect than WS, as can be seen
from Fig. 4. Therefore, the effect of WS:NM is
mainly determined by NM and increases steadily
with increasing values of r, similar to the effect of
NM but larger in magnitude (Fig. 4).

Avoidance of close inbreeding may be effective in
controlling the inbreeding coefficients in the first few
generations, but the effective size is decreased and
thus a high final inbreeding results when the vari-
ance of the family size is small (Kimura & Crow,
1963; Cockerham, 1970). For a population with size
N = 2 (where n is an integer), it is possible to avoid
matings between individuals which have a common
ancestor in the last n generations by the mating
strategy known as 'maximum avoidance of inbreed-
ing' (Wright, 1969, pp. 199—201). For such a mating
scheme under equal family size selection, the effect-
ive size is obtained as Ne = 2N— (n + 1)/2 (Robert-
son, 1964), which indicates that by maximum
avoidance of inbreeding, Ne will be smaller than
under random mating. Therefore, although the rate
of increase in the inbreeding coefficient will be
smaller in the initial generations than under random
mating, the final rate will be faster. Effective size is
also decreased by excluding close inbreeding when
the variance of family size is not zero but sufficiently
small, as considered in this paper. Wang (1995)
showed that, for a population with equal numbers of
both sexes, the exclusion of sib-matings decreases Ne
when the variance of family size is smaller than 2/3.
The variance of family size under either GS or WS
in this paper is much smaller than 2/3.

Minimum coancestry mating by using linear
programming is similar to maximum avoidance of
inbreeding, and has been considered in populations
with discrete generations (Toro & Pérez-Enciso,
1990) and overlapping generations (Wang et a!.,
1994). Stochastic simulations have been carried out
in the present study to compare minimum coances-

The Genetical Society of Great Britain, Heredity, 79, 591—599.



EFFECTIVE POPULATION SIZE 599

try mating with NM. For a population with M = 4
and F = 12, the effective sizes for minimum coances-
try mating and NM are 17.9 and 19.2, respectively,
under GS and 20.5 and 21.4, respectively, under WS.
NM gives the first lower inbreeding coefficient than
minimum coancestry mating in generation 23 under
GS and in generation 41 under WS. Minimum
coancestry mating is effective only in a short initial
period, whereas in the long run NM is more efficient
in controlling inbreeding under either GS or WS.
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