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Complex segregation analysis of Gerbera
flower colour
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The distribution of hue (CIELAB colour notation) classes among flowers of the Davis population
of gerbera (Gerbera jatnesonii H. Bolus ex Hooker) appears bimodal. This suggests that the genetic
control of hue is determined by the segregation of a gene with large effect modified by additional
genes with smaller effects. Complex segregation analysis (CSA), routinely employed in human
genetic epidemiology, was used to study both qualitative and quantitative variation. CSA applies
pedigree analysis through the consideration of transmission probabilities to optimize likelihood
functions of various genetic models. Applying this technique to study flower hue of a sample repre-
senting generations 14, 15 and 16 of the Davis population, allowed identification of a putative
dominant major gene with genotypic values for the dominant homozygote, heterozygote and reces-
sive homozygote of 32, 32 and 71 degrees, respectively. This corresponds to the modes of the hue
frequency distribution for the population. The putative major gene represents 0.66 of the total var-
iation. The residual parent—offspring correlation (p0 =0.2) measures the genetic contribution to
the remainder of the variance.

Keywords: hue, major genes, pedigree analysis, quantitative traits, regressive models, statistical
genetics.

Introduction

Flower colour in gerbera is determined by pigments of
the flavonoid and carotenoid pathways (Valadon &
Mummery, 1967; Asen, 1984) but, because of the diffi-
culty in defining phenotypic colour classes (Vandoni,
1977), its variation has not been described successfully
by Mendelian segregation ratios. Random mating
populations of gerbera have a pattern of continuous
variation for flower colour suggesting the use of
biometrical genetic analysis to elucidate modes of
inheritance. However, the distributions for the colour
attributes hue and value in the Davis population of
gerbera appear bimodal (Tourjee et al., 1993), consist-
ent with the presence of a gene with major effect segre-
gating in a background of polygenic variation
(Falconer, 1989; Hoeschele, 1988). Therefore, the
conventional methods of segregation analysis and
biometrical analysis are not appropriate for analysing
flower colour variation in the Davis population.

The genetics underlying bimodal distributions has
been studied by a number of researchers. Harris (1910)
demonstrated a bimodal distribution for lamina
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number per inflorescence in Syndesmon thalictroides
Hoff mgg. and reviewed the literature concerning
bimodal variation. Sinnott (1932) described a bimodal
frequency distribution for a gourd-shape index in a
population of Cucurbita pepo L. He concluded that the
distribution derived from the segregation of both major
and minor factors, and described such populations as
complex. Resistance to the woolly apple aphis
(Eriosoma lanigerum Hausmn.) in the apple cultivar
'Northern Spy' (Malus domestica Borkh.) was
described as an example of complex inheritance
because it was believed that both major gene and poly-
genic effects were present (Crane et a!., 1936). Powers
(1950) discussed the roles of major genes and poly-
genes in determining the weight per locule in tomato
hybrids (Lycopersicum esculentum Mill.). Elkind et a!.
(1990) discussed the interaction of single genes with
polygenes and their effect on tomato fruit softness. The
recent literature concerning major gene and polygenic
models was reviewed by Mitchell-Olds & Bergelson
(1990).

Complex segregation analysis (CSA), first suggested
by Edwards (1960), provides a framework to investi-
gate complex variation and permits the interpretation
of genetic data in terms of both major and minor gene
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effects. Various applications of CSA have been
developed and employed successfully in human genetic
epidemiology (Elston & Rao, 1978; Iselius, 1988). It is
applicable also to any diploid cross-pollinated crop for
which it is feasible to maintain a pedigree (for example
gerbera, almonds (Prunus dulcis (Mill.) D.A. Webb),
carnations (Dianthus caryophyllous L.), onions (Allium
cepa L.) and red raspberries (Rubus idaeus L.), etc.).

The purpose of this study was to investigate the
genetic basis of flower colour variation in the Davis
population of gerbera through complex segregation
analysis of hue, and to detennine the relative effects of
major loci and minor genes as contributing factors to
this variation. A comparison of several genetic models
is made.

Materials and methods

Gerbera population and co/our measurements

Gerbera is a member of the Compositae and is a
heterozygous, diploid, cut-flower crop. The Davis
population has been randomly mated and grown as an
annual in the same greenhouse for 16 generations.
Plants were randomly assigned to locations within the
greenhouse. In generations 14, 15 and 16, 40 parents
have been selected from about 400 plants and inter-
mated via a disconnected factorial mating design
(NCII), with 10 parents per set. In these generations
selection has been based on an index that has included
yield of flowers and flower dry weight; selection has
not been practised on flower colour. This population
and its colour traits have been described more fully
elsewhere(Yu etal., 1991;Tourjee eta!., 1993).

Colour measurements of CIELAB 1976 hue angle,
chroma and value (McGuire, 1992) were obtained
using the Minolta (Ramsey, New Jersey) CR-200
chromameter. It is a tristimulus colour analyser for
measuring the reflective colours of surfaces. The CR-
200 has an 8 mm diameter aperture and uses diffuse
illumination from a pulsed xenon arc lamp with a 0
degree viewing angle. Measurements were made using
CIE illuminant C; the procedure is described in Tour-
jee et al. (1993). Colour data were collected on individ-
uals from generations 14, 15 and 16 of the Davis
population.

Normal probability plots provide a convenient diag-
nostic tool for assessing distributional assumptions
about data (Chambers et a!., 1983). They yield more
information than frequency distributions because they
directly compare a sample's distribution to a normal
probability function. These graphs are constructed by
plotting the normal quantiles of a data set against its
empirical quantiles. Normal quantiles are the normal

scores for a data set; Minitab (Penn State University,
University Park, PA) provides them as output from the
'Nscore' command. Empirical quantiles are the raw
data scores. Normal probability plots of data sampled
from a normal distribution will form a straight line.
Systematic departures from a straight line pattern
indicate that the theoretical distribution and data
distribution do not match (for example, a data distribu-
tion skewed to the left is revealed as a curve of decreas-
ing slope with increasing normal score, and data from a
mixture of distributions produce a sigmoidal-shaped
curve). Hoeschele (1988), demonstrated the use of nor-
mal probability plots to detect major genes inquantita-
tive traits.

CSA theory

CSA derives information from the structure of
pedigrees instead of comparing family means as in the
Elkind & Cahaner (1986) mixed model. Therefore, it is
suitable for both observational and experimental
studies. Using the existing pedigree structure of a
breeding programme obviates the need to construct a
population suitable for experimental analysis as
required by the Elkind—Cahaner model.

Pedigree analysis was developed by Elston &
Stewart (1971) and further refined by Cannings et a!.
(1978); its efficacy and robustness was demonstrated
by Go et a!. (1978). A recursive procedure is used to
peel off certain members of a pedigree successively
and, using transition matrices (Smith, 1976), collapse
the information derived from them onto a subset of the
remaining members. This procedure uses all of the
information from an extended pedigree rather than the
limited amount available for conventional segregation
analysis of sibship data. However, analysis of large
extended pedigrees may not be efficient because many
branches of the pedigree may not be segregating for the
gene of interest. Therefore, pedigrees of intermediate
size (namely 9—15 individuals) often have more statisti-
cal power to detect segregating genes than larger
extended pedigrees (Burns eta!., 1984).

Regressive models (Bonney, 1984) define residuals
from major gene effects (i.e. y x —p5; where x is the
phenotypic measure of an individual and Pg is the
appropriate genotypic mean) that are treated as
dependent random variables. Briefly, these models use
pedigree analysis to adjust the residuals of each
individual in a pedigree by a set of explanatory
variables, including major gene effects and the pheno-
types of ancestors, to produce a new set of uncorre-
lated variables. The general regressive model for
pedigrees of size n is:

z=y— (b1y1) —(b,2y2)
— ... — (b-iy
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where is the adjusted residual of an individual in a
pedigree (indexed i = 1 to n), y is the residual from the
major genotype (RMG) and the bs are the regression
coefficients required for adjusting variates. The
adjusted RMGs are independent of one another
assuming they follow a joint n-variate normal distribu-
tion. Residual genetic variation results in correlations
among the adjusted RMGs. Regressive models also
assume Hardy—Weinberg equilibrium, and the
independence of parameter estimation with pedigree
size and structure. The likelihoods derived from a
normal density function based on randomly sampled
pedigrees for these models are given by Bonney
(1984), and Demenais & Bonney (1989). Hypotheses
of genetic transmission can be modelled and tested
through maximum likelihood procedures.

Analysis and hypothesis testing

The segregation analysis for this study was performed
on an MS-DOS (Microsoft Corp., Redmond, WA) based
personal computer. All analyses used the REGC
program's class D model of the Statistical Analysis for
Genetic Epidemiology (SAGE) Release 2.1 computer
software package (Elston, Department of Biometry
and Genetics, Louisiana State University Medical
Center, New Orleans, LA). It is based on a regressive
model, utilizing the method of maximum likelihood to
perform pedigree analysis. Optimization of the likeli-
hood functions was achieved through the complete
direct search method (Sorant eta!., 1992).

Limitations of the algorithm used for segregation
analysis in the SAGE program restrict the types of
pedigrees that can be analysed (Tran et al., 1991).
Pedigrees may range in complexity from a set of full-
sibs to an extended pedigree covering many
generations and including collateral relatives. How-
ever, the program cannot process pedigrees that
contain more than one subpedigree or pedigrees with
inbreeding or mating loops (Tran eta!., 1991). Accord-
ingly, the NCII mating design of the Davis population
was subsampled for pedigrees that met the criteria of
the SAGE program. Three generations of the population
were randomly subsampled to obtain an adequate
sample size for CSA. The sample (n = 467 individuals)
included 25 pedigrees, each consisting of a half-sib
family, selected such that no two pedigrees were
related (relationships were not considered beyond and
including first cousin types). The pedigrees ranged in
size from seven to 29 individuals, and each contained
from two to four parents and offspring.

The parameters available for manipulation in the
REGC program to define genetic models are listed in
Table 1. Models were defined by holding some para-

Table I List of parameters available in the REGC program
used in this investigation

Parameter Description

qa Frequency of allele a at a single locus with a
and b alleles

r, I =aa, ab or bb; transmission probability for aa,
ab and bb genotypes
i=aa, ab or bb;meanforaa, abor bb
genotypes (i = aa&ab indicates that both

u genotypes have the same mean)
Residualz phenotypic variance

p i = fm, po or ss; residualz correlation between
mates, parent—offspring, and between siblings,
respectively

zresidual refers to effects remaining after adjustment for the
major gene.

meters constant while obtaining maximum likeithood
estimates of the others. The transmission parameters
(r1) measure the probabilities that each mating type
transmits a specified allele to an offspring. These
probabilities under a diploid single locus Mendelian
model are 1.0, 0.5 and 0.0 for the aa, ab and bb geno-
types, respectively.

Genetic models were tested that included the follow-
ing sources of variation: major gene, polygenic and
environmental effects (arbitrary, dominant and additive
models); only major gene effects (Mendelian single
locus or MSL model); polygenic and environmental
effects (no-major-gene model); and only environmental
effects (env. model). The arbitrary model restricts the r-
to Mendelian probabilities but maximum likelihood
estimates are obtained on all other parameters that are
included in the complete model; it places no restriction
on the location of the mean heterozygote phenotype
relative to the homozygote means. The dominant and
additive models are similar to the arbitrary model, but
assume the heterozygote mean is dependent and
appropriately located. The MSL model includes
estimates Of Iab' Pbb but assumes that the residual
correlations among relatives are 0. The no-major-gene
model does not consider the effects of a major locus;
therefore the transmission frequencies for each
'genotype' are set equal to the allele frequency (r =q a),

the three types of p1 replaced with a single population
mean, and estimates of the p1 are obtained. The
environmental model likewise sets r, q and has only
a population mean, but p0and are also fixed at 0.

The likelihood ratio test (LRT), utilizing the statistic
— 2(lnL), was used to compare complete with
restricted models (Edwards, 1978). The hypothesis
that a parameter included in a model is unnecessary is
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tested by subtracting —2lnL of the complete model
from — 2InL of the restricted model, where the
complete model obtains maximum likelihood estimates
of all the pertinent parameters and the restricted model
holds the parameters of interest constant. This differ-
ence asymptotically approaches a x2 distribution with
degrees of freedom equal to the difference in the
number of independent parameters of each model.
Akaike's information criterion (AIC), — 2(lnL ) +2
(number of parameters), was used to compare non-
hierarchical models (Akaike, 1974). The model pro-
viding the smallest AIC for a given data set best
describes the data based on goodness-of-fit and parsi-
mony.

Including T5b in the complete model provides a test
for Mendelian transmission when compared with a
restricted model that has this parameter externally
fixed at 0.5. A more stringent test obtains estimates of
all r,; however, as the true values for the homozygotes
are at the bounds (1.0 and 0.0, respectively), it is often
difficult to run this test without these parameters being
fixed at the boundaries (McGuffin & Huckle, 1990).
Strategies for inferring genetic control utilizing LRT
with pedigree analysis are reviewed in Khoury et a!.
(1993).

Polygenic variation can be measured by the residual
correlation between relatives (p0 and p) after the
effect of a major gene has been estimated. The residual
heritability is calculated as 2p0.The p estimate is the
correlation between full-sibs; full-sib families nested
within a half-sib family are considered as independent.

Results
The normal probability plots for hue are given in Fig.
1; each departs from a straight line pattern and follows
a sigmoidal-shaped curve. The shapes of the distribu-
tions for each generation are similar to the CSA sample
distribution (u = 38.2, a2 = 335.6). Therefore, the sub-
sampling procedure did not unduly bias the results.
Plants with hues greater than 48 degrees comprise
about 20 per cent of the population (Fig. 2); these
plants represent one of the modes of the distribution.

A comparison of the genetic models is given in Table
2. The estimates (and SE) of the transmission para-
meters for the general model were Tea = 0.99 0.03,
Tab=O.53±O.O5 and Tbb=O.26±O.08. The analysis
indicates that only the arbitrary and dominant models
fail to be rejected. The most parsimonious model, as

Fig. 1 Normal probability plots of hue
for generations 14, 15, 16, and the CSA
sample of the Davis population of
gerbera(n=438, 451, 516 and 467,
respectively).
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Fig. 2 Phenotypic frequency distribu-
tions of hue for generations 14, 15, 16,
and the CSA sample of the Davis popu-
lation of gerbera.

measured by the AIC, was the dominant model (the a
allele dominant to the b allele).

The parameter estimates for the dominant model
are shown in Table 3. The residual correlation between
mates is close to 0, indicating that mating was random.
The putative gene frequency estimate is 0.55, and the
homozygote means are estimated to be 31.5 and 70.5
degrees for the a and b alleles, respectively. Twice the
residual parent—offspring correlation is a measure of
narrow sense heritability, excluding the effects of the
putative major gene (Demenais & Bonney, 1989). This
data set provides an estimate of residual h2 = 0.38.

Discussion

The sigmoidal patterns displayed in Fig. 1 are diag-
nostic of samples that represent a mixture of two

Hue (degrees)

normal distributions (i.e. bimodality). Genetic
relationships among individuals are not used to pro-
duce these plots. Therefore, they may be used to sup-
port independently the pedigree-based results of CSA
(namely the location of the modes and their proportion
(Fig. 2) should be consistent with the frequency and
mean genotypic value of a gene with major effect
detected by CSA).

Except for Tb,, the CSA transmission parameter
estimates of the complete model coincide with
expected values under a Mendelian hypothesis. The Tbb
estimate may be affected by residual genetic variation,
i.e. there may be individuals in the sample homozygous
recessive (bb) for the major gene but having a
polygenic genotype at other loci producing the
dominant phenotype of the major gene. This would
cause the Tbb estimate to deviate from its expected
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Table 2 Likelihood ratio test (LRT) for models of hue in the Davis population of

gerbera (n =467; 25 pedigrees from generations 14, 15 and 16)

Parameters
Model estimated — 2lnL d.f. x2 P value AIC

Completez /1 aa' ab' bb' Oh
P fm, Ppo, q

3753.4

Arbitrary
Taa Tab, Tbb

iAaa,/Aab,Ubb Qph 3754.3 3 0.86 0.835 3770.3

Dominant
Pfm' P0' q

Maa,/bb, 3879.4 4 0.86 0.930 3768.3

Additive
P fm PP0, q

/Aaa,/Abb, Crph 3879.4 4 126.04 <0.001 3893.4

MSLX
P On, 9, p, q0

/aa'/ab,/bb 3807.7 5 54.28 <0.001 3819.7

Nomajor
i°fm' q0

taa,ph,Pm 3949.3 6 195.90 <0.001 3959.3

gene"
Env.'

p,Pgs
Maa' 7rph'Pfm 4040.4 8 286.97 <0.001 4046.4

H0, restricted model; HA,complete model.
See Table 1 for parameter key.
The complete model estimates of r are Taa 0.99, Tab =0.53, Tbb =0.26.

Arbitrary, additive and dominant models assume both polygenic and major gene
effects; they differ from one another in the placement of the heterozygote mean.
Mendelian single locus model; no residual correlation among relatives.
Assumes only polygenic and environmental variation.
Assumes only environmental variation, p,,0 and set to zero.

Table 3 Parameter estimates and their standard errors for
the dominant genetic model

Parameter

Dominant model

Estimate SE

q,
z

/taa&ab

/bb
0ph
Pfm

p,,,

0.55
.

70.5
112.6

0.04
0.19
0.41

0.04
.

1.60
11.21
0.126
0.087
0.072

z The means for the aa and ab genotypes are constrained to
be equivalent in the dominant model.

Mendelian probability. However, this deviation does
not cause the general model to provide a better fit than
a model with the transmission parameters fixed to
Mendelian expectations (for example the arbitrary and
dominant models).

The genetic models that exclude either major locus
or polygenic effects, or both, are not as satisfactory as
models that include these sources of variation (Table
2). This is true even when considering the AIC which

adds a penalty based on the number of parameters
included in a model.

The CSA results are consistent with both the
phenotypic distribution of hue and previous studies of
pigment chemistry in gerbera. The dominant model
provides estimates of Maa&ab 31.5 and /tbb 71.0
degrees which is consistent with the interpretation of
Fig. 2 as representing a bimodal distribution. The allele
frequency of a is 0.55, consistent with the relative
amounts of each mode depicted in Fig. 2 (assuming
Hardy—Weinberg equilibrium, the bb genotype
frequency is 0.2). These two modes correspond to the
red and yellow hues, respectively. It has been demon-
strated in gerbera that the reds are produced by
flavonoid pigments and the yellows by carotenoids
(Asen, 1984; Valadon & Mummery, 1967). These are
two distinct biochemical pathways. The putative major
gene may be controlling the expression of flavonoid
pigments which may mask the expression of carotenoid
genes.

Estimates of the phenotypic variance (a2 335.6)
and residual variance (a,,h = 112.6) of the dominant
model provide an estimate of the proportion of the
variance accounted for by the major gene,
Ug= a2— a0 (Demenais et al., 1990). The propor-
tion a,,/a2 = 0.66, measures the degree of influence
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the putative gene has on hue variability in the Davis
population. The remainder of the variance (ch) is
generated by genetic and environmental factors.

The and estimates of the dominant model
(Table 3) both indicate that a substantial amount of
residual genetic variation exists. This is also implied by
the increase in the AIC of the MSL model (Table 2).
The estimate for p, is significantly greater than the p,0
because dominance and epistasis inflate the
estimate whereas environmental heterogeneity reduces
the p0 estimate. The environmental heterogeneity may
result from measuring parents in different years than
their offspring were measured (because the population
was grown as an annual with one generation/year).

Complex segregation analysis provides geneticists
with the flexibility to define genetic models such that
quantitative and qualitative variation can be considered
simultaneously. Using pedigree information to inter-
pret patterns of inheritance provides additional flexi-
bility to analyse populations that were not specifically
constructed to study complex inheritance. This
approach was successful in understanding genetic
variation for flower hue in the Davis population of
gerbera. However, when applied to the colour attri-
butes chroma and value we were unable to reject the
complete model. This may be a consequence of genetic
heterogeneity or epistasis for segregating genes of these
traits. Genetic heterogeneity results when more than
one major gene is segregating for the trait of interest.
As the statistical model includes only the effects of one
major gene other major genes can distort the trans-
mission probability estimates resulting in lower likeli-
hoods for models constrained to Mendelian
transmission probabilities in comparison with the
complete model. Apparently, there is a gene segre-
gating for hue in the Davis population with a much
larger effect than other genes for this trait, but this
differential of effects is diminished for the colour attri-
butes chroma and value.
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