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Model diagnostics for fitting QTL models to
trait and marker data by interval mapping
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Diagnostic tools are presented which enable the geneticist to assess the agreement between
linkage data and a fitted normal mixture model for interval mapping. The theoretical like-
lihood profile along a chromosome is derived for a single quantitative trait locus (QTL)
segregating in a backcross population, along with upper and lower bounds. This is useful for
detecting two QTLs on a chromosome. Residuals are used to indicate the need for transforma-
tion of the trait values to a different scale before analysis, and the use of an incorrect
distribution is shown to reduce the maximum lod score. A strategy for the regular use of

diagnostic tools for interval mapping is presented.
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Introduction

Statistical methods for mapping quantitative trait
loci (QTLs) have advanced rapidly over the last 20
years. The original approach was to compare trait
values of the different genotypes at a marker locus
(e.g. Soller et al., 1976), equivalent to one-way analy-
sis of variance with the different marker genotypes
corresponding to levels of a factor. A more realistic
model was proposed by Weller (1986), who
modelled the trait distribution for each marker class
as a mixture of distributions corresponding to the
different QTL genotypes, with the mixing proportion
a function of the recombination fraction between
the marker and the QTL. This approach was
extended by Weller (1987) and others to the case of
two markers flanking a QTL.

As molecular marker technology has advanced,
maps of molecular markers covering the whole
genome have become available. Lander & Botstein
(1989) proposed interval mapping to locate the posi-
tions of QTLs relative to all the markers on a
chromosome. Again, this uses a mixture model. A
lod score is calculated for each point on the chromo-
some as the log, of the ratio of the likelihood of a
QTL at that point to that of no QTL at that point.
The maximum of this likelihood profile is taken to
indicate the most likely position of a QTL, if this lod
is above a specified threshold. Jansen (1993), Jansen
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& Stam (1994) and Zeng (1993, 1994) have shown
how the precision of interval mapping may be
increased by including additional markers as
explanatory variables in the mixture model to
remove genetic variation owing to QTLs in other
parts of the genome.

Statistical models for quantitative traits have thus
developed considerably in recent years. However,
statistical modelling should be an iterative process:
view data—fit model—look for departures from
model—»amend model-refit model, etc. Here, we
look in detail at the normal mixture model fitted to
map QTLs and describe some diagnostics, which
might indicate that this model is inadequate. These
diagnostics are then tested for their ability to detect
two types of departure from the model, using simu-
lated data. The methods will be developed for a
backcross between two inbred parents, but may be
modified for other types of cross.

Diagnostic tools
Diagnostics based on residuals

Many diagnostics for departures from linear models
are based on the distribution of residuals, and here
we can use the same approach. The interval map-
ping method (Lander & Botstein, 1989) postulates a
single QTL at the position on the chromosome
corresponding to the maximum of the ratio of the
likelihood of a QTL to the likelihood of no QTL.
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The QTL genotype for each individual is not observ-
able, but the conditional probability of each QTL
genotype, given the marker genotypes and the trait
values, is calculated as part of the EM fitting algo-
rithm. Let the QTL genotypes be Qg and gg, with
trait means yu, and y,. Denote the full set of marker
information by M and the trait values by Y. Then a
fitted value, )A’,», may be calculated for individual i as

Y. = uoP(Qq | M, Y)) + 1,P(qq | M, Y)

and the residuals R, as Y,—Y, Plots of residuals
against fitted values will be investigated for their
ability to detect nonconstant variance, as in a linear
model. For many individuals, the conditional proba-
bilities P(Qg | M,Y}) and P(gqq | M,Y;) are close to 0
or 1, so the fitted values are close to up or g, and
the problem is close to a nonmixture problem. For
nonmixture data, the residuals should be approxi-
mately normally distributed, and this may be tested
by the correlation, r, between the ordered residuals
and the normal order statistics (Filliben, 1975).
Simulation is needed to derive a lower threshold for
r for the QTL mixture model.

Diagnostics based on the likelihood profile

Diagnostics based on the distribution of residuals
use the parameters of the mixture model corres-
ponding to a QTL at the peak of the likelihood
profile. However, the interval mapping approach
gives a complete profile for the likelihood of a QTL
at every point on the chromosome. If the true situa-
tion is a single QTL on the chromosome, then the
likelihood profile should peak at its position. If,
however, there are two linked QTLs on the chromo-
some, the likelihood profile may actually peak
between the two QTLs (Haley & Knott, 1992; Marti-
nez & Curnow, 1992) and a single QTL may be
erroneously deduced. The shape of the likelihood
profile over the complete chromosome may enable
these two situations to be distinguished.

Haley & Knott (1992) use a regression method for
interval mapping of quantitative trait loci, where the
likelihood at each point is derived by regressing the
trait values on their expected values as functions of
the distance from that point to the flanking markers.
They found that the regression method gives a very
similar profile to that obtained by fitting a normal
mixture model using maximum likelihood. In the
Appendix, there is shown to be a monotonic rela-
tionship between the likelihood profile and the
profile of the regression sum of squares. A profile
for the regression sum of squares is then derived for
the situation of a single QTL on a chromosome,

together with upper and lower confidence limits.
Therefore, we can investigate whether the observed
profile lies within the expected limits.

Diagnostics based on regression coefficients

The normal mixture model is fitted to every point on
a chromosome: at marker locations this is equivalent
to regression on that marker. Assuming the marker
has a recombination fraction r, with a QTL with
effect f= u,—pu,, the expected value of the regres-
sion coefficient can be shown to be (1—2rp)p.
Departures of the regression coefficient from this
value may indicate a misspecified model.

A single QTL for a trait whose variance
increases with its mean

For some traits, the variance increases with the
mean and a log-normal distribution may be more
appropriate than a normal distribution. We seek
diagnostics to indicate the need for a transformation
of the trait data before modelling. A set of marker
data was simulated for a backcross population with
200 individuals. Six markers were simulated on a
single chromosome, with recombination fractions
between adjacent markers having expected value 0.1.
A QTL was simulated, lying halfway between
markers 2 and 3. Four sets of trait values (A, B, C
and D) were simulated using the log-normal distri-
bution, with parameters chosen to give a low (A and
B) or high (C and D) heritability, and a small (A
and C) or large (B and D) ratio for the two standard
deviations associated with the two QTL genotypes
(see Table 1). The same set of marker data was used
for each simulation. For each set, a single QTL was
fitted by interval mapping, treating the trait as
normally distributed, and the position of the QTL,
the QTL means and the common standard deviation
were estimated. One hundred simulations of a
normally distributed trait were then generated,
assuming a QTL at the estimated position and with
the estimated means and standard deviation. This
gives data sets AN, BN, CN and DN. Thus, diag-
nostics from the log-normal data may be compared
with their corresponding distribution from 100 simu-
lations based on normal data. A further 100 simula-
tions were run using a log-normal distribution with
the same parameters as A, B, C and D to see how
frequently discrepancies between the normal model
and the log-normal data were detected (data sets
AO, BO, CO and DO). Finally, these 100
log-normal traits were analysed after a logarithmic
transformation to see how the conclusions of the
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Table 1 Power of the normal scores test to detect nonconstant variance among the residuals

Number of Number of
Ratio of log-normal transformed
standard Original Critical value simulations simulations
Data set Heritability (%)  deviations g,/c% correlation (r) <) withr>C, with r>C,
A 6 2 0.888 0.9935 0 96
B 6 1.2 0.964 0.9930 0 97
C 50 2 0.948 0.9935 0 94
D 50 1.2 0.992 0.9925 52 96

The critical value for the test is taken to be the 5 per cent point of the distribution of correlations from 100 normal

simulations.

*Plants with QTL genotypes Qg and gq are assumed to have variances 65 and o, respectively.

analysis were affected (data sets AT, BT, CT and
DT).

Distribution of residuals

Figure 1a shows a plot of the residuals, R, against
the fitted values for the first simulation from set A,
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and Fig. 1b shows the corresponding normal scores
plot. There were some outliers, and the normal
scores plot showed marked curvature. The normal
scores correlation, r, for this data set was (.888,
whereas 95/100 of the normal simulations (AN) had
values of r above 0.9935. The largest value of r over
the set of 100 log-normal simulations (AO) was
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Fig. 1 Effect of a log transformation on simulated data set A. (a) Residuals against fitted values for untransformed data.
(b) Normal scores plot for untransformed data. (c) Residuals against fitted values for log-transformed data. (d) Normal
scores plot for log-transformed data. (e) Lod profile for untransformed data. (f) Lod profile for log-transformed data.
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0.890, so a normal scores test based on a critical
value of 0.9935 would reject normality for every
log-normal simulation. When a logarithmic trans-
formation was used before the QTL analysis, r was
larger than 0.9935 for 96/100 simulations. Figur-
e 1(c,d) shows the residuals against the fitted values,
and the normal scores plot for the transformed data.
Table 1 summarizes results on the power of the
normal scores test to detect non-normality among
the residuals for the four data sets. For data sets
AO, BO and CO, the normal scores correlation is
consistently lower than that expected in a normal
population. Only for data set DO, where the herita-
bility is high and the ratio of the true QTL standard
deviations is only 1.2, would many of the log-normal
simulations be accepted as normal by this criterion.
The logarithmic transformation before the QTL
analysis consistently improved the distribution of the
residuals.

Likelihood profiles

The profiles of the regression sum of squares are
calculated from the likelihood profiles using eqn Al
in the Appendix. The observed profiles generally lay
close to the expected profiles and were within the 95
per cent confidence limits for at least 95 of the 100
log-normal and transformed log-normal simulations
for each of data sets A, B, C and D. Therefore, the
shape of the profile does not provide a useful diag-
nostic for detecting nonconstant variance. However,

inspection of the profiles suggested that the profiles
for the transformed simulations AT and CT had
narrower peaks than the corresponding simulations
AO and CO.

The widths of the peak may be compared by
means of a support interval. For this, we return to
the familiar scale of the lod profile. Lander &
Botstein (1989) used a one-lod support interval (i.e.
an interval bounded by the positions on the chromo-
some, at which the lod score has decreased to 1/10
of its maximum) to indicate the approximate posi-
tion of a QTL. We will use support intervals of 1, 2
and 3 lods to compare the shape of different
profiles.

Table 2 compares the support intervals for each
data set. A comparison of the widths for the 100
simulated log-normal and transformed log-normal
traits, using a Mann—-Whitney U-test for a shift in
the median, shows that the width of the likelihood
peak was significantly reduced by the transformation
for data sets A and C (P<0.001 for each support
interval). For sets B and D, where the ratio of the
standard deviations was 1.2 rather than 2, the widths
of the support intervals were not significantly
different. For all four data sets, there were signifi-
cant increases in the maximum lod score for the
transformed data (A: mean increase of 2.2,
SE =0.12; B: mean increase of 0.19, SE = 0.037; C:
mean increase of 3.7, SE =0.15; D: mean increase
of 0.23, SE =0.027). Figure (le,f) shows the lod
profile for the first simulation from data set A,
before and after a logarithmic transformation.

Table 2 Widths (cM) of support intervals from the lod profiles for each data set

Log-normal data

Transformed data

Data set  Support interval 5% 50% 95% 5% 50% 95%
A 1 lod 15 23 38 10 17 31
2 lods 23 38 38 16 27 38
3 lods 345 38 38 21 38 38
B 1 lod 115 25 38 12 23 38
2 lods 21 38 38 19.5 38 38
3 lods 32 38 38 30.5 38 38
C 1 lod 6.5 8 12 5 7 9
2 lods 9 12 18 7 10 14
3 lods 11 15.5 21.5 9 13 18
D 1 lod 6 7 12 6 7 12
2 lods 8 12 17 8 12 17
3 lods 10 15 21.5 10.5 15 21.5

The table gives the 5, 50 and 95 percentiles of the width among 100 log-normal

and transformed log-normal simulations.
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Regression coefficients

No discrepancies were observed between the
observed and expected trait coefficients for any of
the simulations for data sets A, B, C and D. These
coefficients are not a useful diagnostic for the need
for a transformation.

Two QTLs on a chromosome

If there are two QTLs on a chromosome, the likeli-
hood profile may have a maximum between them,
and a single QTL (a ‘ghost’” QTL) may be deduced
at the wrong location (Haley & Knott, 1992; Marti-
nez & Curnow, 1992). Here, we seek diagnostics to
identify when a linked QTL has been omitted from a
model. Using the same simulated population and
markers as before, seven sets of traits (E-K) were
simulated to represent a range of QTL locations,
sizes and signs (Table 3). In each case, a single QTL
was fitted initially at the position corresponding to
the maximum of the likelihood profile. One hundred
traits were then generated, using the estimated QTL
parameters (data sets EN-KN). A further 100 simu-
lations were then generated, assuming two QTLs in
the original positions, to see how frequently the
diagnostic tests detected discrepancies (data sets
EO-KO).

Distribution of residuals

The residuals from each two-QTL trait showed no
curvature in the normal scores plot, and approxi-
mately 95 per cent were accepted as normally distri-
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buted using the normal scores test. The residuals
were not useful for detecting that a linked QTL has
been omitted from the model.

Likelihood profiles

The observed profile of regression sum of squares
for the first trait simulated from set E is shown in
Fig. 2a, along with the expected profile for a single
QTL with the same location and parameter values,
and the corresponding 95 per cent confidence inter-
val. The observed and expected profiles are very
close at the peak of the profile, but the observed
curve decreases much more slowly than the expected
curve and lies outside the 95 per cent confidence
limits for the last 16 cM. Similar features were
observed for the simulations from sets F, G and H.
Even when the observed profile stayed within the 95
per cent confidence limits, it generally decreased
more slowly than the expected profile. To compare
the profiles, we can compute a sum of the propor-
tional difference between the observed and expected
profiles:

L abs —L exp

p=3| & T
L upper —L lower

b

where L., is the observed regression sum of
squares, L., is the expected sum of squares, Lpper
and Lo, are the upper and lower bounds and the
sum is taken over the points at which the likelihood
profile is evaluated. For the original trait P =15.3,
whereas for the corresponding single QTL simula-

Table 3 Number of two QTL simulations, in which diagnostics indicate the single QTL model is inadequate, using
expected likelihood profiles and expected regression coefficients

Regression
First QTL Second QTL Likelihood profiles coefficients
Flanked Flanked No. outside No. with No. with ¢ significant
Data set by Size by Size 95% CI P>95% point for 14 marker
E 1,2 1 4,5 1 79 94 59
F 1,2 1 3,4 1 47 79 27
G 12 1.5 23 15 37 24 7
H 1,2 1 4,5 0.5 30 53 20
I 1,2 1 4,5 -1 90 32 99
J 12 1 3,4 -1 72 49 85
K 1,2 15 23 —15 46 10 55

The critical values for P are taken as the 95 per cent point of their distributions among 100 simulations based on a single
QTL. The sizes of the QTLs are expressed relative to the environmental variance and their positions are midway between

the two markers indicated.
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tions (EN), the upper 95 per cent point for P was
6.2. The power of these tests to detect discrepancies
from the expected profile decreases with the size
and separation of the two QTLs (Table 3). For sets
E, F and H, P detects more discrepancies than the
profile bounds. For sets G and K, with QTLs in
neighbouring intervals, neither method was particu-
larly successful. For sets I, J and K, with QTLs of
opposite signs, the profiles tended to dip below the
lower bound between the QTL positions and P
detected fewer discrepancies than the profile
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Fig. 2 Observed (O) and expected (E) profiles and 95 per
cent confidence interval of the regression sum of squares.
(a) Data set E — two QTLs with the same sign. (b) Data
set I — two QTLs with opposite signs.

Table 4 Comparison of observed regression coefticients of
trait I on the markers with those expected if a single QTL
is present

Marker Observed f Standard error Expected f8 t

1 0.352 0.167 —0.358 4.25
2 0.202 0.168 —0.407 3.63
3 —0.271 0.167 —0.490 1.31
4 —0.549 0.164 —0.569 0.12
5 —0.638 0.163 —0.633 —-0.03
6 —0.579 0.164 —0.565  —0.09

bounds. This is illustrated for the first trait from set
Iin Fig. 2b.

Regression coefficients

The regression coefficients of traits E, F, G and H
on the markers were generally quite close to those
expected for a single QTL on the chromosome.
However, for sets I, J and K, differences between
the observed and expected coefficients were more
apparent. The likelihood profile for trait I suggested
a single QTL between markers 5 and 6, with means
tto =0.341 and p,= —0.311. The expected regres-
sion coefficient is negative for every marker,
whereas the observed coefficients are positive for
markers 1 and 2 (Table 4). Table 3 summarizes the
number of simulations in which a t-test indicates a
significant difference from the expected coefficient.
The regression coefficients appear to be a useful
diagnostic tool when the QTLs are of opposite signs.
As before, the ease of detection increases with the
QTL separation.

Conclusions

Studies of the inheritance of quantitative traits
require substantial resources, and the statistical
analysis should seek to explain variation in the data
as fully as possible. This involves a careful explora-
tion of a fitted QTL model to see whether it is
consistent with the data or whether a more compli-
cated genetic mechanism is necessary. Here, two
common deviations from the usual mixture model
assumptions have been investigated. There are, of
course, other sources of discrepancies, such as an
incorrect ordering of markers, which should be
borne in mind.

It has been shown here that, if data from a
log-normal distribution with variance increasing with
the mean are analysed as though they were normal,
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then the maximum lod score is reduced and the
support intervals are wider than if a transformation
is used before QTL analysis. For QTLs of small
effect, this could make the difference between detec-
tion and omission. This ties in with the results of
Jansen (1992), who investigated a trait with an expo-
nential distribution and found that a QTL was
detected only when the correct distribution was
used. In some cases, in which examination of the
residuals indicates non-normality, and especially if
the trait takes discrete values, it may be preferable
to use another distribution to model the traits.
Jansen (1992) discusses the use of distributions
other than the normal, Hackett & Weller (1995)
investigate the use of an ordinal regression model
for mapping ordered categorical traits and Visscher
et al. (1996) and Xu & Atchley (1996) discuss the
mapping of binary traits.

From the results of this study, the following diag-
nostic strategy is recommended.

1 Regression analysis of the trait on all the markers
on the chromosome of interest. An examination of
the residuals from this regression should indicate
whether there is any need for a transformation of
the trait to stabilize the variance. Most statistical
software will also indicate observations with large
residuals, and these should be investigated carefully,
as they may influence the selection of markers
linked to QTLs. The sizes of the regression coeffi-
cients should give a first indication of the likely QTL
location. If the sign of the regression coefficient
changes along the chromosome, there is a possibility
of two linked QTLs of opposite signs.

2 Calculation of the likelihood profile along the
length of the chromosome, using transformed trait
values if suggested above. The residuals may be
examined again, either graphically using a normal
scores plot or by means of a test of the normal
scores correlation coefficient.

3 Calculation of the expected likelihood profile, and
upper and lower bounds. If the observed profile goes
outside the bounds on the expected profile, there
may be two QTLs on the chromosome. The
observed profile can also stay within the bounds, but
its shape may differ from that expected. If the
profile decreases more slowly than expected, there
may be two QTLs of the same sign, and comparison
of the sum of proportional differences with that
expected from simulated populations with one QTL
is a more sensitive test than the profile bounds. If
the profile shows an unexpected dip, there may be
linked QTLs of opposite sign, and comparison of

© The Genetical Society of Great Britain, Heredity, 79, 319-328.
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observed and expected regression coefficients is a
useful test.

If linked QTLs are detected, then more sophisti-
cated QTL mapping procedures are required, such
as the ‘MQM mapping’ and ‘composite interval
mapping’ methods of Jansen (1993), Jansen & Stam
(1994) and Zeng (1993, 1994). These provide a
powerful method for continuing the QTL analysis.
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Appendix: derivation of theoretical lod profile

The traditional lod profile is calculated as Gi(d) = log;o(L /L), where L, is the likelihood of a model with a
QTL at position d, and L, is the likelihood of a model with no QTL. This test is related to the traditional
likelihood ratio test statistic G,(d) = 2log.(L /L), which has an asymptotic y*-distribution, by G, = 2log(10)G,.

Haley & Knott (1992) use a regression method for interval mapping of quantitative trait loci, in which the
likelihood at each point is derived by regressing the trait values on their expected values as functions of the
distance from that point to the flanking markers. They found the regression method and maximum likelihood
methods gave very similar profiles, and the regression approach will therefore be used here to derive an
equation for the lod profile. The likelihood ratio test may be written in terms of the regression, residual and
total sum of squares (SSR, SSE and SST) as

G, =nlog.(SST/SSE) = —n log.(1 —SSR/SST). (A1)

Thus, G, is a monotonic function of SSR and we will use the distribution of SSR to derive the expected profile
and upper and lower bounds. In a conventional linear regression model, Y = Xf+¢, the (mean-corrected)
regression sum of squares is

SSR=f'X'Y—nY?=Y'AY where A =X(X'X) 'X'—11'/n.

If the errors are independent and normally distributed N(0,6°), and there is a single explanatory variable,
SSR/o” has a noncentral y>-distribution with expectation

E(Y'AY/6%) = 1 +E(Y")AE(Y)/o? = 1 + .

We now derive X for a backcross situation in a similar manner to the derivation of the coefficients for an F,
cross by Haley & Knott (1992). The cases of the QTL outside and within the marker interval of interest must
be considered separately.

Q7L outside the marker interval

The backcross is between genotypes AAPPBBOQ and aappbbgq, with the latter as the recurrent parent. A and
B are markers, Q the QTL and P the point at which we wish to calculate the likelihood of a QTL. The
recombination fractions are 7, between P and A, rg (P and B), 7 (A and B), s, (Q and A) and s (Q and B).
The expected trait values of individuals with genotypes Pp and pp are m —a and m +a, respectively. Table Al
gives the expected proportion of each genotype and the expected trait values. We estimate the trait parameters
m and a by regression on the last column of Table Al. Assuming that the markers follow the expected
segregation ratios, the (n x2) matrix X of explanatory variables has its first column all ones, and its second

Table Al Derivation of the explanatory variable for regression at locus P

Marker genotype Pp pp Expected trait value Explanatory variable
AaBb (1=ra)(1—rp)/2 rars/2 m—a(l—ra—rg)/(1—r) —(L=ra—rp)/(1=1)
Aabb (l—rA)rB/Z rA(l—rB)/Z m+a(rA—rB)/r (rA—rB)/r
aaBb ra(l1—rg)/2 (1 —ra)re/2 m—a(ra—rg)/r —(ra—rp)ir
aabb rarg/2 (I—ra)(1—rg)/2 m+a(l—ra—rg)/(1—r) (1—ra—rg)/(1—r)
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column consists of the terms in the last column of Table Al, each repeated to correspond to the expected
marker genotype frequency. Then

1/n 0
0 1/nS

5

(X'X)"' =

where
S=(1-ra —rB)z/(l —r)+(ra —rB)Z/r.

Therefore, A is a block matrix, with blocks of size n(1—r)/2, nr/2, nr/2, n(1—r)/2:

(1—ra—rg)? —(1—ra—rg)(ra—rs) (1—ra—rg)(ra—rs) —(1=ra—rp)?
nS(1—r) nSr(1—r) nSr(1—r) CaS(1—rp
—(I—=ra—re)(ra—rs) (rA—"B)2 _("A—"B)Z (1—=ra—rg)(ra—rs)
nSr(1—r) TSt oS nSr(1—r)
(1—ra—rp)(ra—rs) —(ra—rg)’ (ra—rs)’ —(1—ra—rg)(ra—rg)
nSr(1—r) ConS? st nSr(1—r)
—(1=ra—rg)’ (1 —=ra—rg)(ra—rs) —(1—ra—rg)(ra—rs) (1 —ra—rg)
nS(1—r)? nSr(1—r) nSr(l—r) W

To calculate the expected SSR, we also need the expected trait values for each marker category, which depend
on the distance from the QTL, Q. These expected values are given in the second column of Table A2. Using
this:

n(1—2rg)’ (1-2s0)" (so—1y)’

E(Y")AE(Y) = e

and hence the SSR has a noncentral y’-distribution with parameter 4, where

| _n(1=2r)* (1=25)" (so—1)’
45q* '

Table A2 Expected trait values for each marker category

Order of loci

Marker

genotype ABQ AQB

AaBb (1—su)uo+5SsH, [(1—sa)(1 —sB)uo+sase 1)/ (1 —1)
Aabb sp Mo+ (1—sp)i, [(1=s)sp po+5a(1 —sp)p,)/r
aaBb (1 —sp)ug+ss iy [sa(1—sB)po+{(1—5a)s8 1, r
aabb seio+ (1 =SBty [sase o+ (1 —sa)(1—sp)p,)/(1—7)

QTL within the marker interval

In this case, the derivation of A is unchanged, but the expected trait value in each category is now given by the
third column of Table A2. In this case, we obtain
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; =n(yQ—uq)2 (1—ra—rp) (l—sA—sB)+(rA—rB) (Sa—SB) ’
” 454° '

1—r r

The noncentral yj-distribution has mean 1+ 4 and variance 2+4/. For />9 a lower 2.5 per cent point may be
calculated as (./2—1.96)%, and for 2>1 an upper 2.5 per cent point is given by (/2+1.96)* (Pearson &
Hartley, 1972).
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