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Relationship between phenotypic and marker
distances: theoretical and experimental
investigations

JUDITH BURSTIN & ALAIN CHARCOSSET*
INRA-UPS-INAPG, Station de Génétique Végétale, Ferme du Moulon, 91190 Gif/Yvette, France

Numerous studies have aimed at assessing the relationships between (i) distances computed
from phenotypic data, (ii) distances computed from marker data and (iii) heterosis, for pairs
of individuals or populations. The conflicting results obtained illustrate that these relationships
are far from simple. In this paper, we investigate the effect on these relationships of (i) the
polygenic inheritance of phenotypic traits and (ii) the structure of linkage disequilibrium
between genetic markers and the loci involved in the variation of quantitative traits (QTLs).
Both theoretical and experimental results showed that the relationship between marker
distances and phenotypic distances computed from quantitative traits displays a triangular
shape: low marker distances are systematically associated with low phenotypic distances,
whereas high marker distances correspond to either low or high phenotypic distances. Because
of this property, the linear coefficient of correlation between both distances decreases as the
number of QTLs involved in the variation of the traits considered for phenotypic distance
computation increases. Similar properties are expected for the relationship between heterosis
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and phenotypic distances.
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Introduction

Genetic differentiation between individuals or popu-
lations can be evaluated at different levels: quantita-
tively inherited phenotypic traits, monogenic traits
submitted to selection pressure (e.g. disease resist-
ance traits), neutral molecular markers, etc. Infor-
mation about the relationships that exist between
these different levels is significant for several
reasons. From an evolutionary standpoint, the
investigation of the relationship between genetic
diversity and morphological differentiation has been
expected to give clues to the forces that are possibly
responsible for this differentiation. From a genetic
resources conservation point of view, it may be
useful to know whether or not two individuals or
populations that are phenotypically similar display
similar gene combinations. From an applied breed-
ing point of view, phenotypic or genetic distances
have been expected to provide predictors for
heterosis.
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Based on these reasons, the relationship between
diversity at marker loci and morphological differen-
tiation has been investigated in several studies.
Some significant correlations between the two
distances were reported (Atchley et al., 1988), but in
most cases no significant correlation was found
(Wayne & O’Brien, 1986; Moser & Lee, 1994;
Schmitt et al., 1995). Similarly, very few experi-
mental studies have demonstrated a relationship
between heterosis (which can be considered as a
particular distance; see Falconer, 1981) and distance
parameters based on quantitative variations of
phenotypic traits (Lefort-Buson, 1985). This lack of
a clear relationship has been interpreted as resulting
from irrelevant choices of the phenotypic traits
taken into account for the calculation of the quanti-
tative distance (Siiddiqui er al., 1977; Partap et al.,
1980) or of the genotypes crossed (Peter & Rai,
1978), or from bad appreciations of the genotype as
related to genotype x environment interaction (Singh
& Ramanujam, 1981; Ghaderi et al., 1984). More
recently, the need for a linkage disequilibrium
between the genes involved in the calculation of the
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different distances and in heterosis has been empha-
sized (Charcosset et al., 1991; Charcosset & Essioux,
1994; Burstin et al., 1995).

The aim of this paper is to consider the effect of
the polygenic inheritance of the traits used to
compute phenotypic distances on the relationship
between these distances and heterosis or marker
distances. We show that the relationship between
distances computed from quantitative phenotypic
trait(s) and distances computed at individual loci or
heterosis is not a linear one and discuss the param-
eters that affect the magnitude of the correlation.
This is exemplified by experimental results on the
relationship between distances computed from
protein quantitative variations revealed by two-
dimensional electrophoresis and a genetic distance
computed from marker polymorphism among 21
maize inbred lines. The choice of protein quantities
as the phenotypic characters used to estimate quan-
titative distances was based on major advantages
over morphological traits: (i) they provide a high
number of quantitative traits (190 in the present
study), (ii) the complexity of genetic mechanisms
involved in their variation ranges from oligogenic to
polygenic and (iii) they are not affected by environ-
mental fluctuations because they are assessed on
8-day-old seedlings grown under controlled
conditions.

Theory
Basis of the mode/

Quantitative traits. We consider a biallelic model
describing the phenotypic value of homozygous
inbred lines, following the notations used in Char-
cosset et al. (1991). The genotype of inbred line i at
locus / (with alleles /, and [,) is represented by the
variable (], which takes the value +1, —1 for geno-
types [/, and [/, respectively. The single-locus
model for the phenotypic value of inbred line / is
written as:

Yi=c¢,4+a,0,

where ¢, is the average value of homozygotes /,/,
and /,/5, and a, is half the difference between homo-
zygous [,l; and [/, phenotypes. If the trait is
controlled by #, loci acting independently (no epista-
sis), the phenotype of inbred line / (Y;) is (with
C= Z;I/=I C/).'
=1
The phenotypic distance between i and j was
defined as:

Rj=(.=Y) )
or:
R{/:er'Y/I- (3)

Marker loci When n, marker loci are available,
distances between inbred lines / and j can be
computed using a well-known formula such as
MRD? (Rogers, 1972). For homozygous inbred lines,
this distance is an estimate of the average heterozy-
gosity of the hybrid between lines 7 and j, and is
designated MD (for marker distance). For a given
marker locus (p), 0, takes the value +1, —1 for
genotypes p,p, and p,p,, respectively. Following that
notation,

n,

Y (1- 0,0%)
p=1

MD, = 4)
2n,

As emphasized by Charcosset & Essioux (1994),
this model is also adapted to the case where more
than two alleles are detected at marker loci [which is
a general case for restriction fragment length poly-
morphisms (RFLPs) in many species].

Heterosis  The heterosis expressed in the cross
between inbred lines i and j is related to the hetero-
zygosity of the hybrid / xj at the QTLs that display
dominance effects (see Charcosset ez al., 1991, for a
formal expression). Results presented further on for
the relationship between quantitative distances and
marker distances can therefore be readily extrapo-
lated to the relationship between quantitative
distance and heterosis if all QTLs involved in
heterosis have dominance effects of the same
magnitude.

Reference population We assume that the homo-
zygous inbred lines belong to a reference population
(i.e. a set of lines of infinite size). We define w, as
the mean of 0] in this population. The frequency of
the allele /; in the population is: f; = (1+w,)/2.
Genetic diversity at locus / (H,) is proportional to
the variance of 0;: H,=Var(8))/2=(1—-w})/2. In
this paper, the linkage disequilibrium between two
loci / and k is supposed to be either null or maximal
(so that in this last situation, 0= 0} for all inbred
lines i, or 0) = —0}, for all inbred lines i).

In particular, we consider that (i) marker loci are
independent, (ii) QTLs are independent, and (iii)
among the n, marker loci and the n, QTLs, n,, loci
are common to both sets, i.e. being markers and
OQTLs.

© The Genetical Society of Great Britain, Heredity, 79, 477-483.
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Analytical results

Under previous hypotheses concerning the magni-
tude of linkage disequilibrium:

1 n,
Var(MD,) = - 3, (1-w}) )

Pp=1

(Charcosset et al., 1991). For simplicity, the calcula-
tion of the variance of phenotypic distance was only
performed for Rj. It can been demonstrated (see
Appendix) that:

Var(R}) =43 aj(1-w/)

I=1

noowy

+8Y, Y ajai(1—wi)(1-w}) (6)
I=1 121
and
2 1, 4
COV(R,‘I', MD’I) = — Z ak(l _Wk). (7)
Rp =

We have considered in particular the case of
equal allelic frequencies at each locus (for all loci /,
f., =1, =0.5), further considering that all QTLs have
the same contribution to the variation of the trait of
interest (for all loci /, a, = a). In this case, the corre-
lation coefficient between phenotypic and marker
distances is:

np
p(RLMDy) = ——r 8)
( i J) \/’—l-p )2,1[2—”[
1
- ©)

4

= X =
JnpJni Jan=1
This last expression illustrates that the magnitude
of p(R}, MD;) depends on two factors: (i) the assoc-
jation between the marker loci and the QTLs
(n,,/\/n, i), and (ii) the number of loci involved in

the variation of the quantitative trait (1/y/2n,—1).

Numerical results

According to the assumptions used for the analytical
developments, we considered n; loci involved with
equal contributions in the variation of the trait of
interest, each locus being biallelic with equal
frequencies (0.5) for the two alleles. We further
considered that n,=n,=n,,. For n,=2 to n;, =38,

we computed distance parameters (MD;, Rj, R,
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Table 1 Correlation between marker distance (MD) and
quantitative distances R and R*: p (MD, R) and p (MD,
R?), for ny, loci (see text for hypotheses). N indicates the
number of pairs of genotypes involved in the correlation
computation

ny 2 3 4 5 6 7 8
N 16 64 256 1024 4096 16384 65536
p(MD,R) 053 0.41 035 031 028 026 024

p(MD,R% 058 045 038 033 030 028 026

defined as previously) between the 2" x 2" possible
pairs of genotypes at the n;, loci.

We checked that under these conditions the
numerical values for the correlation between MDj
and R} were consistent with those obtained from the
analytical approach (Table 1). The correlation
between MD; and R; was slightly lower than
between MD; and R}. The correlation between the
marker distance MD; and the quantitative distance
parameters R; and R decreased as the number of
loci considered increased (Table 1). For n;, =2 to 8,
triangular relationships were observed (Fig. 1): low
MDj; values were systematically associated with low

MD
51

0 O
—liv—v T T T T T T
-1 0 1 2 3 4 5

R

Fig. 1 Marker distance (MD, ordinate) vs. quantitative
distance (R, abscissa) for a four-loci model (see text for
model hypotheses). The size of each circle is proportional
to its frequency.
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quantitative distances, whereas high MD,; values
corresponded to either low or high quantitative
distance. With equal and independent effects of the
increasing and the decreasing alleles at the different
loci, two different genotypes, for example
(++—-) and (——++), can have the same
phenotype although they are different at each locus,
whereas identical genotypes necessarily have the
same phenotype.

Materials and methods

Twenty-one maize inbred lines have been character-
ized as described in Burstin et al. (1994) for 142
markers resulting from the analysis of enzyme,
RFLP and anonymous protein polymorphisms, and
for the relative quantities of 190 proteins revealed
by two-dimensional electrophoresis. The protein
quantities were determined by the kepLErR 2-D Gel
analysis Software, as described in Burstin et al.
(1993). For each pair of lines, we computed the
multilocus Rogers’s distance for the 142 marker loci
(MD), and a distance defined for each of the 190
proteins as follows: Rk; = (Qu—Qu)" with Q; and
Qi the standardized quantities of protein k in lines i
and j, respectively.

Experimental results

As expected, the correlations between MD and the
190 phenotypic distances corresponding to the 190
protein quantities were generally small. They ranged
from —0.24 to 0.48, with 97 per cent of the correla-
tion coefficients being between —0.25 and 0.25. The
highest correlation coefficient (0.48) corresponded
to the protein S207, which variation can be
considered as oligogenic because QTL analysis
demonstrated that it is mostly determined by three
loci (Damerval et al., 1994). This protein has been
identified by microsequence comparisons as a
gluthatione-S-transferase  (Touzet er al, 1995).
Moreover, a trend towards a triangular relationship
clearly appeared on the plots of MD vs. the pheno-
typic distances computed on the standardized
phenotypic of proteins. For example, Fig. 2 shows
the relationship observed between MD and the
phenotypic distance computed from the variation of
protein S65. This protein has been identified by
amino acid composition comparisons as a chaper-
onin hsp60 (Touzet er al., 1996). Consistently with
numerical results, low MD values were associated
with low phenotypic distances, whereas high MD
values corresponded to either low or high quantita-
tive distance.
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Fig. 2 Relationship between a marker distance computed

from 142 marker Joci (MD, ordinate) and a quantitative

distance computed for protein S65 (Rk, abscissa).

Discussion

Experimental results reported in this study under-
lined that, for a number of proteins, low marker
distances were associated with low phenotypic
distances, whereas high marker distances were assoc-
iated with a large range of phenotypic distances.
Thus, a clear tendency towards a triangular relation-
ship was observed between the two distances (Fig.
2). This result is consistent with other studies.
Burstin er al. (1995) found a similar relationship
between a marker distance and Hanson and Casas
distances computed for yield and early vigour on 210
pairs of maize inbred lines. A triangular relationship
was also found between a marker distance computed
from 222 marker loci and a Mahalanobis distance
computed on 10 phenotypic traits, for 10 440 pairs of
lines (Bar-Hen & Charcosset, 1995; Dillmann et al.,
1997). Similar results were also reported by Chanter-
eau (1993) for sorghum inbreds. Triangular relation-
ships were also observed between heterosis and
phenotypic distances (Charcosset et al., 1990, and
our unpublished data). However, Leonardi et al.
(1991) reported a linear relationship between the
protein quantitative distance and heterosis for five
agromorphological characters in maize. This result
could be related to (i) the smaller number of inbred
lines that were considered in that study (five vs. 21
in the present study), which may have led to sampl-

© The Genetical Society of Great Britain, Heredity, 79, 477-483.
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ing problems, and (i1) different scoring methods for
the protein quantities (discussed in Burstin et al.,
1995).

The triangular shape of the relationship between
the marker distance or heterosis and the distance
computed for phenotypic traits can be explained by
the polygenic inheritance of these traits, because a
given quantitative value can be obtained with
different gene combinations. Polygenic inheritance
has been demonstrated for most of the traits gener-
ally considered for phenotypic distance estimation.
For example, QTL mapping in maize has revealed
that numerous chromosome regions are involved in
plant height variation (e.g. Beavis et al., 1991).
Damerval et al. (1994) have demonstrated that indi-
vidual protein quantity variations were often poly-
genically inherited in an F, progeny of maize. Thus,
the number of QTLs involved in the variation of a
phenotypic trait in a sample of diverse genotypes is
generally expected to be large. Our theoretical
results demonstrate that the correlation between
phenotypic distances and marker distances or
heterosis necessarily decreases with the number of
loci involved in the variation of the trait(s) of
interest. This result is consistent with the small
correlations observed between MD and the distances
computed from protein quantities, and the fact that
the highest correlation is observed for a protein with
quantity controlled by a restricted number of loci.
The polygenic inheritance of the quantitative traits
taken into account in the phenotypic distance
computation has a similar influence on the relation-
ship between the distance and heterosis.

In addition to the polygenic inheritance of quanti-
tative traits, one has to consider that markers gener-
ally have no direct effect on the quantitative traits of
interest (i.e. they are neutral). Thus, the relationship
between quantitative distances and marker distances
is affected by the linkage disequilibrium between
marker loci and the QTLs involved in the traits
considered for quantitative distance estimation.
Equation (9) illustrates that a poor association
between both types of loci leads to a low correlation
between distances. If there is no linkage disequi-
librium, the two distances vary independently: high
and low marker distances can correspond to similar
morphological distances. If there is linkage disequi-
librium, which is, for example, the case when inbred
lines are related by pedigree (Charcosset and
Essioux, 1994), a strong relationship is expected.
Because a high marker similarity is necessarily assoc-
iated with kinship (e.g. Smith et al., 1990), two lines
that are similar at marker loci will share common
alleles at the QTLs and thus be phenotypically close.

© The Genetical Society of Great Britain, Heredity, 79, 477-483.

This effect of kinship on the triangular shape of the
relationship was illustrated experimentally in the
present study: pairs of related lines corresponded to
small distances, of either MD or R, whereas pairs of
unrelated lines corresponded to large values of MD
and a large range of values for R. Thus, polygenic
inheritance and linkage disequilibrium properties
associated with kinship lead to a triangular relation-
ship between marker distance and phenotypic
distance. The relationship between phenotypic
distances and heterosis depends in a similar way on
the linkage disequilibrium between QTLs involved
in heterosis and QTLs involved in the traits
considered for phenotypic distance estimation.

The results reported in this study illustrate that
prediction of heterosis based on quantitative
distances between parents has to be considered with
caution. As also discussed in Charcosset et al.
(1990), a hybrid combination between two parents
should not be discarded a priori on the basis of their
morphological similarity, because similar phenotypes
can be observed for different genetic combinations.
The relationship between marker and phenotypic
distances also has several practical applications.
First, the phenotype of a given line can be predicted
if it displays a high similarity at the marker level
with a line that was characterized phenotypically.
Secondly, among a set of lines with similar pheno-
types, marker analysis allows the identification of the
lines that are likely to share similar alleles at the
QTLs. This can be extremely interesting for the
protection of owner’s rights as well as for genetic
resources conservation. However, because of the
linkage disequilibrium properties, two inbreds may
have similar phenotypes, share common alleles at
the QTLs and display a relatively high marker
distance at the same time. These applications would
be broadened by the identification of the genes
involved in the variation of the traits of interest,
which would allow an allelic comparison at the QTL
level.
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Appendix

Variance of R?

Var (R}) = Var ((Z a, (0 —9?)> >

= (30v<z Y a,a,(0i—07) (0} —01).Y. Y arar(0h—0i)(0% —9',;,)>
I v k k'

=Zzzzaiat'0kak'“lr'kk',
1ok ok

where o = Cov((Of—Hf)(H’}r~9§'); (0} —0}) (0% —61)).

Based on the elementary covariance property (Cov(AB; C) = E(4A )Cov(B C)) if A is independent of B and
C) and the specific property (E(0;—6}) = 0)), oy« = 0 if one locus is independent from the three other loci.
In addition, oy =0 if I=1', k=k’ and / and k are independent. If one further assumes that the linkage
disequilibrium between two loci can only be total or null, oz #0 in the two following situations.

e /=k!'"=k"and [#]l' (orl=k',]" =k and [#]"). In this situation,
e = E((01— 0)(0,— 01°)— EX((01— 01)(0,— 01))
= E((2-20i6})(2—26:6%))—0
=4(1—w}(1—wp).
e /|=k=1'"=k’. In this situation,
e = Cov(—20,0}; —2610%)
= 4(E(6i0)*) — E*(016%)
=4(1—w)).
Thus:

Var(R2) = 4Za,(1 wh)+8Y Y atai(1—wh)(1—w}).

1 k#l

Covariance between R? and MD
2
Cov(R}; MDy) = Cov((Z a,(G’—B’))) 3 Y —0’,}6’,;))
I p

1
—C
2n,

ov<z Y a;a,(0)—0)(0)—01); Y. (165 ’}c)>

=— Z Y Z a;a; Cov((6]—0)(6}.—01); (1—0:6})).
P o
Following previous assumptlons concerning the possible magnitude of linkage disequilibrium,
Cov((0)—07)(0].—0); (1—6 £07)) =0, unless /=1["=k. For this last situation, it can be noted that
(6i—60%)* = 2(1—0i0%) and so: Cov((0;—07)% (1—6i8})) = 2Var (1—6i6}). So,

Cov(Ri; MDy)=— Y aj(1—w)).

Pil=1
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