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Lee et a!. (1996) recently developed a method for interval estimation of the number of lethal
equivalents by using a hierarchical structure of likelihood functions. This hierarchical model
consists of two multinomial trials: one of the sampling process of the parents from the
population of interest, and the other for the survival of the offspring of the families obtained
by mating the parents. The method, initially developed for selfing and full-sib mating, is
extended here to include more general mating systems as well as mixtures of mating systems.
We applied it to human data sets for which confidence intervals were previously not available.
Our point estimates were close to previous ones, and the standard deviations were generally
quite small. Thus, even if debate over the meaning of the concept of lethal equivalents has not
been entirely resolved, our results showed that the previous estimates are at least statistically
meaningful.
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Introduction

In 1956, Morton et a!. defined the concept of lethal
equivalents, proposed a method to estimate it and
applied it to three human data sets then available.
The influence of this paper, called 'the classic paper
of the theory of genetic loads' by Cavalli-Sforza &
Bodmer (1971), on subsequent studies of deleterious
genes has been quite substantial. Although first used
on human populations (Morton et al., 1956; Morton,
1975; Rao & Inbaraj, 1977; Voge' & Motulsky, 1982;
Khlat, 1988), the proposed estimation method has
now been applied to a wide range of organisms,
including pine trees (Sorensen, 1969), willow trees
(Kang et a!., 1994), ferns (Klekowski, 1988), bees
(Kerr, 1975), and endangered animal species (Ralls
et a!., 1988). From their study, Morton et al.
concluded that 'the average person carries about
four to five genes which, if homozygous, could cause
conspicuous abnormality'. Later studies often led to
lower values, although values of the estimates varied
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greatly among populations. This variation was used
by some authors to question the validity of the
concept of lethal equivalents as well as the assump-
tions used in the model (Vogel & Motulsky, 1982).
However, even if the conditions of estimation had
been uniform, it was difficult to interpret the esti-
mates in the absence of a rigorous measure of varia-
bility. A maximum likelihood estimate of the
number of lethal equivalents can be obtained by a
weighted regression of mortality on inbreeding level,
F (for example, Morton et a!., 1956; Morton, 1960;
Chakraborty & Chakravarti, 1977; RaIls et a!., 1988).
This estimate, however, suffers from at least two
limitations: first, it is derived under the assumptions
required for regression models which may not be
relevant if our goal is to estimate the number of
lethal equivalents; secondly, when the number of
inbreeding levels is small and limited to a narrow
range of F values, which is often the case, the esti-
mate is not reliable. Therefore, a direct statistical
estimation method would be most useful.

More than 40 years have now passed, and the
debate on human genetic loads has abated; some
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discussion can be found only in the historial assess-
ment of the last decades (Gillespie, 1991; Wallace,
1991; Crow, 1993; Ewens, 1993). We wish to return
to the first estimates of Morton et a!. (1956) and ask;
how good are these estimates? Our purpose here is
to do just that, based on the interval estimation of
the number of lethal equivalents that is now avail-
able (Lee et a!., 1996). First, we recall the definition
of lethal equivalents and describe the method of Lee
et at. (1996) in detail for half-sib mating. Then we
extend that method to other mating designs and
various types of consanguineous marriages in
humans. We also suggest an estimation method for a
mixture of data sets from several different mating
designs (or different types of consanguineous
marriages). We illustrate our method with several
data sets from previous studies.

Estimation methods for the number of lethal
equivalents
The number of lethal equivalents represents the
magnitude of the overall effect of deleterious genes
(Morton et al., 1956; Cavalli-Sforza & Bodmer,
1971). In a diploid population, in the absence of
epistatsis, the number of lethal equivalents per
gamete is:

k= 1

where M is the number of loci with segregating
deleterious alleles, q. is the deleterious allele
frequency at the kth locus and Sk is the selection
coefficient. At the zygotic level, the number of lethal
equivalents is 2a; let us define E = 2a = 2sq. The
selection coefficient s is defined from the convention
that the probabilities of survival of dominant homo-
zygote, heterozygote, and recessive homozygote are
1, 1—hs, and 1—s, respectively, where h is the
coefficient of dominance.

The classical method (MCM for Morton—Crow—
Muller) of estimating lethal equivalents was derived
by defining the probability of eventual survival (S) of
an individual to be the product of the probabilities
of the individual surviving different agents that
could cause the mortality. This assumes that various
causes of mortality, such as lethal genes at different
loci and environmental effects, act independently.
Based on these assumptions, MCM derives a linear
relationship between log S and the inbreeding coeffi-
cient (F) so that

—log S =A+BF,

where A=Y.v+q2s+2q(1—q)sh, B=qs—
q2s—2q(1 —q)sh, and x represents environmental
causes of death. From calculating A and B, Morton
et al. (1956) approximated the number of lethal
equivalents (c), where t is the first term of B. The
MCM method assumes that the sampling is made
from a large population with large M and small q.
We note that if the original population is small or
inbred, this assumption does not hold, and this
method is likely to result in biased estimates because
such a logarithmic approximation in eqn 2 cannot be
assumed (Kang et a!., 1994). The MCM method
does not appear to lend itself to direct statistical
estimation of the number of lethal equivalents.

An alternative method (COMB for combinational
method), which uses a combinatorial expression of
the probability of mortality (Q), has been widely
used in the forest genetics literature for selfing
(Bishir & Namkoong, 1987) and full-sib mating
(Kang et al., 1992). Contrary to MCM, which makes
inferences about the entire population, the COMB
method makes inferences about a particular indivi-
dual; forest geneticists have used the average of the
individual numbers of lethal equivalents to make
inferences about the entire population.

Both MCM and COMB methods have been
adapted to permit the removal of environmental
causes of mortality (Bishir & Namkoong, 1987;
Savolainen et a!., 1992). Makov & Bittles (1986)
proposed an approach based on regression techni-
ques to examine the error distribution of estimates
of E obtained by modifying the model underlying
the MCM estimation method. Besides the question-
able genetic meaning of these alternative models,
such variation does not represent the actual devia-
tion of their estimate from the true value of E.
Recently, Lee et al. (1996) developed a method for
obtaining interval estimates of the number of lethal
equivalents by using a hierarchical structure of like-
lihood functions. This hierarchical model consists of
two multinomial trials: one for the sampling process
of the parents from the population of interest and
the other for the survival of the offspring of the
families obtained by mating the parents. This model
and its statistical aspects were described for two
commonly used mating systems in plant genetics,
selfing and full-sib, and environmental effects on
mortality were incorporated. Because of unobserv-
able individual genotypes in mating experiments and
the complexity of the corresponding likelihood func-
tion, Lee et at. (1996) used a variant of methods of
moments, marginalized methods of moments,
summing out the unobserved genotype variables and

(2) then evaluating the moment expectations, for

The Genetical Society of Great Britain, Heredity, 77, 209—216.

= skqk, (1)



NUMBER OF LETHAL EQUIVALENTS 211

obtaining their statistical estimates of the number of
lethal equivalents. This method is based on a large
number of independent families with the same
inbreeding level and under the same environment,
where the common environment effect is taken into
account by assuming that the mortality in a nonin-
bred control is entirely the result of environmental
causes; this can be extended to a more general situa-
tion of nonconstant environments by estimating
these effects from the noninbred control group of
each subpopulation (unpublished result).

Extension of the method to general single
mating systems
The same hierarchical model can be extended to
mating systems other than the selfing and full-sib
matings in Lee et al. (1996), including various
consanguineous marriages observed in human popu-
lations. The half-sib case, when mates have only one
common parent, will be used in the following to
illustrate how this can be achieved. The sampling
distribution of the parental generation can be
defined by the number of all possible combinations
of deleterious loci that can lead to a homozygous
offspring for any of these loci. Hence, for any given
locus, assuming that there are only two types of
alleles at each locus (a deleterious allele a and a
nondeleterious one A) the number of possible
combinations of loci carrying deleterious gene(s)
among the three parents is 26 (= 3—1, as there are
three possible genotypes, AA, Aa and aa, for each of
the three parents). However, among these 26
combinations, considering only two parental geno-
types (AA and Aa), only seven (= 2—1)
(m1, . .., m7) are relevant here. These seven combina-
tions of loci correspond to five situations: (i) the
three parents are heterozygous (m1), (ii) the
common parent as well as one of the nonshared
parents are heterozygous (m2 and m3), (iii) both
nonshared parents are heterozygous (m4), (iv) only
the common parent is heterozygous (m5), and (v)
only one of the nonshared parents is heterozygous
(m6 and m7). Sixteen other combinations can also
lead to homozygous offspring, but are not included
here because the frequency of homozygotes of
deleterious alleles, q2, is likely to be extremely low in
the population. The vector (m1, ...,m7) follows a
multinomial distribution with parameters M,
2(1_), 2(1_), 2(1_), (1_)2, (1_)2 and

— c)2 where

2q(1—q)
2

1—sq
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is the sampling frequency of a heterozygote (Aa)
from the population (Lee et al., 1994). These seven
combinations lead to the following deleterious allele
frequencies in the female and male gamete pools for
the half-sib mating: (, ), (, ), (, ), (, ), (, ),
(0, ) and (, 0). From these values the distribution
of the survival of the offspring can be derived. This
second distribution is a binomial with parameter Q,
where

Q = 1_(819)ml(11112)m2+m3(15116)m4+m51m6+m7. (3)

To obtain information about the parameters (and
the number of lethal equivalents), we calculate the
conditional expectations of the proportion of invi-
able offspring among half-sib families and then
marginalize this over the space of missing genotypes
by conditioning arguments. The marginal expecta-
tion of the proportion of deaths in thejth family,

= _L,

ni

can then be expressed as a function of E:

E1 —1 (1 1 ) 5 ,c2 3 ,c3\M,.1 —E/16
JJ — . 16" 48 54" e (4)

where n is the number of the planted offspring in
the jth family and d3 is the number of unviable
offspring among them. Similarly, the marginal vari-
ance of Q1 is approximated as (e_Ehlô_e_32S6))
/nj+e_32l6_e_E/8 (refer to Lee et al. (1996) for the
procedure of deriving these marginal expectations).

We may apply this approach directly in extending
Lee et a!. (1996) to more complex mating systems.
However, we note that, in such complex mating
designs, the number of possible combinations to be
considered in the sampling distribution of the
parents can rapidly become too numerous for the
derivation of marginal moments to be analytically
tractable. Furthermore, among the combinations to
be considered in the sampling of the parents, some
have a disproportionate effect on the estimates, in
part because of their higher frequency in the popula-
tion. In the half-sib case, the major contributor is
the m5 combination because only the common
parent is heterozygous in this case, which is the most
frequent and prevailing type of presence of deleteri-
ous alleles over all the other types. That is, from the
survival distribution in eqn 3, the mortality Q from
only m5 can be approximated by 1— ()m5.

Therefore, under the assumption of low deleteri-
ous allele frequencies, a good approximation of the
marginal moments can be obtained once we know
(i) the frequency of the major combination in the



212 J. K. LEE ETAL.

population, and (ii) the deleterious allele frequen-
cies in the male and female gamete gene pools
deriving from it. In the half-sib case, these are
(1 —4),
1/4 and 1/4, so that we can again derive the
approximate mortality of Q in eqn 3 by
Q 1_(1_(1/4)2)ms = 1-_(f)m5, where m5 follows a
binomial distribution with parameters M and
(1—), considering only the sampling of the
prevailing parent resulting in deleterious homozy-
gous offspring. These frequencies for other mating
systems are given in Table 1.

Assuming that the heterozygous individual
frequency of deleterious alleles () is very low
(usually, less than 0.01), we can obtain the asympto-
tic estimates of E from the mating designs in Table
1 using standard statistical transformation techni-
ques. Lee et al. (1996) show that these estimates are
consistent with the true value of E. For the half-sib
mating (stepbrother and stepsister mating) the esti-
mate adjusted by outcrossing (mating between unre-
lated individuals) for environmental effects on
mortality is:

Ehalfsib = — l6log(1 Qhalfsib) + l6log(1 OutcrOSS), (5)

where halfsjb, outcross are the sample means of family
mortality probabilities for the half-sib mating and
outcrossing experiments, respectively. The variance
of the half-sib estimate (5) can be approximated as

e16
var(E) 256 [( Pe _eE/256)/nh+e256 i] /NH

+256a,
where Pe is the mortality proportion for environ-
mental effects,

2 / Pee= ( 11N0
\(1 Pe)flo,/ /

is the variance of mortality attributable to environ-
mental effects, h, ñ0 are the harmonic means of the
numbers of offspring, and NH, N0 are the numbers
of families in half-sib and outcrossing experiments,
respectively. Formulae for the estimates of E and
their variances for the mating designs described in
Table 1 are given in Table 2.

Extension to a mixture of mating systems

In human populations, generally one has to consider
different types of mating simultaneously. Consider-
ing different matings as independent events, i.e.
there is no common ancestry, a linear combination
of all separate estimates can be used to obtain a
global estimate of the number of lethal equivalents:

Emix = w1E1+... +WkEk, (7)
where E1s are separate estimates for the k different
types of mating designs and w1s are constant weights
such that w1+... +Wk= 1 and w 0 for all
= 1, ..., k. Note that these k distinct estimates have

the common mean E and that variances c can be
expressed as in Table 2. The weights w1s are
obtained by, for instance, minimizing the variance of
Emix. In this case, using the method of Lagrange
multipliers, the solution of each w, under the
constraints described above is calculated as

, =kc'Ië, (8)
(6) where ê is the harmonic mean of cs, i.e. ë = k/c[1.

Then, the variance of the mixture estimate is
var(Emx) = 1/c11 =ë/k. We note that other (statis-

Table I Various mating designs: inbreeding coefficient, parental frequency of
the major combination resulting in deleterious homozygous offspring, and
deleterious gene frequencies in gene pools of progeny

Design F
Freq. of heterozy-
gotes in a parent

Gen

Male

e pool

Female Male x female

Selfing 1/2 1/2 1/2 1/4
Back-cross 1/4 (l_çe) 1/2 1/4 1/8
Full-sib 1/4 2(1 —) 1/4 1/4 1/16
Half-sib 1/8 (1 — 1/4 1/4 1/16
Uncle-niece 1/8 2(1—) 1/4 1/8 1/32
First-cousin 1/16 2(1 —) 1/8 1/8 1/64
1-cousin 1/32 2(1 —) 1/8 1/16 1/128
Second-cousin 1/64 2(1—) 1/16 1/16 1/256
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Design E Var(E)

Selfing —4 log(1 —) 16 [(ie / +eEfls
—

1]/N+
16

Back-cross —8log(1—) 64[(_8__eEh16 /n+e16_1l/N+64[\1Pe 1/ J

Full-sib —8 log(1 —) 64 [(' / +e6 —
1]IN+

64r

Half-sib
-

—16 log(1 —)
e16 / 1

256 I ( —e56 1 /n +e'256 —1 /N+ 256a
[\1Pe /1 ]

Uncle-niece
-

—16log(1—)
r/eElt6 \ / 1

25611 1 /ñ+e512_1 I/N+256cr
[\lPe ]

First-cousin
-

—32log(1—)
r/eEl32 \ / 1

10241 ( —e°48 /ñ+eE/2048_1 l/N+1024L\Pe 1/ J

1k-cousin

-
—64log(1—)

r/eE/64 \ / 1
40961 ( /ñ+e8192_l l/N+4096cL\Pe // J

Second cousin
—

—128 log(1 —
e128

16384 In +e3768 —ii IN+ 16384
L\Pe J

Note: = N= no. of families, n = harmonic mean of the no. of offspring of the N families, r =variance
attributable to environmental effects.

tically) desirable estimates such as maximum like-
lihood estimators of the w, are not feasible because
each estimate E, was derived by the marginalized
methods of moments, summing out the unobserved
genotype variables and then evaluating the expecta-
tions (Lee et al., 1996).

Application: how good are the MCM
estimates?

We analysed five data sets from the literature using
the previous method. Four of them are from Morton
et al. (1956), and the fifth is from Rao & Inbaraj
(1977). Because we do not know the family struc-
tures, we shall assume that two different births are
from two distinct nonconsanguineous families. The
first two data sets, Morbihan and Loir et Cher, are
from Catholic marriage dispensations issued during
1919—25 in two French departments; the following
two (Amer and Bemiss) are from infantile deaths
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from consanguineous marriages in early American
populations; the last one (Tamil Nadu) is from
gestation and infantile mortality data in Tamil Nadu,
South India (Table 3).

Estimates of the number of lethal equivalents and
their corresponding variances are given in Tables 4
and 5. The pooled estimate of E is the weighted
average of separate estimates of E, and the pooled
variance (second last column) is the harmonic mean
of the separate estimates divided by the number of
different mating types in each of the corresponding
data. These are derived as follows. Each separate
estimate and its variance can be obtained directly by
applying the formulae in Table 2. From these sepa-
rate variance estimates, we calculate weights i7', as
described in the previous section. The pooled esti-
mate of E is the weighted average of separate esti-
mates of E from several types of consanguineous
marriage data. For example, in Table 4 the pooled
estimates of E with respect to stillbirth and neonatal
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deaths are 2.17 and 1.17 for the two French popula-
tions; for infantile and juvenile deaths, these are
2.75 and 1.93, and for the total mortality they are
5.13 and 2.87. The pooled variance is the harmonic
mean of the separate variance estimates divided by
the number of different types of mating designs
(intrarelation marriage types). The separate esti-
mates of E from different marriage types of a popu-
lation are often found to be quite different. Usually,
the closest-relation mating design, first-cousin
marriage in Table 4, leads to the best precision for

the estimation. Estimates of fcousin data are
worse than those of second-cousin data because the
total number of observations for the 1k-cousin data
is smaller than for the latter. However, our pooled
estimate, by construction, will have a smaller vari-
ance than any separate estimates. We note that our
point estimates of E are very close to those of
Morton et al. (1956) derived by a weighted regres-
sion of the number of survivors on the inbreeding
coefficient (F); our estimates are twice the MCM
estimates because we consider E 'per individual'

Table 3 Consanguineous marriage and infantile mortality data from Morton et al. (1956) and Rao & Inbaraj (1977)

Population Uncle—niece First-cousin 1-cousin Second-cousin Unrelated

Morbihan
Neonatal deaths 51/461 3/78 23/309 72/1 628
Juvenile deaths 64/410 17/75 32/286 138/1556
Total 115/461 20/78 55/309 210/628

Loir et Cher
Neonatal deaths 18/282 6/105 11/240 36/1117
Juvenile deaths 32/264 1/99 17/229 60/1081
Total 50/282 7/105 28/240 96/1117

Amer
Deaths under age 20 years 113/672 211/1471 370/3184

Bemiss
Dying young 78/207 637/2778 85/513 134/837

Tamil Nadu
Neonatal (rural) 307/1308 430/1991 939/4449
Neonatal (urban) 83/371 219/989 884/4251
Total 390/1679 649/2980 1823/8700

Table 4 Marginalized moments estimates of the number of lethal equivalents, their 95% confidence intervals and twice the
MCM estimates for the Morbihan and Loir et Cher populations (under the assumption that each individual was obtained
from a different pair of parents)

Population

Separate estimates
Pooled

estimate
2 x MCM
estimateFirst-cousin 1-cousin Second-cousin

Morbihan
Neonataldeaths E±2â

i'
2.30±1.10

0.844
0±3.19

0.101
4.11±4.35

0.055
2.17±1.02 2.25

Juvenile deaths

Total

E±2
i',

E±2
i,

2.46± 1.45
0.912

4.76±1.82
0.902

10.51±8.06
0.030

10.12±8.60
0.040

3.30±5.74
0.058

7.41±7.20
0.058

2.75± 1.39

5.13±1.73

2.86

5.11

Loir et Cher
Neonatal deaths E±2d

i1,
1.06± 1.05

0.843
1.67±3.16

0.095
1.81±3.88

0.062
1.17±0.97 1.15

Juvenile deaths

Total

E±2
i,

E±2â
i"

2.31± 1.54
0.763

3.37±1.86
0.769

0±3.26
0.170
0±4.00

0.167

2.56±5.16
0.067

4.38±6.45
0.064

1.93± 1.34

2.87±1.63

1.82

2.96
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instead of the 'per gamete' they used.
We also analyse two data sets for early American

populations, Amer and Bemiss, which reported
infantile deaths from consanguineous marriages.
Because of uncertainty in the collection of these
data, we exclude some questionable parts of these
data sets such as mating data farther related than
second-cousin. Our estimates of E are 2.13 and 3.30
for the Amer and Bemiss populations, respectively.
Finally, we analyse the mortality data from consan-
guineous marriages of a population in South India
(Rao & Inbaraj, 1977); the mortality was observed
for both gestation and infantile periods. Compared
with the preceeding examples, our estimates of E for
these two, both rural and urban populations, are
very low. Because these populations have very high
rates of consanguineous marriages (not farther than
first-cousin marriages, 40.6%), most deleterious
genes in these populations may have been purged as
suggested by Kang et a!. (1994). Furthermore, the
death rate for the unrelated group of this case is
very high compared with those of the other cases, so
many genetic deaths may be confounded with the
environmental deaths. For comparison, we also show
the MCM estimates from the literature (last column,
Tables 4 and 5).

Conclusions

There is little use in having an estimate of a quantity
unless one can ask questions about it (Lewontin,
1966). Estimates of the number of lethal equivalents

were often given alone (for example, Morton, 1975;
Vogel & Motulsky, 1982) or accompanied by R2 or
f-tests (Morton, 1960; Rao & Inbaraj, 1977; RaIls et
al., 1988) because no direct estimation method of
the number of lethal equivalents was available. The
method presented here is a first step to remedy this.
Of course, because of the inherent complexity of the
problem, the method also has its limitations.
Notably, to minimize the calculations, we have
resorted to an asymptotic estimation procedure.
Consequently, a certain number of observations
(families) are needed to reach asymptotic conver-
gence. In general, this number has to be greater
than 30 (Lee et al., 1996).

Our point estimates of E are mostly similar to
those obtained through the MCM method. This is
hardly surprising for two reasons: (i) the assump-
tions are basically the same for both methods, and
(ii) in the computation of our estimates, we assume
that each individual is samplied from a distinct
family, so that our evaluation of each separate esti-
mate is equivalent to that of MCM. The variances
attached to each global estimate are fairly small,
although some of the separate estimates can be
rather large, as for 1k-cousins in the first data set.
The latter was almost certainly the result of the
small number of individuals for this level of inbreed-
ing, but generally, and as one would expect, the
higher the inbreeding level, the lower the variance.
Even if the pooled variance is small, we should note
that because we used a linear combination of sepa-
rate estimates minimizing the combined variance,

Table 5 Marginalized moments estimates of the number of lethal equivalents, their 95% confidence intervals and twice the
MCM estimates for the Arner, Bemiss, and Tamil Nadu populations (under the assumption that each individual was
obtained from a different pair of parents)

Population

Separate estimates
Pooled

estimate
2 x MCM
estimateUncle—niece First-cousin Second-cousin

Amer
Deaths under age 20 years E±2

l,
1.94± 1.18

0.658
2.41±1.64

0.342
2.13 2.06

Bemiss
Dying young E±2â, 4.78± 1.79

0.292
2.75±1.17

0.685
0.86±6.35

0.023
3.30±0.97 3.46

Tamil Nadu
Before age 1 year (rural) E±2&', 0.49±0.55

0.729
0.20±0.90

0.271
0.41 0.40

Before age 1 year (urban) E±2&
ti,

0.32±0.93
0.625

0.55±1.20
0.375

0.41±0.73 0.41

Total E±2&
ii',

0.47±0.46
0.702

0.336±0.71
0.298

0.428±0.39 *
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our combined estimate is greatly affected by the
separate estimate having the smallest variance,
usually the estimate from the closest-relation mating
design. We also note that in our evaluation of
Tables 4 and 5, we assumed that all individuals were
from distinct families (because we could not obtain
all the family structure of the data). Thus, we may
be underestimating these variances as equations
given in Table 2 indicate that increasing the number
of families is more effective in minimizing the vari-
ance than increasing the number of offspring in each
family. Because of these restrictions, applying our
approach directly to the human data sets previously
obtained may not be completely valid; but designing
a study fulfilling the requirements of the method
should not cause any particular problem. On the
contrary, because the method does not necessarily
require different levels of inbreeding, estimating the
number of lethal equivalents becomes easier.
Finally, as noted in Lee et at. (1996), our approach
provides consistent estimates of E and their vari-
ances can be expressed as functions of design
factors, number of families and number of offspring
in each family, so that we can control the precision
of our estimation by varying these experimental
factors.
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