Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Geographical analysis of scorpion populations on habitat islands
Download PDF
Download PDF
  • Original Article
  • Published: 01 November 1995

Geographical analysis of scorpion populations on habitat islands

  • Tsunemi Yamashita1 &
  • Gary A Polis1 

Heredity volume 75, pages 495–505 (1995)Cite this article

  • 1149 Accesses

  • 11 Citations

  • Metrics details

Abstract

We examined the population structure of sand scorpions (Paruroctonus mesaensis) by performing genetic and morphological analyses. Sand scorpions were expected to show large genetic distances among populations because they are limited to sandy habitats. However, allozyme analysis showed only moderate genetic differentiation among populations. The morphological analysis showed a geographical association among regional sites. A positive association was found among genetic, morphological and geographical distance matrices. However, the morphological distance matrix showed a higher correlation value with geographical distance than with genetic distance. This result suggests that local environmental conditions may affect scorpion morphology more than they affect genetic structure among populations. The sand scorpion population structure can be described as one with gene flow among populations in the middle of the range and increased isolation along the range boundaries. The major mechanism of genetic exchange is probably sand corridors that periodically connect different sand dune systems. As the age of the North American Sonoran Desert may be less than 10 000 years, it is also possible that isolation has not existed long enough to differentiate the populations to a greater extent.

Similar content being viewed by others

Micro-endemic species of snails and amphipods show population genetic structure across very small geographic ranges

Article 22 March 2022

Ashley D. Walters, Daniel A. Trujillo & David J. Berg

Deep genetic structure at a small spatial scale in the endangered land snail Xerocrassa montserratensis

Article Open access 23 April 2021

Cristina Català, Vicenç Bros, … Marta Pascual

Genetic Diversity and Demographic History of Globe Skimmers (Odonata: Libellulidae) in China Based on Microsatellite and Mitochondrial DNA Markers

Article Open access 13 June 2019

Ling-zhen Cao & Kong-ming Wu

Article PDF

References

  • Albrecht, G H. 1980. Multivariate analysis and the study of form, with special reference to canonical variate analysis. Am Zool, 20, 679–693.

    Article  Google Scholar 

  • Betancourt, J L, Van Devender, T R, and Martin, P S. 1990. Synthesis and prospectus. In: Betancourt, J. L., Van Devender, T. R. and Martin, P. S. (eds) Packrat Middens: The Last 40,000 Years of Biotic Change, pp. 435–447. University of Arizona Press, Tucson.

    Google Scholar 

  • Carson, H L. 1990. Increased genetic variance after a population bottleneck. Trends Ecol Evol, 5, 228–230.

    Article  CAS  PubMed  Google Scholar 

  • Crosswhite, F S, and Crosswhite, C D. 1982. The Sonoran Desert. In: Bender, G. L. (ed.) Reference Handbook on the Deserts of North America, pp. 163–295. Greenwood Press, Westport, CT.

    Google Scholar 

  • Crouau-Roy, B. 1989. Population studies on an endemic troglobitic beetle: geographical patterns of genetic variation, gene flow and genetic structure compared with morphometric data. Genetics, 121, 571–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dillion, R T. Jr. 1984. Geographic distance, environmental difference, and divergence between isolated populations. Syst Zool, 33, 69–82.

    Article  Google Scholar 

  • Douglas, M E, and Endler, J A. 1982. Quantitative matrix comparisons in ecological and evolutionary investigations. J Theor Biol, 99, 777–795.

    Article  Google Scholar 

  • Ely, L L, Enzel, Y, Baker, V R, and Cayan, D R. 1993. A 5000-year record of extreme floods and climate change in the southwestern United States. Science, 262, 410–412.

    Article  CAS  PubMed  Google Scholar 

  • Gill, A E. 1980. Evolutionary genetics of California islands Peromyscus. In: Power, D. M. (ed.) The California Islands, pp. 719–743. Haagan, Santa Barbara, CA.

    Google Scholar 

  • Haradon, R M. 1983. Smetingurus, a new species of Parur-octonus Werner (Scorpiones, Vaejovidae). J Arachnol, 11, 251–270.

    Google Scholar 

  • Lamb, T, Avise, J C, and Gibbons, J W. 1989. Phylogeographic patterns in mitochondrial DNA of the desert tortoise (Xerobates agassizi), and evolutionary relationships among the North American gopher tortoises. Evolution, 43, 76–87.

    CAS  PubMed  Google Scholar 

  • Lessa, E P. 1990. Multidimensional analysis of geographic genetic structure. Syst Zool, 39, 242–252.

    Article  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • Murphy, R W, Sites, J W, JR., Buth, D G, and Haufler, C H. 1990. Proteins I: Isozyme electrophoresis. In: Hillis, D. M. and Moritz, C. (eds) Molecular Systematics, pp. 45–126. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Pasteur, N, Pasteur, G, Bonhomme, F, Catalan, J, and Britton-David, J. 1988. Practical Isozyme Genetics. Ellis Horwood, Chichester.

    Google Scholar 

  • Patton, J L, and Yang, S Y. 1977. Genetic variation in Thomomys bottae pocket gophers: macrogeographic patterns. Evolution, 31, 697–720.

    Article  PubMed  Google Scholar 

  • Polis, G A, and Farley, R D. 1979. Characteristics and environmental determinants of natality, growth and maturity in a natural population of the desert scorpion, Paruroctonus mesaensis (Scorpionidea: Vaejovidae). J Zool Lond, 187, 517–542.

    Article  Google Scholar 

  • Polis, G A, and Yamashita, T. 1991. The ecology and importance of predaceous arthropods in desert communities. In: Polis, G. A. (ed.) The Ecology of Desert Communities, pp. 180–222. University of Arizona Press, Tucson.

    Google Scholar 

  • Polis, G A, Myers, C A, and Ouinlan, M A. 1986. Burrowing biology and spatial distribution of desert scorpions. J Arid Env, 10, 137–146.

    Article  Google Scholar 

  • Preziosi, R F, and Fairbain, D J. 1992. Genetic population structure and levels of gene flow in the stream dwelling waterstrider, Aquarius (= Gerris) remigis (Hemiptera: Gerridae). Evolution, 46, 430–444.

    PubMed  Google Scholar 

  • Reyment, R A, Blackith, R E, and Campbell, N A. 1984. Multivariate Morphometries. Academic Press, New York.

    Google Scholar 

  • Richardson, B J, Baverstock, P R, and Adams, M. 1986. Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Academic Press, New York.

    Google Scholar 

  • SAS Institute. 1985. SAS User's Guide: Statistics, version 5 edition. Cary, NC.

  • Sbordoni, V, Allegrucci, G, and Cesaroni, D. 1991. A multidimensional approach to the evolution and systematics of Dolichopoda cave crickets. In: Hewitt, G. M., Johnston, A. W. B. and Young, J. P. W. (eds) Molecular Techniques in Taxonomy, pp. 171–199. NATO Series H. Cell Biology, 57. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Schiffman, S S, Reynolds, M L, and Young, F W. 1981. Introduction to Multidimensional scaling: Theory, Methods, and Applications. Academic Press, New York.

    Google Scholar 

  • Selander, R K, Smith, M H, Yang, S Y, Johnson, W E, and Gentry, J R. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud Genet VI Univ Texas Publ, 7103, 49–90.

    Google Scholar 

  • Sharp, R P. 1978. The Kelso Dune complex. In: Greeley, R., Womer, M. B., Papson, R. P. and Spudis, P. D. (eds) Aeolian Features of Southern California: A Comparative Planetary Geology Guidebook, pp. 54–63. NASA Office Planetary Geology, Washington, D.C.

    Google Scholar 

  • Smith, R S, and Patton, J H. 1988. Subspecies of pocket gophers: causal bases for geographic differentiation in Thomomys bottae. Syst Zool, 37, 163–178.

    Article  Google Scholar 

  • Sneath, P H, and Sokal, R R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.

    Google Scholar 

  • Stevens, J. 1986. Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum, NJ.

    Google Scholar 

  • Swofford, D L, and Selander, R B. 1981. BIOSYS-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered, 72, 281–283.

    Article  Google Scholar 

  • Waters, M R. 1983. Late Holocene lacustrine chronology and archaeology of ancient Lake Cahuilla, California. Quat Res, 19, 373–387.

    Article  Google Scholar 

  • Wayne, R K, George, S B, Gilbert, D, Collins, P W, Kovach, S D, Girman, D, and Lehman, N. 1991. A morphologic and genetic study of the island fox, Urocyon littoralis. Evolution, 45, 1849–1868.

    Article  PubMed  Google Scholar 

  • Werth, C R. 1985. Implementing an isozyme laboratory at a field station. Virginia J Sci, 36, 53–73.

    Google Scholar 

  • Wilkinson, L, Hill, M, and Vang, E. 1992. SYSTAT Statistics, Version 5.2 edn. SYSTAT, Evanston, IL.

    Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1978. Evolution and the Genetics of Populations, 4, Variability Within and Among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Yoshiyama, R M, and Sassaman, C. 1983. Morphological and allozymic variation in the stichaeid fish Anoplarchus purpurescens. Syst Zool, 32, 52–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biology, Box 1812-Station B, Vanderbilt University, Nashville, 37235, TN, USA

    Tsunemi Yamashita & Gary A Polis

Authors
  1. Tsunemi Yamashita
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gary A Polis
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, T., Polis, G. Geographical analysis of scorpion populations on habitat islands. Heredity 75, 495–505 (1995). https://doi.org/10.1038/hdy.1995.166

Download citation

  • Received: 14 March 1995

  • Issue Date: 01 November 1995

  • DOI: https://doi.org/10.1038/hdy.1995.166

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • allozymes
  • genetic distance
  • Mantel's test
  • morphological distance
  • scorpions
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity) ISSN 1365-2540 (online) ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Live Expert Trainer-led workshops
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2024 Springer Nature Limited