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Modelling expectation and variance for
genotype by environment data
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An integration of two types of models for the analysis of genotype by environment interaction
is presented. On the one hand, the expectation of G x E interaction is frequently modelled by
regression models; on the other hand, for deviations from these regressions, either separate
stability parameters are defined or extra components of variance are introduced. A class of
mixed models is described that contains facilities for modelling expectation by regression and,
in addition, has extensive possibilities for dealing with heteroscedasticity. Practical aspects of
the use of these mixed models are illustrated on a data set involving sugar yield in beet.
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Introduction
This paper presents a number of models that can
account for interaction and heteroscedasticity in
genotype by environment tables. These models can
be viewed as generalizations of both the classical
model by Shukia (1972) and the mixed factorial
regression model by Denis & Dhorne (1989). The
models can be used for the analysis of replicated
and unreplicated tables alike, as no estimate for
error is required. Modelling heteroscedasticity is
especially relevant for genotype by environment
interaction (Kang & Gorman, 1989; Kang, 1993),
but similar models may be used to analyse, for
example, repeated measures data accruing in socio-
logical and psychological research (Crowder &
Hand, 1990; Longford, 1993).

For selecting genotypes, a plant breeder uses
assessments of the phenotypic value under different
environmental conditions. These assessments are
collected in genotype by environment tables. Infer-
ences follow from adequate statistical models for
these tables, and decisions are made regarding the
selection and rejection of varieties. We will consider
environments to be either locations or years, i.e.
there is no factorial structure in the environments.
Of course, in some cases, the environments comprise
location by year combinations, and it may be worth-
while exploiting this factorial structure (Piepho,
1994a). In this paper, we will take genotypes as fixed
and environments as random. A partial justification
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for this choice is that we are studying a given set of
genotypes and are not interested in testing the
environments themselves; they are considered only
to provide information about the genotypes.

Later some classical models will be described,
after which their common structural features will be
discussed, leading to the delineation of a coherent
family of models for the analysis of genotype by
environment data; some of its more interesting
members are presented. To illustrate the practical
aspects of interpreting model parameters, a set of
sugar beet data is analysed. GENSTAT and SAS source
codes for running some of the presented models are
given in the Appendix.

Review of current models

Additive model

The additive two-way mixed model provides a base-
line against which other more elaborate models can
be compared. Let 1' be a typical entry for a geno-
type by environment table, where jE { 1 .. .1} corre-
sponds to the ith genotype andj e { 1 . . .J } corresponds
to the jth environment. Y, is taken as the sum of a
(fixed) parameter depending on the genotype (c), a
random parameter depending on the environment
(B1) and an independent residual term (E1):

Y,1
=

This model has an obvious interpretation. Its first
two moments are:

e()'1) = V(}) = 58+ YE,
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Cov(Y1, Y1) = 1B forj =j', 0 otherwise.

The similarity in performance of different genotypes
grown in the same environment is represented by a
constant positive correlation, identical for every pair
of genotypes:

Cor(Y,3, Ye,) = ______
cr13 + Yr

Between performances in different environments,
this correlation is zero and this basic assumption will
be true for all models presented in this paper. Thus,
a convenient notation is to introduce Y1, the vector
of the I performances of the genotypes in the jth
environment. Covariances between different Y3 are
null and models can be defined by their expectations
and variances. For the additive model, it turns out
that

E(Y1) = V(Yj,) =

where J is the I x I matrix with all components equal
to 1, I is the identity matrix of size I and is the
vector of

General heteroscedastic model

The additive model may be extended by attributing a
different variance to each genotype. The model
formulation is identical, but the variance structure is
now different; each genotype is considered to have
its own variance, y. Shukia (1982) suggested the
term stability variance for 'i,. Earlier, Wricke (1962)
had proposed the term ecovalence for the contribu-
tion of a genotype to the interaction sum of squares,
and this quantity is directly related to y,. Expectation
and variance structures are given by

= V(Y,) = 7BJ+dg (l')
where dg (v) is the diagonal matrix whose terms are
y, the components of vector v. The interpretation is
straightforward: the variance depends on the geno-
type and the correlation differs among pairs of

genotypes:

cIB
Cor(Y,1, Y11) = _____________

+ Yi)(B + j)

The more variable a genotype is, the less correlated
it will be with other genotypes. This model is much
more flexible than the additive model (1), as the
number of variance parameters increases from 2 to
1+1.

The above type of model appears to have been
used first by Grubbs (1948) for the analysis of
measurement errors. Subsequently, it has been
reconsidered by several authors, e.g. Russell &
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Bradley (1958) and Shukla (1972, 1982). Some
extensions of Shukla's stability variance concept
were given by Piepho (1994a,b,c, 1995). A recent
review may be found in Piepho (1996a).

Scheffé model

The mixed model proposed by Scheffé (1959, p. 266)
provides a further generalization by allowing any
covariance structure between performances from the
same environment. As a consequence, the B1 term
(environment main effect) becomes redundant and
the model may be written as:

=

In contrast to Scheffé, we cannot include a residual
term, as we are addressing the non-replicated case.
The E components are correlated within environ-
ments:

(1) E(Yj,)=x; V(Y1)=L (3)
is a column vector of size I and I' = {y,1'} is any

covariance matrix of size I. The model is very flex-
ible, but at the cost of 1(1+ 1)/2 variance compo-
nents that need to be estimated. Many environments
are required to obtain good estimates of the covar-
iance parameters. The correlations within each
environment may be negative, whereas model (2)
constrains the correlations to be positive and of a
defined structure. Model (3) has been extensively
studied and used by Calinski et al. (1987a,b) for
interpreting genotype—environment data. Piepho
(1996b) considered the problem of genotypic mean
comparisons under this general model.

Mixed factorial regression model

(2) Mixed factorial regression incorporates covariates
associated with genotypes and covariates associated
with environments. This type of model was described
by Denis & Dhorne (1989) (see also Denis, 1994). It
is an extension of the factorial regression approach
developed earlier by Denis (1979, 1988), elaborating
on initial work carried out by, among others, Hard-
wick & Wood (1972) and Wood (1976). An exten-
sive review of such models can be found in van
Eeuwijk et a!. (1996).

The main feature is the introduction of regression
terms, including covariates corresponding to the
levels of one factor or both factors. Let us consider
here one covariate for environments (z1 for the jth
environment) and one covariate for genotypes (x, for
the ith genotype). The model can be written

Yij = + 2ZJ +B1 +xB12 +E,
where c12 and B2 are regression coefficients relating
to genotypes and environments, respectively. The
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term 2z1 then becomes fixed because z1 values are
known, whereas the term x,B12, embodying the
environmental regressions on a genotypic covariate,
remains random. For and B11 to keep their usual
main effect interpretation, the covariates must be
centred. The first two moments for this model are:

= (1,z1)'; V(Y1) = (1, x)(1, x)'+YEI,
where is an I x 2 matrix of fixed parameters, 1 is
the I vector of ones, x is the I vector of genotypic
covariate {x1} and is any covariance matrix of size
2. Although the residual term Eq is homoscedastic,
the Y,1 are heteroscedastic, depending on the geno-
typic covariate x. As a consequence, the correlations
between the Yqs in a particular environment can be
positive or negative:

Cor(Y, Y)
011

j(i + 2x1a12 +xa22+ YE)(51 + 2x12 +xcT22 + E)

In Denis & Dhorne (1989), this model was
developed for any number of environmental and
genotypic covariates (see also the next section on
general models).

Shukia's model

A mixture between the completely heteroscedastic
model (2) and the factorial regression model (4) was
proposed by Shukla (1972). This model provided a
main inspiration for this paper. Applications can be
found in Kang & Gorman (1989) and Kang (1993).
The assumptions for the random parameters in this
model produce the following expectation and vari-
ance for the observed random variates:

= (1, z); V(Y) oJ+dg(') (5)
The non-null correlations between the Y7s are iden-
tical to those of (2).

The information about the genotypes conveyed by
Shukla's model is concentrated in triplets of param-
eters: a general level of performance (oç), a
measure of sensitivity to the environmental covariate
(x2) and a stability variance (y1).

A general model

Description

The models proposed in the previous sections can
be expressed in a unified way, which in turn gener-
ates more useful models. Each model can be
presented as the sum of three components: the fixed
terms, the random terms and the residual term.
Mathematically, the distinction between the last two

terms is not always obvious. We already saw that for
Scheffé's model (3) only one term remains; never-
theless, for interpretation and software application,
it is convenient to make this distinction.

The fixed part is based on H covariates in each
environment. These are collected in a J x H matrix z.
The regression on these covariates involves IH fixed"' terms ih

H

c ZJh, XZJ,
= I

(6)

where z is the jth row vector of matrix z. The first
covariate is usually the constant covariate (z11 = 1 for
every j), producing the main effect. It is also
convenient to centre the other covariates ( z11, = 0
for every h >1) to obtain the standard separation of
main effects and interaction terms (for complete
tables).

The random part of the model consists of J
environmental regressions on K genotypic covari-
ates, the latter collected in the matrix x (I by K).
Thus, in total there are JK random regression coeffi-
cients (parameters). We can express the random
part in the following way:

K

xBJ/<, xB1
k= I

which produces, as variance component of ,

xx,, (7)
where L is the variance matrix of vector B3 of size K.
Again, the first covariate is usually the constant
covariate (x, = 1 for every i), producing the main
effect. Centring of the covariates, vk 0 for every
k> 1, partitions the variation between main effects
and interactions. The Bk are random variates whose
variance—covariance matrix must be specified. In
classical models, zero correlations are assumed to
exist between the random coefficients in different
environments. This may be justified by thinking of
the environments as being randomly sampled from a
large population of environments.

The residual part comprises not only the experi-
mental error, but also the interaction not yet
accounted for by the fixed and random terms
already included. It appears reasonable to employ a
simple model for the residual term when the covari-
ates account for most of the heteroscedasticity (if
any) in the data. If the covariates remove little
heteroscedasticity or no covariates are available, it
may be useful to choose a more flexible model for
the residual term. In the previous models, three
possibilities occurred. If E1 is the counterpart of Y
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simple : IT YE',

diagonal : F = dg(y),

unstructured : F = {y'}.

Finally, the general model is

Y1 = z1 + xB + E

(Y1) = z1; V(Y1) = xx'+F,
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Table 1 Numbers of parameters of the presented models

for the residual term, let F be its variance matrix.
We can distinguish three forms of r:

associated to genotypes, and the interesting novelty
is that they are applied to the residual random
component, producing an intermediate model
between (1) and (2). Correlations between geno-

(8 types in an environment are positive and depend
only on the groups to which the genotypes belong.
The number of variance components is 1+ G.

Correlated structured heteroscedastic model

Another possibility for deriving a structured hetero-
scedastic model is to retain a classical homoscedastic
residual and replace the main effect B1 by group-
specific effects Bg(j, corresponding to groups g(i).
This means that the random environment effect is
different from one group to another. Variances
depend on the group and covariances on the pair of
groups involved. The model can be written as

= CLj+Bg(i)f+EiJ,

implying

E(Y) = V(Y3) =xLx' +YE', (10)

where x is a I x G matrix of binary covariates indi-
cating group membership. The correlation structure
is more sophisticated than that for the simple struc-
tured heteroscedastic model of the previous section,
allowing negative correlations:

Cor(Y, = ag(t)g(i')

(ag(j)g(i) + YE)(ag(i')g(i') + YE)

where {ag(i)g(i')} is matrix . We have here a differ-
ence that is similar to that between the completely
heteroscedastic model (2) and the Scheffé model
(3), but now at the level of groups of genotypes
instead of genotypes.

and the general forms of expectation and variance—
covariance structures are, respectively,

(9)
Table 1 gives the numbers of parameters for the

three terms of all models presented in this paper.
The important point is that all these models are, in
fact, mixed linear models and that standard classical
methods for estimation, testing and model selection
can be applied. In the following, we propose some
new models pertaining to the family we have just
identified, combining their possibilities or adding
similar ones.

Structuredheteroscedastic model

A difficulty with the completely heteroscedastic
model (2) is the large number of variance compo-
nents to be estimated; poor estimates may be the
consequence. Sometimes the breeder is able to
distinguish groups of genotypes with a priori
different variabilities. This leads to a simplified
version of the completely heteroscedastic model by
assigning the same residual variance to all genotypes
belonging to a group. Let g(i) e {1...G} be the
numbering of these groups. Yi is supposed to be
equal to Yg(i). The g(i)s represent discrete covariates

Model Fixed I

Additive 1 1 1

Heteroscedastic I 1 1
Scheffé I — 1(1+1)12
Mixed factorial regression HI = 21 K(K+ 1)/2 = 3 1

Shukla 21 1 I
General (simple) HI K(K+ 1)/2 1

General (diagonal) HI K(K+1)12 I
General (unstructured) HI — 1(1+ 1)/2
Structured heteroscedastic 1 1 G
Correlated structured heteroscedastic I G(G + 1)12 1

Extended Shukia's model HI 1 1
Heteroscledastic mixed factorial regression HI K(K+ 1)12 I
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Extending Shukia's model

Shukla's model can be generalized by introducing
more than one environmental covariate. Although
this extension was mentioned by Shukla (1972), no
one seems to have elaborated upon it since then.
The variance structure, and therefore the correla-
tions, are identical to those of Shukia's model given
in (5), as is the interpretation of the model. The
only difference is that more information about
environments is taken into account for modelling
the expectation.

Heteroscedastic mixed factorial regression model

The mixed factorial regression model presented
earlier can be generalized by supposing that the vari-
ance of the residual part is a function of the geno-
types. Obviously, this is also a generalization of the
model suggested in the previous section, adding
genotypic covariates.

Identifiability and estimabiity
When constructing models, one has to be cautious
of overparameterization. For the variance compo-
nents, the possibility of determining all the param-
eters uniquely, i.e. the identifiability problem, is
equivalent to the question of whether they are
uniquely determined for the covariance matrix for
Yq (Joreskog, 1981). Hence, a necessary (but not
sufficient) condition for identification is that the
number of functionally independent variance
components is less than or equal to 1(1+1)12. This is
the reason why, under the assumption of an unstruc-
tured F, no can be added; this was the case for
Scheffé's model (3). Still, overparameterization can
occur, even when this necessary condition is fulfilled.
Identifiability is a prerequisite for estimability, but it
turns out, using the theory given in Rao & Kleffe
(1988, Chapter 4), that for the models presented in
this paper it also ensures estimability. Therefore, it
is sufficient to check whether overparameterization
occurs.

For the fixed parameters, it can be easily checked
that the sufficient and necessary condition for estim-
ability is that the matrix of environment covariates z
be full column rank. If it is not the case, standard
supplementary constraints can be used, or some
covariates can be dropped, according to the prefer-
ences of the user.

Estimation

Estimation of fixed parameters and variance param-
eters of the models presented in this paper is a
special case of mixed model analysis. For most of
them, the analysis can be performed using standard

mixed model software; for instance, GENSTAT and
SAS have special procedures, which allow estimation
of variance components by common methods, such
as Minimum Norm Quadratic Unbiased Estimation
(MINQUE), Maximum Likelihood (ML) or REstricted
Maximum Likelihood (REML). SAS is presently more
flexible than GENSTAT (version 5.3.1) because it
allows nonzero covariances in . Some hints are
given in the Appendix.

When the data are complete, the generalized least
squares estimates of the fixed parameters are identi-
cal to the ordinary least squares estimates. However,
the variances of the estimates obtained by standard
ordinary least squares programs will be incorrect,
because a wrong variance structure will be used.

Example: sugar yield in sugar beet in relation
to infection with beet necrotic yellow virus
This section demonstrates the use of mixed models
in field trial analysis. It will be shown how genotypic
slopes can be used to model the expectation for
differential genotypic responses in relation to an
environmental covariate, and how remaining hetero-
scedasticity can be removed by including either an
additional variance component or a genotypical
covariate. We use a small data set, which allows a
simple and meaningful interpretation and for which
computations are easy to verify. Genotypes are
fixed, environments are random and genotypic and
environmental covariates are present.

The data concern sugar yields (ton/ha) in sugar
beet. Ten cultivars with varying levels of resistance
to beet necrotic yellow vein virus were evaluated in
1990 at six locations in the Netherlands, which
varied in infestation level. Table 2 gives the sugar
yields (Y) together with a resistance indicator for
the cultivars (x,; low is resistant, high is susceptible)
as obtained from a greenhouse test, and an infesta-
tion indicator for the locations (z1; low is non-in-
fested, high is heavily infested). For experimental
details and phytopathological background see Paul
et al. (1993). For the analysis, GENSTAT 5 committee
(1993) was used (see Appendix).

Three models denoted (a), (b) and (c), were fitted
(Table 3). Their respective variance component esti-
mates can be found in Table 4. Model (a) contains
fixed intercepts and slopes for each genotype with
respect to the infestation pressure. From previous
research, this model can be considered as adequate
for modelling the expectation (Paul et al., 1993).
Estimated genotypic means are given in Table 5
together with standard errors and standard errors of
differences. The means represent the sugar yields in
an average infested environment. Because the table
was complete, all genotypic means have the same
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Table 2 Sugar yield in beet and concomitant information

Cultivar

Location

ResistanceW 0 LZ N I N II A

Roxane
Samba 2
Rizo 92
Rima
Rizofort
Donna
M 8917
Univers
Regina
Accord

Infestation

12.28
11.56
11.37
12.11
12.33
11.03
13.75
13.45
13.35
13.65

0.00

9.46
8.51
8.63
9.26
9.25
9.04
9.51
9.84
9.96

10.61

0.01

10.88
10.30
10.11
11.22
10.82

9.58
11.47
11.76
10.89
10.66

0.37

13.40
13.30
11.58
12.92
12.52
11.16
11.83
11.10

9.98
10.58

0.71

11.71
10.64
10.17
10.85
11.23
10.34
10.26
8.93
8.15
7.95

1.51

11.61
9.49

10.01
10.50
9.53
9.24
9.59
6.64
6.73
6.32

2.10

1.68
1.71
1.72
1.87
1.91
2.17
2.31
2.40
2.49
2.51

standard error for model (a). For environments that
are more or less infested than the average environ-
ment, the expected sugar yield can only be obtained
by taking into account the differential susceptibility
of the genotypes to infestation given by the slope
(Table 5). All but one genotype had negative sensi-

tivities, i.e. with higher infestation they did relatively
worse.

For the fixed effects, hypotheses of the type = 0
can be tested by the use of Wald statistics defined as
c's' [Vx)Ic; the treatment sum of squares divided
by an estimate for the error. These Wald statistics

Table 3 Models fitted to sugar yield in beet

Formula Expectation Variance Model

(a)
Y1 ifl+YEg(i) (b)
= i1 +ct12z1+B11 +xEBJ2+E ct +12Z1 if1 +ifX+y (c)

Table 4 Variance component estimates, deviances and Wald's statistics for the
three models (a), (b) and (c)

Model

(a) (b) (c)

a 1.62 1.54 1.63
1.29— —
0.16

YE
0.30 —

0.24 —
YEI

—
0.84

YE2
—

Deviances 81.58 78.29 66.74

Degrees of freedom 39 38

Wald test for intercepts (9 d.f.) 59.6 73.8 75.1
2.1 1.8Wald test for common slope (1 d.f.) 1.8

172.1 73.0Wald test for different slopes (9 d.f.) 143.6
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Table 5 Beet cultivar means and slopes, with their standard errors, and
minimum and maximum standard errors of differences between cultivars,
estimated for the three models (a), (b) and (c)

Cultivar Mean SE(a) SE(b) SE(c) Slope SE(a) SE(b) SE(c)

Roxane 11.56 0.565 0.545 0.576 0.3784 0.725 0.699 0.739
Samba 2 10.63 0.565 0.630 0.572 —0.1760 0.725 0.808 0.733
Rizo 92 10.31 0.565 0.545 0.570 —0.0105 0.725 0.699 0.731
Rima 11.14 0.565 0.545 0.554 —0.1433 0.725 0.699 0.710
Rizofort 10.95 0.565 0.545 0.551 —0.4093 0.725 0.699 0.707
Donna 10.06 0.565 0.545 0.547 —0.1999 0.725 0.699 0.702
M 8917 11.07 0.565 0.545 0.556 —1.0005 0.725 0.699 0.713
Univers 10.29 0.565 0.545 0.566 —2.3533 0.725 0.699 0.726
Regina 9.84 0.565 0.545 0.578 —2.3591 0.725 0.699 0.742
Accord 9.96 0.565 0.545 0.582 —2.7349 0.725 0.699 0.746

Mm SED 0.317 0.285 0.228 0.407 0.365 0.292
Max SED 0.317 0.425 0.448 0.407 0.401 0.574

have an asymptotic 2 distribution with the degrees
of freedom equal to those of the model term
(GENSTAT 5 committee, 1993). But before calculating
Wald statistics, first the variance structure should be
satisfactorily modelled, i.e. no pattern should be
apparent in the residual effects. The residuals from
model (a) seemed to contain some heteroscedas-
ticity. Two approaches were used to model a more
appropriate variance structure. Either extra stability
variances can be added for less stable genotype
model (b)], or genotypic covariates can be intro-
duced to account for the heteroscedasticity [model
(c)1.

Inspection of genotypic ecovalences revealed that
Samba 2 behaves differently from the others. So, a
separate variance component was added for this
genotype distinguishing two groups of genotype
g(i) = 2 for Samba 2 and g(i) = 1 for the other geno-
types. A test for inclusion of variance components
can be based on the differences in deviance, i.e.
minus two times the log likelihood, between models
(GENSTAT 5 committee, 1993). The reduction in devi-
ance is approximately 2-distributed with degrees of
freedom equal to the difference in the number of
parameters between the two models (one degree of
freedom here). The deviance decreased by 3.3 after
inclusion of the new component for Samba 2 (Table
4), which corresponds to a P-value less than 0.10.
Because the data were balanced, the estimates for
genotypic slopes and intercepts did not change, but
their standard errors did (Table 5); all genotypes
had slightly decreased standard errors, whereas
Samba 2 had increased standard errors.

Alternatively, a genotypic covariate may be used
to account for the heterogeneity of the residual vari-
ance; here we introduced a measure for disease
resistance [model (c)1. This caused a strong decrease

in the deviance (14.8 for one degree of freedom;
P-value less than 0.001; Table 4). Again, the esti-
mates for intercepts and slopes did not change, but
each genotype now has its own standard errors. This
result, together with the outcome of Wald's test for
slope (see Table 4), leads us to prefer model (c).
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Appendix
Most models discussed in this paper may be fitted
using GENSTAT or SAS statistical packages. Here are
given as illustration the corresponding commands. In
the following program codes, GEN and LOC are
classification variables for genotypes and locations,
respectively. COV_GEN and COV_LOC are covari-
ates for genotypes and locations.

GENSTAT code

The mixed model analysis facilities in GENSTAT are
centred around the statements VCOMPONENTS
and REML (see Genstat 5 committee, 1993). With
VCOMPONENTS, the structure of the fixed and
random model is specified. For the additive model
with fixed genotypes, random locations and equal
stability variances for the genotypes (model 1), the
required specification is
VCOMPONENTS [FIXED = GEN]\

RANDOM =LOC.

The factors (qualitative covariates) GEN and
LOC have length IJ. They indicate for each entry in
the I by J genotype by location table the correspond-
ing genotype and location. Covariates (for the inter-
action) can be included as follows:

VCOMPONENTS\

[FIXED = GEN+GEN.COVLOC[111\
RANDOM = LOC+LOC.COVGEN[1J,

where COV_LOC[1] and COV_GEN[11 represent
covariates for the locations and genotypes, respec-
tively (model 4). Just like the factors GEN and
LOC, these covariates have length If. COV_LOC[1]
has the same value for all cells corresponding to a
particular environment. Likewise, COVGEN[1]
changes value only when the genotype changes. The
parameters estimated for GEN and LOC can be
interpreted as intercepts, those for GEN.COV_
LOC[1] and LOC.COVGEN[11 as slopes. Including
more than one covariate for genotypes and locations
is straightforward:

VCOMPONENTS\

[FIXED = GEN+GEN.COV_LOC[1...H1]\
RANDOM = LOC+LOC.COV..GEN[1...K}.

In the present release of GENSTAT (version 5.3.1), it
is neither possible to specify correlations between
intercepts and slopes nor between slopes mutually
for the random model, but this situation will be
remedied in the next release. Thus, at the moment,
only the diagonal option for is available to
GENSTAT users.
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After the declaration of the fixed and random
model the REML statement performs the analysis.
In its most simple form, the mixed model, analysis
for the response variable Y based on REML estima-
tion of the variance components is

REML Y.

Default printed output contains, among other
things, the estimates of the variance components
plus their standard errors, and the sum of BLUEs
(fixed effects) and BLUPs (random effects) plus
their standard errors of differences as predictors of
observations. The options PRINT, PTERMS and
PSE provide ample facilities for printing other infor-
mation as well, where PRINT controls general print-
ing of all kinds of information, PTERMS selects the
model terms for which printing of effects and means
is wanted and PSE controls the type of standard
errors that will be printed alongside the tables of
effects and means. For example:

VCOMPONENTS\

[FIXED = GEN+GEN.COVLOC[1]]\
RANDOM LOC+LOC.COVGEN[1]

REML [PRINT Components,Effects,Means;\
PTERMS = GEN + GEN.COV LOC[1] + \

LOC + LOC.COV_GEN[1J;\
PSE = Allestimates] Y

would produce estimates of the variance compo-
nents with standard errors, BLIJPS for the genotype
and location means with standard errors and the
estimates for all fixed and random effects with
standard errors.

The default estimation procedure in GENSTAT is
REML, but it is not difficult to obtain MJvQUEO
(MJNQUEO) estimates. All we have to do is give the
appropriate initial values for the variance compo-
nents, i.e. all zero except for the error, which should
have unit value, and allow only one iteration of the
REML estimation algorithm. For example, MIvouEO
estimates for model (4) are obtained by

VCOMPONENTS\

[FIXED = GEN+GEN.COVLOc[1]J\
RANDOM = LOC+LOC.COVGEN[1];

INITIAL = 0,0,1

REML [MAXCYCLE 1] Y
The INITIAL parameter list must contain a value
for each component specified in the RANDOM
parameter list plus a value for the error.

To model different stability variances for indivi-
dual genotypes, additional factors (qualitative van-

ables) have to be declared and incorporated in the
random model. For each genotype, except the last
one, a factor must be declared. These factors have
the levels (values) 1 to J for the cells of (the row of)
the genotype by location table corresponding to the
genotype of interest, and have a missing value (*)
for the I(J—1) other cells. To fit Shukia's model (5),
using REML estimation, we can use

VCOMPONENTS\

[FIXED = GEN+GEN.COVLOC[lJj\
RANDOM = LOC+SVGEN[1...I1J

REMLY
The factors SVGEN[1] to SVGEN[I 1j are needed
to model the differences in variance between the
stability variance of the genotype I with the geno-
types 1 to 1— 1. To get the stability variances, the
estimated differences must be added to the variance
of the Ith genotype (the error). In the present
version of GENSTAT, only the simple and diagonal
options of eqn (8) are available. However, the next
release will also provide the facilities to fit models
with unstructured residual covariance matrices.

When groups of genotypes are required to have a
common variance, group-specific factors have to be
declared analogous to the genotypic-specific factors
above. For example, when genotypes 1 to 5 differ
from genotypes 6 to I with respect to their residual
variance, a factor SVGROUP[1J can be declared
having the values 1 to 5J for the cells corresponding
to the genotypes 1 to 5, whereas this factor has
missing values (*) elsewhere. The statements

VCOMPONENTS\
[FIXED = GEN+GEN.COV_LOC[1j}\
RANDOM = LOC+SVGROUP[1]

REML Y

fit a model that is similar to model (5), but now
there are only two different stability variances, one
for the genotypes 1 to 5 and the other for the geno-
types 6 to I.

SAS code

Most models discussed in this paper may be fitted
using PROC MIXED of the SAS statistical package.
For details see SAS Institute Inc. (1992, 1994). The
following code fits a simple additive model with
fixed genotypes and random locations; the residuals
are assumed to have a common variance (model 1).

PROC MIXED METHOD REML;
CLASS GEN LOC;

MODEL Y GEN/SOLUTION NOINT;
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RANDOM INT/SUB = LOC SOLUTION;

RUN;
The option METHOD = REML specifies the

REML method for estimating covariance components.
Alternative methods are ML and MTVQUEO. The
CLASS statement is used to indicate the factors
GEN for genotypes and LOC for locations. The
MODEL statement specifies the fixed part of the
linear model. Y is the dependent variable. The
SOLUTION option in the MODEL statement prints
the estimates of the fixed effects. The NOINT
prevents fitting of a general mean. The random part
of the model is specified in the RANDOM state-
ment. The statement given above fits a random
intercept term (INT) for each location
(SUB LOC); this is equivalent to fitting simple
main effects. Note that locations may be regarded as
subjects in the repeated measure terminology. The
SOLUTION option in the RANDOM statement
produces empirical BLUP5 of the random effects.

In order to fit a linear regression of genotypes on
a location covariate COV_LOC1 (say), add the term
GEN*COV_LOC1 to the model:

MODEL Y = GEN GEN*COVLOC1/SOLUTION

NOINT;
More covariates (COV_LOC2...) can be added in

a similar fashion.
A (random) linear regression of locations on a

genotypic covariate (COV_GEN1) is fitted by stating
the covariate with the RANDOM statement. In
order to allow for a covariance between intercept
and slope, the TYPE = UN (UN means unstruc-
tured covariance matrix) option must be invoked:
RANDOM TNT COy GEN1/SUB = LOC

TYPE = UN SOLUTION;
Observe that the SUB =LOC option ensures that

a separate slope is fitted for each location.
The modified code fits a mixed factorial regres-

sion model (model 4):
PROC MIXED METHOD = REML;

CLASS GEN LOC;
MODEL Y = GEN GEN*COVLOC1/
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SOLUTION NOINT;
RANDOM INT COV GEN1/SUB = LOC

TYPE = UN SOLUTION;

RUN;
So far, we have assumed that the residuals are

independently distributed with common variance.
The variance structure of the residual term can be
modified by using the REPEATED statement.
Heteroscedastic model (2) involves heterogeneity of
the residual variances among genotypes. The appro-
priate SAS statement is:

REPEATED /SUB = LOC TYPE = UN(1);
SUB = LOC invokes a block-diagonal covariance

matrix for the residual term, where blocks corre-
spond to subjects = locations. The TYPE = UN(1)
option produces diagonal blocks with a different
diagonal element ('stability variance') for each geno-
type. For example, the generalized Shukla model
could be fitted by SAS with the following code:

PROC MIXED METHOD = REML;
CLASS GEN LOC;

MODEL Y = GEN GEN*COV LOCI
GEN*COV LOCH/SOLUTION NOINT;

-

RANDOM INT/SUB = LOC SOLUTION;
REPEATED/SUB =LOC TYPE = UN(1);

RUN;
An alternative statement to obtain the residual

variance structure of heteroscedastic models is

REPEATED/GROUP = GEN;
By this statement, each level of GEN is assigned a

different residual variance. If we define a new vari-
able GENGROUP, which specifies groups of geno-
types with homogeneous residual variance, we can
fit a simple structured heteroscedastic model by

REPEATED/GROUP = GENGROUP;

Correlated structured heteroscedastic models could
be fitted by defining appropriate dummy covariates
associated with groups.
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