Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant-herbivore interactions

Abstract

Significant differences occur in the levels and types of aliphatic glucosinolates in leaves of plants of four Brassica oleracea populations in Dorset. Plants in grassland at St Aldhelm's Head and Winspit have high levels of 3-butenyl glucosinolate, whereas plants of an adjacent population growing on and along the top of cliffs at Kimmeridge have low levels of 2-hydroxy-3-butenyl, 2-propenyl and methylsulphinylalkyl glucosinolates. Plants growing in a variable habitat at Worbarrow Tout have intermediate levels. The differences in occurrence of individual glucosinolates result from allelic variation at four loci. The level of total aliphatic glucosinolates is under more complex genetic control, but is shown to be highly heritable. Allele frequencies at isozyme loci indicate that genetic variation for glucosinolate production is unlikely to have arisen or to be maintained by founder effects or genetic drift. It is suggested that there is selection for high levels of butenyl glucosinolates at St Aldhelm's Head and Winspit because of grazing by generalist herbivores, whereas there is selection for low levels of 2-hydroxy-3-butenyl and other non-butenyl aliphatic glucosinolates at Kimmeridge because of two factors. First, plants effectively escape from generalist herbivores because of physical aspects of the habitat and association with other plant species which provide physical and chemical defences. Thus there is selection for individuals which do not carry the hypothetical metabolic costs of glucosinolate biosynthesis. Secondly, herbivory by specialist cruciferous insects at Kimmeridge, which is enhanced because of the local abundance of B. nigra, selects for individuals which have low levels of 2-hydroxy-3-butenyl glucosinolates.

References

  1. Arus, P, and Orton, T J. 1983. Inheritance and linkage relationships of isozyme loci in Brassica oleracea. J Hered, 74, 405–412.

    CAS  Article  Google Scholar 

  2. Atsatt, P R, and O'Dowd, D J. 1976. Plant defense guilds. Science, 193, 24–29.

    CAS  Article  Google Scholar 

  3. Bailey, N J T. 1959. Statistical Methods in Biology. English Universities Press, London.

    Google Scholar 

  4. Bano, F. 1993. Glucosinolates in Arabidopsis. PhD thesis, University of East Anglia, Norwich, UK.

  5. Bartlet, E, Parsons, D, Williams, I H, and Clark, S J. 1994. The influence of glucosinolates and sugars on feeding by the cabbage stem flea beetle, Psylliodes chry-socephala. Entomologia exp appl, 73, 77–83.

    CAS  Article  Google Scholar 

  6. Birch, A N E, Griffiths, D W, and Macfarlane Smith, W H. 1990. Changes in forage and oilseed rape (Brassica napus) root glucosinolates in response to attack by turnip root fly (Delia floralis). J Sci Food Agric, 51, 309–320.

    CAS  Article  Google Scholar 

  7. Blight, M M, Pickett, J A, Wadhams, L J, and Woodcock, C M. 1989. Antennal responses of Ceutorhynchus assimilis and Psylliodes chrysocephala. In: Dale, M., Dewar, A., Froud-Williams, R. J., Hocking, T. J., Gar-eth Jones, D. and Rea, B. L. (eds) Aspects of Applied Biology, 23 Production and Protection of Oilseed rape and Other Brassica Crops, pp. 329–334. The Association of Applied Biologists, Wellesbourne, Warwick, U.K.

    Google Scholar 

  8. Bodnaryk, R R. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry, 31, 2671–2677.

    CAS  Article  Google Scholar 

  9. Chew, F S. 1988. Biological effects of glucosinolates. In: Cutler, H.G. (ed) Biologically Active Natural Products Potential Use in Agriculture, pp. 155–181. American Chemical Society Symposium, Washington DC.

    Google Scholar 

  10. Doughty, K L, Porter, A J L, Morton, A M, Kiddle, G, Bock, G A, and Wallsgrove, R. 1991. Variation in glucosinolate content of oilseed rape (Brassica napus) leaves. II. Response to infection by Alternaria brassicae. Ann appl Biol, 118, 469–477.

    CAS  Article  Google Scholar 

  11. Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv Phytochem, 10, 1–40.

    CAS  Google Scholar 

  12. Giamoustaris, A, and Mithen, R F. 1995. Modifying the leaf glucosinolate content of oilseed rape and its effect on its interaction with specialist and generalist pests. Ann Appl Biol, 126, 347–363.

    CAS  Article  Google Scholar 

  13. Glen, D M, Jones, H, and Fieldsend, J K. 1990. Damage to oilseed rape seedlings by the field slug Deroceras reticulatum in relation to glucosinolate concentration. Ann appl Biol, 117, 197–207.

    CAS  Article  Google Scholar 

  14. Goudet, J. 1995. Fstat V-1.2: A computer program to calculate. F-statistics. J Hered, in press.

  15. Hicks, K L. 1974. Mustard oil glucosides: Feeding stimulants for adult cabbage stem flea beetles, Phyllotreta cruciferae. Ann Entomol Soc Am, 67, 261–264.

    CAS  Article  Google Scholar 

  16. Hulme, P E. 1994. Seedling herbivory in grassland: relative impact of vertebrate and invertebrate herbivores. J Ecol, 82, 873–880.

    Article  Google Scholar 

  17. Koritsas, V M, Lewis, J A, and Fenwick, G R. 1989. Accumulation of indole glucosinolates in Psylliodes chrysocephala L.-infested or -damaged tissues of oilseed rape (Brassica napus L.). Experientia, 45, 493–495.

    CAS  Article  Google Scholar 

  18. Koritsas, V M, Lewis, J A, and Fenwick, G R. 1991. Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann appl Biol, 118, 209–221.

    Article  Google Scholar 

  19. Lamb, R J, Palaniswamy, P, and Bodnarkyk, R P. 1991. Selection of oilseed rape with resistance to flea beetles. In: Mcgregor, D. I. (ed.) Proceedings of the Eighth International Rapeseed Congress, 1, pp. 280–285. Groupe Consultatif International de Recherche sur le Colza and Canola Council of Canada, Saskatoon, Sask., Canada.

    Google Scholar 

  20. Louda, S, and Mole, S. 1991. Glucosinolates: Chemistry and ecology. In: Rosenthal, G. and Berenbaum, M. (eds.) Herbivores: Their Interactions with Secondary Plant Metabolites, 1, The Chemical Participants, pp. 123–164. Academic Press, London.

    Google Scholar 

  21. Macfarlane Smith, W H, Griffiths, D W, and Boag, B. 1991. Overwintering variation in glucosinolate content of green tissue of rape (Brassica napus) in response to grazing by wild rabbit (Oryctolagus cuniculus). J Sci Food Agric, 56, 511–521.

    Article  Google Scholar 

  22. Magrath, R, Herron, C, Giamoustaris, A, and Mithen, R. 1993. The inheritance of aliphatic glucosinolates in Brassica napus. PI Breed, 111, 55–72.

    CAS  Article  Google Scholar 

  23. Magrath, R, Morgner, M, Bano, F, Parkin, I, Sharpe, A, Lister, C, Dean, C, Turner, J, Lydiate, D, and Mithen, R. 1994. Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity, 72, 290–299.

    CAS  Article  Google Scholar 

  24. Mitchell, N D, and Richards, A J. 1979. Biological flora of the British Isles. No. 145. Brassica oleracea ssp. oleracea. J Ecol, 66, 1087–1096.

    Article  Google Scholar 

  25. Mithen, R. 1992. Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica, 63, 71–83.

    CAS  Article  Google Scholar 

  26. Mithen, R B G, and Fenwick, G R. 1987. Glucosinolates in wild and cultivated Brassica species. Phytochemistry, 26, 1969–1973.

    CAS  Article  Google Scholar 

  27. Mithen, R, Clarke, J, Lister, C, and Dean, C. 1995. Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity, 74, 210–215.

    CAS  Article  Google Scholar 

  28. Parkin, I, Magrath, R, Keith, D, Sharpe, A, Mithen, R, and Lydiate, D. 1994. Genetics of aliphatic glucosinolates II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity, 72, 594–598.

    CAS  Article  Google Scholar 

  29. Pfister, C A, and Hay, M E. 1988. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differeing mechanisms. Oecologia, 77, 118–129.

    Article  Google Scholar 

  30. Raybould, A F, Gray, A J, Lawrence, M J, and Marshall, D F. 1991. The evolution of Spartina anglica (Gramineae): origin and genetic variation. Biol J Linn Soc, 43, 111–126.

    Article  Google Scholar 

  31. Rodman, J E. 1980. Population variation and hybridization in sea-rockets (Cakile, Cruciferae): seed glucosinolate characters. Am J Bot, 67, 1145–1159.

    CAS  Article  Google Scholar 

  32. Rodman, J E, and Chew, F S. 1980. Phytochemical correlates of herbivory in a community of native and naturalised cruciferae. Biochem Syst Ecol, 8, 43–50.

    CAS  Article  Google Scholar 

  33. Simmonds, M S J, Blaney, W M, Mithen, R, Birch, A N E, and Lewis, J. 1994. Behavioural and chemosensory responses of the turnip root fly (Delia floralis) to glucosinolates. Entomologia exp appl, 71, 45–57.

    Article  Google Scholar 

  34. Snogerup, S, Gustafsson, M, and Von Bothmer, R. 1990. Brassica sect. Brassica (Brassicaceae) 1. Taxonomy and variation. Willdenowia, 19, 271–365.

    Google Scholar 

  35. Weeden, N F, and Wendel, J F. 1989. Genetics of plant isozymes. In: Soltis, D. E. and Soltis, P. E. (eds) Isozymes in Plant Biology, pp. 46–72. Chapman & Hall, London.

    Google Scholar 

  36. Weir, B S, and Cockerham, C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  37. Wendel, J F, and Weeden, N F. 1989. Visualisation and interpretation of plant isozymes. In: Soltis, D. E. and Soltis, P. E. (eds) Isozymes in Plant Biology, pp. 5–45. Chapman & Hall, London.

    Google Scholar 

  38. Wills, A B, and Wiseman, E M. 1980. Acid phosphatase isoenzymes of Brassica oleracea seedlings and their application to sib testing in E X. hybrids. Ann appl Biol, 94, 137–142.

    CAS  Article  Google Scholar 

  39. Wright, S. 1921. Systems of mating, I–V. Genetics, 6, 111–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R Mithen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mithen, R., Raybould, A. & Giamoustaris, A. Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant-herbivore interactions. Heredity 75, 472–484 (1995). https://doi.org/10.1038/hdy.1995.164

Download citation

Keywords

  • Brassica
  • coevolution
  • F-statistics
  • generalist herbivores
  • glucosinolates
  • specialist herbivores

Further reading

Search

Quick links