
Heredity 76 (1996) 569—577 Received 18 May 1995

Inbreeding coefficient and effective size for
an X-linked locus in nonrandom mating

populations
JINLIANG WANG

College of Animal Science, Zhejiang Agricultural University, Hangzhou 310029, China

Formulae are given for equilibrium inbreeding coefficients for an X-linked locus in infinite
populations under partial full-sib, half-sib and parent—offspring matings, respectively. An exact
recurrence equation for the inbreeding coefficient for an X-linked locus is derived for a finite
population with equal numbers of males and females under partial full-sib mating. Following
the approach of variance of change in gene frequency, two general equations for effective size
for an X-linked locus are obtained. The equations consider an arbitrary distribution of family
size, unequal numbers of males and females and nonrandom mating. For some special cases,
the equations reduce to the simple expressions derived by previous authors. Comparisons are
made between expressions for effective size for an X-linked locus and those for an autosomal
locus. Some interesting conclusions are drawn from the analysis and discussed.
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Introduction

Since the introduction of the concept of effective
population size, much work has been undertaken on
this parameter which is important in population and
quantitative genetics. Most previous work has been
concerned with autosomal genes, and equations for
effective size of a wide generality with regard to
family size variance, nonrandom mating, unequal
numbers for separate sexes and selection have been
given in recent years (Caballero, 1994). The study of
inbreeding and effective size for X-linked genes and
genes in haplodiploid species, however, has been a
neglected area until relatively recently. With
X-linked loci the situation is rather complex
compared to autosomal loci. The heterogametic sex
has only one copy of the sex-linked gene, thus the
inbreeding coefficient for X-linked loci only refers to
the homogametic sex.

For random mating and Poisson distribution of
family size, Wright (1933) and Malécot (1951) used
path coefficients and identity by descent, respect-
ively, to derive a recurrence equation for the
inbreeding coefficient for X-linked loci, and from
the equation they deduced the formula for effective
size. More general equations for effective size have
been obtained which consider an arbitrary family
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size distribution (Moran & Watterson, 1959; Ethier
& Nagylaki, 1980; Nagylaki, 1981, 1995; Caballero,
1995) and overlapping generations (Pollak, 1980,
1990) following different approaches. In this paper, I
broaden the scope of the previous inquiries by
considering nonrandom populations, and not
restricting attention to a Poisson distribution of
family size. First, I consider the equilibrium inbreed-
ing coefficient for an X-linked locus in infinite popu-
lations under different partial inbreeding systems.
Secondly, I derive a general recurrence equation for
the inbreeding coefficient for an X-linked locus in a
finite population with partial full-sib mating. The
equation is useful for predicting exact inbreeding
coefficients in any generation, especially in early
generations when the rate of inbreeding has not
reached the asymptotic value. From the recurrence
equation I deduce the equation for effective size in
partial full-sib mating populations, and then extend
it to a more general expression which applies to any
nonrandom mating population. Thirdly, following
the variance of change in gene frequency approach,
I derive two more general equations for effective
size accounting for different numbers of males and
females, an arbitrary distribution of family size and
nonrandom mating. Throughout I assume stable
population size, discrete generations, X-linked genes
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or genes in a haplodiploid species which do not
affect viability or reproductive ability so that natural
selection is not operating to eliminate them.

Theory
Equilibrium inbreeding coefficient in an infinite
population with partial inbreeding

In deriving recurrence equations for the inbreeding
coefficient, it is convenient to use Malécot's 'coeffi-
cient de parenté' (Malécot, 1948), which is trans-
lated as coefficient of parentage (Kempthorne, 1957)
or coancestry (Falconer, 1989). This coefficient may
be defined as the probability that two genes at a
given locus, one taken at random from each of two
randomly selected individuals in the relevant popula-
tion, are identical by descent. The basic rules for this
coefficient have been given by Plum (1954) for an
autosomal locus. For an X-linked locus, however,
these rules should be adapted because males and
females should be distinguished in the pedigree. For
the sake of brevity, the heterogametic sex will be
referred to as male in this and the next sections.

Consider the general pedigree in Fig. 1. A and C
are male parents and B and D are female parents. If
P and 0 are both female offspring, then the
coancestry of P with Q, GPQ, is

G0 = (GAc + GAD + GBC + GaD), (1)
as is the relation for an autosomal locus. Noting that
a gene in a male descends necessarily from a female,
whereas one in a female is equally likely to have
come from a male or a female, we obtain

GPQ = (GBc + GBD)

C,D

Fig. I A general pedigree.

if P is a male and Q is a female, and

GPQ = GBD (3)
if both P and 0 are males.

Now consider the coancestry of an individual, say
P, with itself. Similar reasoning yields

= (1 +fp) (4)
if P is a female, where fp is the inbreeding coefficient
of P, and

= 1 (5)
if P is a male.

Using these relations we can derive the inbreeding
coefficient at equilibrium in an infinite population
under the following partial inbreeding systems.

Parent—offspring There are two configurations for
parent—offspring mating: father—daughter and
mother—son. The pedigrees are shown in Fig. 2(a,b),
where circles and squares represent females and
males, respectively, and lines and dotted lines repre-
sent X-linked genes that are transmitted or not,
respectively. For the father—daughter mating,
fz = =(G+G) = (1 +ft+). If we assume
that the proportion of father—daughter matings is J3,
then (/312)(1+f+) =f÷. At equilibrium when
f+ —fi+2 = F15, we have

F15 = /31(2—13). (6)
Similarly, we can derive eqn 6 for partial mother—
son mating. Eqn 6 is a well-known result for partial
selfing populations (e.g. Wright, 1969).

(2) Full-sibs Following the approach above, given the
pedigree shown in Fig. 2(c), we have
f = = (G+ f,+2 = (/3/2)[f+ +(1 +f)12j
where /3 is the proportion of full-sib matings, and

F1 = /31(4—3/3). (7)
Eqn 7 was also obtained for autosomal genes by
many authors (e.g. Ghai, 1969; Li, 1976; Hedrick &
Cockerham, 1986).

Fig. 2 Pedigrees for matings between
different relatives, with circles and
squares representing females and
males: (a) father—daughter; (b)
mother—son; (c) full-sibs; (d) mater-
nal half-sibs; (e) paternal half-sibs.
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Haif-sibs Maternal and paternal haif-sibs should be
distinguished for partial half-sib mating (pedigrees
in Fig. 2d,e). For the first case, with the pro-
portion of half-sib matings being /3, we have
fz = = +G), fi+2 = (/3/2) [t+i + (1 +ft)/2]
and F15 = /31(4

—3$), the same as for partial full-sib
mating.

The latter case is a little complicated because the
coancestry between V and W is difficult to define. If
we assume that /3 is small so that 0, then we
get F15 = 0.

Equations for the inbreeding coefficient in
populations with equal numbers of males and
females

In this section, I consider recurrence equations for
the inbreeding coefficient and equations for effective
size in finite populations of equal numbers of males
and females under partial full-sib mating.

Inbreeding coefficient If we assume that, of the N/2
mating pairs formed from the N individuals (half of
each sex) in each generation, /3 is the proportion of
full-sib matings, then the proportion of nonsib
matings is 1 —/3. As has been shown previously for
the autosomal case (Wang, 1995), the probability
that a pair of male and female individuals are full-
sibs given that they are not mated is
[2(1 +6—13)N—40]/[N(N—2)], where 0 is the covar-
iance between the numbers of male and female
offspring per family. The probability that a random
pair of male (female) individuals are full-sibs is
2a,/N(2a/N), where a, (a-i) is the variance of the
number of male (female) progeny per family.

Let x, y and z represent the coancestry between
males, females and a male with a female, and ZFS,t_1
(ZNS,,_1) be the coancestry between a random pair of
full-sibs (nonsibs) in separate sexes in generation
t— 1. Similar symbolization applies to x and y. Then
the average inbreeding coefficient in generation t is

f, =z_1 = f3zFs,r_1+(1—/3)zNs,t_1.

The pedigrees for full-sibs and nonsibs of the
same sex or both sexes are diagrammed in Fig.
3(a—c). For full-sib mating (Fig. 3a), using eqns 2
and 4, we obtain the coancestry of Ml with Fl

= (zM2+YF2F2) = [z,_2+(1 +fF2)j

t-2 M2 F2 M2 F2 M3 F3

t-1
IV

Ml Fl Ml Fl

Generation (b) Two females

Full-sibs Non-sibs
t-2 M3 F3 M3 F3 M4 F4

V V

t-2 M3 F3 M3 P3 M4 F4

t-1 Ml M2
/

Ml
/

M2

Fig. 3 Pedigrees for full-sibs and nonsibs: (a) male with
female; (b) two females; (c) two males.

ZNS,t_1

= (ZM3F2 +yF2F3)

1 [2(1+0—/3)N—40

=L N(N—2)

N2—2(2+0—J3)N+40 1 1
ZNS, t_2] +Yr_2.

(8c)
N(N—2)

(8a) The coancestry between two females selected at
random (Fig. 3b) is

2o N—2o
Yt-i =YFW2 = YFs,t-J

+ N YNs,t—1
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Generation (a) Male with female

Full-sibs Non-sibs

Generation (c) Two males

Full-sibs Non-sibs

= (1 +2fi +ft2).
For nonsibmating (Fig. 3a), we have

2o=— (2z +XM3M3 +YF3F3)

(8b) N—2a+
4N

(ZM3F4 +ZM4F3 +XM3M4 +YF3F4)
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2a N— 2a
—8c(2a,+ O)]ft_2 — 2[(2+ 613)N4 — 2(7 + 2a2

4N 4N +a+0+fl+2fl+3flo)N3+4(4a2+2a
—39 + 20o, + 30a + 2a4 + 2flao)N2

4(1 + 0—/3)N— 89 — 16(2 +0)aaN—89 (2cr + 3a)N+32aa0]f_3
[x+1_+ N(N—2)

ZFS,12
—[flN4—2(2fl— 1+2a—2fla +fla— 0)N3
—4(a +9 + 9a —2flo — 2a4 + 2flcr4)N2

2N2—4(2 + 0—fl)N+89

-] +8(2a+a+2a)0N—32a9]f4+ ZNS(2
N(N-2)

+ (N—2a)(N—2ci)[flN2—2(1 + 0)N+ 4If'-5},
N—2c (9)= — (3 + 4fi +f_2) + (x2 +Yj_2)

4N 4N where a2 = a+20+a. It is evident that fo fi = 0,
f2 = /3/4, and f(t  3) can be predicted using eqn 9.

For the following two cases, eqn 9 can be reduced
N —2a r2(1 +8— fl)N

considerably.ZFS, t—2+ 2N [ N(N—2) (1) If the numbers of male and female progeny are
independently Poisson distributed, a = a = 1,

+ ZNS,t2
N2—2(2+0—/3)N+48

]. (8d)
=

0, a2 = 2, and we get

N(N-2) ______1

{2(12—7fl)N2—12(3—fl)N+8
32N2(N— 2)

The coancestry between two randomly selected +8N{(3+2/3)N2—12N+41f1 +4[(3—fl)N3
males (Fig. 3c) is

—2(5 + /3)N2÷24N— 16]J_2—4[(1 +3fl)N3
2a N— 2a —6(2 + /3)N2 +4(6 + f3)N— 16Jf3 —N[/3N2

NS,t—1X(1 XM1M2—XFSI1+ N
—2(1+fl)N+41f_4+(N—2)2(flN—2)f_5}. (10)

2a N—2a Eqn 10 again reduces to
=

—YF3F3
+

N YF3F4
1

f, = [6N—4+2N(3N—2)f_1
N—2a

=—(1+f 2)+ Yt 2N
—

N
—

(8e) +(3N2—6N+8)f2—(N—2)2f_31 (11)
for random mating (/3 = 2/N), which was obtained by

When eqns 8a—e, making proper adaptation to Wright (1933), and
generations, are substituted into each other, we

1obtain, after some algebra, the general recurrence
[12N2—18N+4+4N(3N2equation for inbreeding coefficient for an X-linked 16N2(N—2)

locus
— 12N+4)f_1 +2(3N3— 10N2+24N— 16)ft_2

1=
32N3(N—2)

{2[2(1 —/3)(a+2)+2a2+2a —2(N3— 12N2+24N— 16)ft_3 +N(N2)f1_4

—(N—2)2f,_5] (12)
if full-sib matings are avoided (/3 = 0).
(2) If one male and one female progeny are selected
at random from each family, a, = = 0 = a2 = 0,+8N2[(3+2fl)N2—2(5+a+20)N+4a and eqn 9 is simplified to

+ 80] ft_ +4N[(3 —/3)N3 — 2(2 + 2a, + a —9
1

{8(1 —/3)N+8N[(3 +2f3)N— 10]f+ /3a)N2 + 4(2a2 —50 + 2aa + 0a)N =
32N(N— 2)
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+4N[(3 —f3)N—4]f, _2—4N[(1 +3$)N—7—f3

—N[/3N+ 2—4f3]ft_4 +N(flN—2)f_5}.

For random mating and nonsib mating, eqn 13
reduces to

fi ={2+6Nf,1+3Nf2—(N+1)J3--f,4J

and

1

16(N—2)
[4+4(3N—10)f_1

+ 2(3N—4)f_2 —2(N—7)f_3_ft__fl-51,

respectively.

Effective size Using a procedure shown previously
(Wang, 1995), an expression for the effective size,
Ne, can be obtained from eqn 9. Ignoring second
and higher order terms of 1/N, we get

9(4—3f3)N
Ne =

4(4 —4/3 + 262 + 4cr— fk—2f3c
For random mating, eqn 16 reduces to

e 2 24+2a +40f

approximately, which was also obtained by Pollak
(1990) following a variance of drift derivation and by
Caballero (1995) and Nagylaki (1995) following
different inbreeding approaches. Eqn 17 is different
from an expression of Moran & Watterson (1959),
Ethier & Nagylaki (1980) and Nagylaki (1981), and
the reason for the difference is discussed by Cabal-
lero (1995) and Nagylaki (1995).

For an infinite population with partial full-sib
mating, the inbreeding coefficient at equilibrium or
the deviation from Hardy—Weinberg proportions is
F1 = cc = /31(4—3/3). Substituting this relation into
eqn 16, we obtain a more general expression

9N
Ne . (18)

4(1 —cc)+2(1 +3cc)cr2+4(1 +cc)o—4cca,

For a finite population, even if mating is at
random, the value of cc is not exactly zero because of
the difference in gene frequencies of the two inde-
pendent gamete samples, one from male parents
and the other from female parents. The expression
for cc in random mating populations of equal
numbers (N/2) of males and females is
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9N

ccR = — 1/(N— 1) approximately. Thus for a small

'13 population with partial full-sib mating,
cc = /31(4 — 3/3)— 1/(N— 1) should be substituted into
eqn 18 to get a more satisfactory prediction of N.

Although eqn 18 is derived for a partial full-sib
mating population, it applies to other nonrandom

'14 mating populations as well. The inbreeding coeffi-
cient at equilibrium for an X-linked locus in popula-
tions under some partial inbreeding systems has
been given earlier in this paper.

General equations for effective size

In this section we remove the restriction of equal
(15) numbers of males and females. We assume that the

population consists of Nm males and Nf females in
each generation (Nm <Nf), and each male mates with
an equal number of females (R = Nf/Nm). In such a
case, it is not feasible to derive complete recurrence
equations for the inbreeding coefficient for nonran-
dom mating populations. However, following the
variance of change in gene frequency approach
similar to that of Latter (1959), Hill (1979), Pollak

(16) (1990) and Caballero & Hill (1992), we can derive
general equations for effective size.

Males heterogametic First we consider species

'17 where males are the heterogametic sex. Letting Xmj
" ' (=0 or 1) and Xf (=0, 1/2 or 1) be the gene

frequencies of male i and its mate j (j = 1 to R), the
gene frequency in generation t —1 is

1 Nm 2 NmR
q = Xmj+ x. (19a)

3Nm . 3Nf i=lj=1

If the numbers of male and female offspring
contributed by the jth female parent mated with the
ith male parent are and flff, respectively, then
the gene frequency in generation t is

1 NmRr
=

jç:- + fj1
m=11=1 L i=t

2 Nm R r /x •-I-x'\ l"mi fzj+_
I flff4( )+—

3Nf.1J1L 2 / 2imi

1 NmRE
= flfmqXfij +

mjm111 L Iml

1 Nm 1 R R n 1
flmfiXmi + + 'fzjl (19b)

3Nf_1[ j=1 j=llml J
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2

+(1+)_) aim]

9NmNf
Ne=

4(1+)Nm+2Nf

where ideal population, q(l —q)I(2Ne), we therefore obtain
1?

1 1[
flmfi=hlffU

Ne 9Nm

is the number of female offspring contributed by /Nm\2
male parent i, is the difference in gene frequency +2(1 +1)Cov(fln, if) +2 (— 1

arnf]\NJbetween the lth sampled gene coming from the jth
female parent mated with male i and its frequency 1 r
Xfy in that individual. Clearly, the value of 5 is 0 if f— L1 —j+4cc0Cov(mf if) +(1 +c',)a
the parent is a homozygote or with equal 9Nf

probabilities if the parent is a heterozygote.
The genetic drift in gene frequency is Aq = q —Q. . (20)

Inasmuch as the gene frequency of an individual and
the number of offspring of the same individual or a Because the difference between c and is rather
different individual are independently distributed, as small, we take for simplicity in the follow-are fik1 and other terms, we obtain the variance in ing discussion. For a large population with random
gene frequency drift, aq, from eqns 19a and 19b as mating, = 0, and eqn 20 reduces to

= [1+2 —1 1

(N)2]
1ir 9N1= N5 V(x) +Nm V(l)]9N2 Lm

(Nf\2

1

V(xmi)+2NfCov(mf
x[1+a+2( )Cov(fm ff)+ —) a I,

\Nm/ Nm1 j
(21)

X COV(Xm,, xfu) +Nfa V(Xf,) +NfV(ful)]
lero (1995) by different methods. For the special
which was derived by Pollak (1980, 1990) and Cabal-

2 case of a Poisson distribution of family size, from
N Cov(mf fm)Cov(xmj, ) eqn 21 we get the classical result (Wright, 1933;+9Nf[ Malécot, 1951; Kimura, 1963)

(19c) 9NmNf+N1Cov(fln, if)V(xfIJ)] Ne. (22)
where Cov(pq, rs) is the covariance between the
numbers of offspring of sexes q and s from parents For a population of equal numbers of males and
of sexes p and r respectively (p, q, r, s = m or f). f females, we have Nf = Nm = N/2, a = cr = Cov(mf
p = r, they represent the same parent, otherwise they if) = a , a, = a , Coy (mf fin) = Coy (fin, if) = 0,are mated parents. and eqn 20 is simplified to eqn 18 as expected.It can be shown that the variances in gene If the numbers of male and female offspring from
frequency of males and females are V(Xmi) = q(1 —q) each female parent are of independent Poisson
and V(xf) = q(1 —q)(1 +o,)/2, respectively, where t distributions, then we have Cov(mf if) = a = 1,
is the departure from Hardy—Weinberg proportions Coy (mf fin) = Coy (fin, if) = 0 and a = 1/a = Nfl
in female individuals. The covariance between gene Nm, and eqn 20 reduces to
frequencies of the parents is Coy (Xmi, Xfj)
= q(1 —q)ci0, where is the correlation between

_______________ (23)genes in mated pairs of parents. The variance
attributable to Mendelian segregation, V(1l),
equals the product of the frequency of heterozy- In a population of different numbers of males and
gotes, 2q(1—q)(1—c1), and the variance generated females, minimal inbreeding can be achieved by
from them, 1/4; thus V(511) = q(1 —q) (1 —') choosing as parents one female and a probability of
Substituting these relations into eqn 19c and equat- Nm/NI of having one male from each female's
ing 19c to the drift variance per generation in the progeny, with the restriction that each male contri-
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N — 9NmNf
e —

2(NiNm)

9NmN1
Ne =

4Nf + 2Nm

9NmNf
Ne =

3Nf Nm

2

9NmN1Ne = ___________
4(1 +)Nf+2Nm

9NmNf
Ne =

3(1 +)N(1+5)Nm'

The Genetical Society of Great Britain, Heredity, 76, 569—577.

and

+2 () m+4o() Cov(mffln)]

butes one son to the next generation (Gowe et a!.,
1959). In this situation, the numbers of male (28)
offspring from different female parents are no
longer of the same and independent distributions,

= (Nm/Ni) (1 Nm/Nf), Cov(mf fin) Cov(fm, if)
= Cov(mf if) = = = 0, and eqn 20 reduces to

(29)

(24)
respectively.

Females heterogametic For species where females Discussion
are the heterogametic sex, as in poultry, the same In nonrandom mating populations, effective size is
population structure and mating system gives (using defined as the asymptotic value (over time) of the
the same procedure shown above) rate of increase in inbreeding. The larger the depar-

/ \ ture from random mating, the more generations are
1. = J.... I 1—,+(1+ 2 + 2(1 + '(Nm \ required before the asymptotic rate of inbreeding is
Ne 9Nm [

mm

\\Nf) attained. In practice, most populations do not main-
tain the same characteristics for such a long time,

/'Nm'\2 1 and in breeding programmes interest is more likely
x Coy (mm, mf) + (1 + i) ( —) i I to be concentrated on early generations. Thus, the

\NfJ J recurrence equations for the inbreeding coefficient
2 derived in this paper are useful for an exact predic-

(Nf'\ tion of inbreeding.
Coy (mm, To consider the effect of the exclusion of full-sib

mating on effective size, terms involving 1/N2 should
not be omitted in deriving equations for Ne. A
general expression for Ne derived from eqn 9, taking
1/N2 into consideration, is too complicated and not

(25)
given here. I only consider the four special cases
given in eqns 11, 12, 14 and 15. The effective sizes
for random mating and nonsib mating are
Ne = N+ and Ne = N+f, respectively, under
random selection, Ne = N— and Ne =
respectively, under equal family selection. Excluding
sib matings increases Ne by a value of 1/4 under
random selection and decreases Ne by 9/8 under
equal family selection compared with random
mating, irrespective of the census size. These results
are slightly different from those found for autosomal

'26 genes. For the case of random selection and full-sib' ' mating exclusion, the equation derived by Wright
(1951), Robinson & Bray (1965) and Jacquard
(1971) is Ne =N+2, which has been shown to be
incorrect and the corresponding equation should be
Ne = N+ 1 (Wang, 1995). Thus excluding full-sib

(27) mating increases Ne by a value of 1/2 (Ne = N+ 1/2
for random mating) under random selection,
whereas it decreases Ne by a value of one under
equal family size selection for autosomal genes
(Robinson & Bray, 1965; Wang, 1995). The effect of
sib mating exclusion on Ne (compared with random
mating) is slightly smaller under random selection

where c is the departure from Hardy—Weinberg
proportions in male individuals. When N1 = Nm = N/
2, eqn 25 also reduces to eqn 18 as expected. For a
large population with random mating, c = = 0,
eqn 25 reduces to eqn 21 replacing m and f for f and
m, respectively. For cases of Poisson distribution of
family size and minimal inbreeding in a large popu-
lation with random mating, eqn 25 reduces to

and

respectively. Eqn 27 was also derived by Caballero
(1995).

For independent Poisson distribution of family
size and minimal inbreeding, eqn 25 reduces to
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and slightly larger under equal family size selection
for X-linked genes than for autosomal genes.

For X-linked loci, males and females are of
different importance in determining the inbreeding
and effective size. This can be clearly seen from eqn
17. For example, if the number of male progeny
from each family is Poisson distributed and that
of female progeny is equal for each family, then
a2=ô2=1 O==0 and Ne=N, whereas
the opposite stipulation leads to Ne = N. Thus to
keep minimal inbreeding in control populations,
special stress should be laid on minimizing the varia-
tion in the number of female progeny per family.

It is interesting to compare eqns 23 and 24 with
the corresponding expressions for autosomal genes,
which are

4NmNf
Ne =

(1 +)(Nf+Nm)

(Caballero & Hill, 1992; Wang, 1996) and

l6NmNf
Ne

(3)Nt+(13)Nm
(Wang, 1996), respectively. For a Poisson distribu-
tion of family size, it can be found that effective size
for X-linked genes is smaller than that for autoso-
mal genes unless

7(1 +)Nm
Nf> when>—1.

1+9cc

The smaller the value of , the larger is the sex ratio
required for the effective size for an X-linked locus
to be greater than that for an autosomal locus.
When — , which may occur in a small popula-
tion with avoidance of close inbreeding, effective
size for an X-linked locus is always smaller than that
for an autosomal locus. For minimal inbreeding, the
situation is reversed. The effective size for X-linked
genes is larger than that for autosomal genes unless

(9+5)Nm
Nf> 5+9
From eqn 24 it can be seen that the smaller the
number of females (Ni>Nm), the larger the effective
size when x>0. When = 0, Ne = 9Nm/2, indepen-
dently of the number of females (Caballero, 1995).
When <0, the value of Ne increases with N1. Thus
for minimal inbreeding to be attained for an
X-linked locus, as few females as possible should be
used if close inbreeding, which results in a positive
value of , is carried out.

A comparison between eqns 28 and 29 with eqns
23 and 24 indicates that the effective size for popu-
lations with heterogametic males is always larger
than that with heterogametic females when Nf>Nm.
This is because there are more X-linked genes
(2Nf+Nm) for the first case than that for the second
(Nf+2Nm). Comparing eqns 28 and 29 with the
corresponding expressions for autosomal genes, we
find that effective size for an X-linked locus is
always smaller than that for an autosomal locus for a
Poisson distribution of family size, and when Ni>Nm
for minimal inbreeding. From eqn 29 it can be seen
that N is a monoincreasing and monodecreasing
function of Nf when —1/5 and c> — 1/5, respec-
tively. When c = —1/5, N. is independent of the
value of Nf.

The results for effective size for an X-linked locus
in a population with minimal inbreeding are inter-
esting and perhaps important from a practical point
of view. For large random mating populations( = 0), Caballero (1995) concluded that effective
size is independent of the number of females for
populations where males are the heterogametic sex
and that increasing the number of females may
actually decrease effective size for populations
where the heterogametic sex is female. The results
in this paper indicate that, in nonrandom mating
populations, as few females as possible for each
male should be used for maximum effective size
when c >0 and c> — 115 where the heterogametic
sex is male and female, respectively.
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