
l-/eredity75 (1995) 26—34
Genetical Society of Great Britain

Received 15 September 1994

Nonindependence of matches at different loci
in DNA profiles: quantifying the effect of
close relatives on the match probability
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In comparing a particular DNA profile with that from an unknown (but distinct) individual, matches
at different loci between the profiles will not be independent, even in a randomly mating
population, because of the presence in the population of relatives of the individuals. The paper
contains a theoretical analysis of the extent of this effect on the match probability, for profiling
techniques which separately probe different loci. Naive calculation using the product rule could
substantially understate the match probability. Past a certain point, the testing of additional loci
provides no more information than would be available in discriminating between sibs. The
correlation effect described here would be unimportant in criminal casework if close relatives of the
suspect, and in particular full-sibs, were excluded as possible culprits. In the absence of such
exclusions the current practice of effectively ignoring such relatives in presenting match probabili-
ties could be extremely prejudicial to a suspect, even in cases in which there is no direct evidence to
incriminate his/her relatives.
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Introduction

Forensic applications of DNA profiling typically
involve the comparison of a 'crime profile', obtained
from DNA taken from the scene of the crime, and a
'suspect profile', obtained from a particular suspect.
Differences between these two profiles that cannot be
attributed to experimental effects will usually result in
the exclusion of the suspect from further investigation.
On the other hand, if the two DNA profiles are judged
to match, this will be interpreted as evidence tending to
associate the suspect with the crime. The strength of
this evidence against the suspect depends on how
common the profile in question is. This is usually
measured by the match probability, the probability that
an unknown individual chosen from an appropriate
population will match the crime profile.

The calculation of the match probability, and the
validity of the assumptions which underpin the so-
called product rule, have attracted considerable
controversy. For a discussion, see the report of the
National Research Council (1992) and references
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therein. For a more recent review, and references, see
Roeder (1994). Much of the concern has centred on
the extent of nonindependence of allele possession at
particular loci (violations of Hardy—Weinberg equili-
brium) and across loci (linkage disequilibrium), owing
to the presence of stratification, and hence non-
random mating, within the human population. In such
circumstances the product rule, which assumes
independence within and between loci, is likely to
understate the chance of a match and hence to over-
state the strength of the evidence against a suspect.
Here we consider a separate issue. The assumption of
independence may overstate the chance of a match
even if the population is randomly mating.

In this paper we provide a quantitative analysis of
the qualitative argument stated briefly in Donnelly
(1992). Loosely speaking, it will initially be unlikely
that the chosen individual will be related to the suspect.
However, after the observation of matches at some
loci, it is relatively much more likely that the individ-
uals involved are related (precisely because matches
between unrelated individuals are unusual) in which
case matches observed at subsequent loci will be less
surprising. That is, knowledge of matches at some loci
will increase the chances of matches at subsequent loci,
in contrast to the independence assumption. Our
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purpose in this paper is to investigate the magnitude of
this effect. We do so by a theoretical analysis. The small
magnitude of the probabilities involved mitigates
against a direct empirical study.

Throughout, we will phrase the discussion in the
terms appropriate to criminal casework, describing the
individuals concerned as criminal and suspect. None-
theless, the analysis has implications more broadly.
The match probability concerns the matching of
distinct individuals. There has been considerable
discussion in the forensic context of the appropriate
choice of reference population (the population to
which the match probability applies); see for example
Roeder (1994). We do not address this issue here (for a
discussion, see Balding & Donnelly, 1995) assuming
instead that the population in question is specified.

Most current applications of DNA profiling involve
single locus probes of minisatellite or microsatellite
loci. Each probe used binds to a different locus, the loci
being chosen because of the variability they exhibit. In
current practice fragments are separated by electro-
phoresis and the alleles are located by probing a
Southern blot, or for some microsatellite-based tech-
niques, by flourescent dyes and an ABI sequencer after
PCR amplification. Differences between alleles primar-
ily reflect variation in the number of a tandemly
repeated sequence (see for example Jeffreys et al.,
1991a).

Quantification of the nonindependence effect at
issue here requires a rather intricate analysis of
genealogical history at each locus. The more technical
details are given in the Appendix. In the next section
we describe the framework for the analysis and present
numerical comparisons which illustrate the effect. The
final section of the paper discusses various practical
consequences.

We show below that the presence of close relatives
of the suspect in the relevant population can substan-
tially increase the match probability. Most of this effect
relates to the possibility that the criminal and suspect
are full-sibs. As a consequence, the concerns raised
here could be substantially avoided if full-sibs of the
suspect were excluded as possible culprits, either
through further DNA profiling or through more con-
ventional scientific or investigative means. It Would
thus be helpful if attempts at such exclusion were to
become routine in cases involving DNA evidence. We
note, however, that in some legal jurisdictions, lack of
co-operation from the relatives concerned could
severely hamper such attempts.

At present, cases regularly come to trial in which
close relatives of the suspect have not been excluded.
In some current practice, forensic scientists are explicit
that a reported match probability relates only to
unrelated individuals from the relevant population.
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They may add that related individuals are 'more likely'
to match, but do not usually try to allow for this quanti-
tatively. Unless close relatives of the suspect have been
excluded, the analysis below shows that a match
probability calculated using the product rule could
overstate the strength of the DNA evidence, possibly
substantially.

Of course it is well known that close relatives are
much more likely than unrelated individuals to have
matching DNA profiles. The NRC report (National
Research Council, 1992, p. 87) notes as a consequence
that 'whenever there is a possibility that a suspect is not
the perpetrator but is related to the perpetrator, this
issue should be pointed out to the court' and Evett
(1992) discusses the calculation of match probabilities
in Cases in which the defence specifically makes such a
claim. An important consequence of the analysis here
is that the effect can be important even in cases in which
there is no evidence to incriminate relatives of the
suspect, a point which does not seem to be fully appre-
ciated in practical casework.

Effect on the match probability

In criminal casework, the match probability relates to
the probability that a member of the reference popula-
tion will match the profile obtained from the crime
sample, and the probability will in general depend on
the multilocus genotype of the crime profile. Here, to
obtain a general conclusion, we will consider the
related probability (which we also call the match
probability) that two distinct individuals will have
matching DNA profiles, without the additional infor-
mation as to the genotype of one of the profiles.

We consider k unlinked loci which contribute to a
DNA profile, in a randomly mating population.
Throughout, we assume that the profiling technique
distinguishes the alleles at the different loci. This is the
case for the single locus probes of minisatellite loci in
current use, and for probes of particular microsatellite
loci. The quantitative analysis which follows does not
apply directly to multilocus Fobes, but the qualitative
argument for nonindependence will still apply.

We denote by g the probability that a pair of
paternal genes, taken from the same locus in different
individuals, is descended from the same individual in
the previous generation. This is the probability that the
individuals concerned have the same father. For ease of
exposition, we will assume that the probability that two
different individuals have the same mother is also g.
The value of g will depend on the demographic history
of the population. We will not make detailed assump-
tions about the demography, instead expressing our
results in terms of the parameter g. It can be shown
(Kingman, 1982) that under quite general demographic
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models, g will be of order N-1, where N is the popula-
tion size. We assume that the value of g is the same over
the recent history of the population, In contrast to most
population genetic studies, the analysis here depends
on segregation events only over the past few genera-
tions, so this assumption may be reasonable for many
human populations.

Some of the loci used for DNA profiling are known
to have extremely high mutation rates. In addition, the
mutation mechanism (that is, the way in which muta-
tion is likely to change repeat copy number) at these
loci is not well understood. We will denote by UT the
sum of the mutation probabilities (per gamete per
generation) at the k loci. We will assume that if there is
a mutation event since the most recent common
ancestor gene of two current genes, then those two
genes will not match. Ignoring in this way the possibi-
lity that the effects of several mutations on repeat copy
number will cancel .out, or that a mutation may change
repeat copy number in such a way that the resulting
alleles still fall within match guidelines, means that the
calculations below will understate the match probabi-
lity. As noted above, the nomndependence we discuss
is the consequence of ancestral history over only the
past few generations, so the error induced by the
assumption will be small.

For ease of exposition, we will assume that the
probability, M1, that a pair of alleles matches, is the
same at each of the k loci under consideration. Exten-
sion of the analysis to allow for different match pro-
babilities at each locus is straightforward. The analysis
proceeds in two stages. First we consider only the
paternal alleles at each of the loci in two distinct
individuals. We write Mk for the probability that the
parental alleles in these individuals match at each locus.
In view of our assumptions, this will also be the proba-
bility that the maternal alleles at each locus in two
distinct individuals match. The second stage uses these
probabilities to calculate match probabilities.

The analysis itself involves a rather intricate study of
the joint genealogical histories of the loci in question in
the two individuals. We present the conclusions here.
The details are given in the Appendix.

Equations I and 2 allow lower bounds on the
probabilities M8 (relating to the match of paternal
alleles at each locus between two individuals) to be
calculated in terms of the probability M1 for a single
locus. These may then be evaluated numerically.

The product rule would calculate Mk as M. Figure
1 illustrates the dependence of the bounds for M3 and
M4 on g for various values for M1. In each case, the
value of the product rule calculation is effectively that
at the left edge of the appropriate curve. For example,
at four loci with M1 =0.01 the product rule calculation

would give 10-8, The differences between the various
curves (which do allow for the presence of close rela-
tives in the population) and the product rule calcula-
tion (which does not) is most marked for larger values
of g, corresponding to relatively smaller population
sizes. The calculations in Fig. 1 (and in Fig. 2 below)
use 0.06, which appears plausible for four-locus
systems in current use (Brinkmann et al., 1991), but
their dependence on the exact value of /2T is slight.

The probability, say, that the paternal alleles
match and the maternal alleles match between two
different individuals at the k loci may be calculated
from the probabilities Mk. There is an additional corre-
lation effect because in human populations the condi-
tional probability, c say, that individuals who share one
parent in fact share both parents, is appreciable.
Equation 3 in the Appendix allows for this effect in
arriving at a lower bound for vt/k in terms of the
probabilities considered above.

In practice, it is not usually known which alleles at
each locus are maternal and which are paternal. The
probability that the k-locus genotype of two distinct
individuals will match is the sum over the probabilities
associated with each of the (2") possible assignments.
See eqn in the Appendix, which then allows lower
bounds for the match probability to be evaluated
numerically. The results are illustrated in Fig. 2, where
the probability of a match is plotted as a function of g
for various values of M1.

Figure 2 also shows (slanted arrows on the y-axis)
the value which would be calculated for the match
probability if the product rule were applied (2'M).
As an example of the magnitude of the effect, consider
a four-locus genotype involving alleles with 5 per cent
frequency in a population with effective size of about
10000 (i.e. k=4, M1=0.05, g104). The product
rule would calculate the probability of a match between
two distinct individuals as 6.25 x 10-10 whereas it
actually exceeds 2 X 10-v. The difference is even more
pronounced for rarer alleles: 1.6 X 10-15 vs. 10, for
alleles with a frequency of 1 per cent. Particularly for
larger values of g (smaller population sizes) and/or
small values of M1 (and hence extremely small match
probabilities using the product rule), the difference
between the match probability allowing for the
presence of relatives, and the calculation given by the
product rule, can be very substantial.

For the purposes of illustration, Fig. 2 uses the value
of 0.7 for c. The appropriate value will depend on, for
example, cultural aspects of the population in question
and will vary from population to population. (The
value of 0.7 may be reasonable, or possibly an under-
estimate, for UK or US populations; see for example
Fern (1984) or Spamer & Furstenberg (1987) and
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9 g
Fig. 1 The lower bound for Mk, the probability that paternal (or maternal) criminal and suspect alleles match at k loci, as a
function of the genealogical parameter g, for various values of the unconditional match probability M1: M1 =0.2 (—), M = 0.1
(- - -), M 0.05 ( ), M = 0.01 (——). Calculated from eqns 1 and 2 with u.= 0.06. With the conventional independence
assumption Mk is taken to be M. (a) k =3.(b) k =4.

references therein.) Increasing the value of c will
increase the match probability, and hence increase the
extent to which the product rule understates that
probability. The effect (in our model) is roughly linear
so that, for example, an increase from c =0.7 to
c = 0.84 will increase the lower bound in Fig. 2 for the
match probability by about 20 per cent.

The most extreme possibility, as far as the correla-
tions discussed here are concerned, occurs when the
criminal and suspect are full-sibs. In our model, the
probability of this is gc and in this case the chance that
all pairs of alleles at the loci in question are descended
from the same parental allele is 4. Thus the match
probability is at least (1 —24UT )gc/4'. This term is
actually quite close to the lower bounds evaluated in
Fig. 2, unless M1 is relatively large.

Discussion

Most of the differences between the product rule calcu-
lation and the calculation which allows for close rela-
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tives result from the possibility that the crinimal and
suspect are full-sibs. The problems arising from such
correlations could be largely avoided in criminal case-
work if full-sibs of the suspect were excluded as
possible culprits. Attempts to obtain such exclusions
do not seem to be routine in current investigative
procedures. Our analysis has shown that if full-sibs of
the suspect have not been excluded, presentation of a
match probability based on the product rule could
overstate, possibly substantially, the strength of the
DNA evidence.

It must also be remembered that the match probability
is not the probability that the suspect is innocent. The
relationship between the match probability and the
question of interest to a court, namely what is the
chance that this particular suspect is guilty of this
crime, involves a number of subtleties. For a detailed
analysis, see Balding & Donnelly (1995). One conse-
quence of such an analysis is that concerns about
assumptions underlying the product rule cannot be
dismissed because they 'do not make a small probabi-
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Fig. 2 Lower bounds for the probability of observing matches between criminal and suspect genotypes at the k loci as a
function of the genealogical parameter g, for various values of the unconditional match probability M1. M1 =0.2 (—), M1 =0.1
(- - -), M1 = 0.05 ( ), M1 = 0.01 (——). Calculated from eqns 3 and 4 with T= 0.06, c =0.7. The arrows on the y-axis
indicate the match probabilities calculated for each value of M1 using the product rule (i.e. (2M). (a) k =3, (b) k =4.

lity large'. Concerns about the correlation effect with
relatives cannot thus be ignored as not of practical
relevance simply because the actual values obtained in
Fig. 2 are still rather small for values of g which might
be thought relevant to particular cases. Indeed, Balding
& Donnelly (1995; see also Balding & Nichols, 1994)
show that regardless of the population size (and hence
of the value of g), in cases in which the evidence other
than the DNA match does not distinguish between the
suspect and several of her/his sibs for example, the
DNA evidence may not be sufficient for a conviction.
In other cases the effect of relatives will depend on the
other evidence, but it will often be seriously prejudicial
to the suspect to ignore them (Balding & Donnelly,
1995). Suspects themselves, and their defence lawyers
at trial, may be reluctant for obvious reasons to intro-
duce the possibility that one of their relatives is the true
culprit. In view of this it seems particularly important
for forensic scientists to allow for this effect when
originally presenting their evidence.

Our analysis has considered only randomly mating
populations. The correlation effect we describe will be
less marked in populations in which marriages between
close relatives occur less frequently than under random
mating, and more marked when close relatives marry
more frequently than under random mating. The
numerical difference between match probabilities
(which allow for relatedness effects) in these cases and
the random mating case we consider here is likely to be
small. As noted above, much of the effect here results
from the possibility that two members of the popula-
tion are full-sibs. This is not changed by inbreeding or
outbreeding.

The presence in the population of close relatives of
the suspect will induce correlations in structured
populations for the same reasons as in the unstructured
case. We do not give a full analysis, but note that
Balding & Nichols (1994) discuss the calculation of the
probability that the DNA profiles of two related
individuals will match, for various particular
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relationships, under certain assumptions about the
effect of population structure.

Several empirical studies (for example Weir, 1992;
Risch & Devlin, 1992a,b; see also Roeder, 1994) have
failed to detect evidence of nonindependence of
matches at various single locus probes. Detection of the
effects described here is unlikely to be feasible using
current data: the small magnitude of the probabilities
which must be compared, and the sizes of current data-
bases, make accurate comparison of, say, four-locus
match probabilities difficult. Such comparisons would
also be extremely sensitive to the numbers of close
relatives actually included in databases, an aspect in
which, for various reasons, the databases may not be
representative of the populations in question. That the
product rule calculation could differ from the match
probability in spite of the failure of hypothesis tests to
reject the independence assumption reinforces a point
made previously by Evett et at. (1993) that performing
statistical tests of various assumptions underlying the
product rule is not directly relevant. It is more appro-
priate to attempt to assess the magnitude and effect of
departures from the assumptions. As we noted above,
apparently 'small' discrepancies could be important in
particular cases.

It has been suggested that one way of overcoming
current criticisms in legal applications of DNA profi-
ling is simply to probe more loci (see for example the
report in Roberts, 1991). It follows from the analysis
above that past a certain point the additional probes
provide no more information than they would in
distinguishing between full-sibs. While they are thus
not uninformative, they may be substantially less dis-
criminating than initially thought.

The point at which the discriminating power of
additional probes diminishes depends on how informa-
tive the loci already tested are. The sharing of rare
alleles between profiles decreases the match probabi-
lity but it increases the correlation effect discussed
here. For example, if one were to exploit variability
within the repeat units at minisatellites (Jeffreys et al.,
199 ib) in addition to the variation in repeat number, a
single locus would be very informative, but a second
locus may convey vastly less additional information
than might be expected. In contrast, microsatellite loci
typically exhibit less variation in repeat copy number
than do minisatellites. More loci may be needed for
discriminating profiles, but the reduction in the infor-
mation content of subsequent probes will be less. This
may be a factor in the adoption of new profiling tech-
nologies. There are of course other issues involved,
including the cost of, and time required for, various
procedures, their robustness to the conditions of crime
samples, and variability and measurement errors in the
techniques used.
C The Genetical Society of Great Britain, Heredity, 75, 26—34.

Our purpose here has been to investigate quantita-
tively the effect on match probabilities of correlation
effects caused by the presence in the relevant popula-
tions of relatives of the suspect. The analysis has of
necessity been a theoretical one. The conclusion is that
the effect can be substantial.

It is not suggested that such an analysis should be
undertaken in connection with particular cases of
forensic identification. There are several reasons for
this. The first is that real populations are not randomly
mating and in any case the parameter g may not be
easy to assess. Furthermore, in a particular case the
relevant questions are different in an important respect
from those addressed above. Instead of asking 'what is
the probability that two individuals from the popula-
tion will match', we must ask the conditional question,
'what is the probability that a person chosen from the
population will match the particular profile left at the
scene of the crime, or equivalently, the particular
profile of the suspect'. In addition, information will
typically be available about the numbers of relatives of
various degrees possessed by the suspect, in contrast to
the analysis above which effectively averages these
numbers over the population as a whole. In this setting,
probabilities that particular relatives will match the
DNA profile of the suspect are relevant. These are
given in Balding & Nichols (1994). The method for
incorporating the effect of the other evidence (in a
manner consistent with the laws of probability) in parti-
cular cases, including available information about rela-
tives of the suspect who have not otherwise been
excluded, and for combining specific probabilities that
relatives of particular degrees will match, is described
in Balding & Donnelly(1995).
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Appendix
Our basic argument is a recursive one; we ask about
the ancestry, in the previous generation, of each of the
alleles in the profiles of the two individuals concerned.

As an illustration, consider the case of two loci, and
focus attention on the paternal alleles in each individ-
ual at these loci. For definiteness, we will call the two
individuals criminal and suspect. There are various
possible configurations for the ancestral alleles in the
previous generation.
1 It may be the case that suspect and criminal have
distinct fathers and that both paternal alleles in the
criminal originate from the same grandparent and both
paternal alleles in the suspect originate from the same
grandparent.

2 A second possibility is that both individuals have
distinct fathers but that the paternal alleles at the two
loci in the current generation in both individuals are
descended from more than two of their four grand-
parents.
3 Both individuals may have the same father and the
pairs of alleles in the two individuals at each locus are
descended from the same allele in the father.
4 Both individuals may have the same father but at
one or both loci, the relevant criminal allele is
descended from the father's maternal allele and the
suspect's allele from the father's paternal allele (or
conversely).
Figure 3 illustrates a particular example of each case.

Now consider the effect of each of these possibilities
on the possible matching at the two loci of the two pairs
of paternal alleles, one member of each pair being from
the criminal and one from the suspect. Throughout this
discussion we assume that identical alleles will match
and we focus on the case in which all of the alleles in
the current generation are descended without mutation
from the respective alleles in the previous generation.
Case 1 actually covers four different subcases corre-
sponding to whether the paternal criminal alleles are
both descended from his/her (paternal) grandfather or
both from his/her (paternal) grandmother and whether
the paternal suspect alleles are both descended from
the relevant grandfather or the relevant grandmother. If
criminal and suspect alleles are both descended from
the relevant grandfather, then the pairs of paternal
alleles in criminal and suspect will match if and only if
the pairs of paternal alleles in the criminal's father and
the suspect's father match. In other words, for this
genealogical history the situation is the same in the
previous generation and, conditional on this genealogy
and no mutation, the match probability is still M2. If
criminal and suspect alleles are both descended from
the relevant grandmother, then the pairs of paternal
alleles in criminal and suspect will match if and only if
the pairs of maternal alleles in the criminal's father and
the suspect's father match. Under our assumptions this
last event also has probability M2. In the other two
cases, the paternal alleles in one of the individuals will
be copies of their father's paternal alleles while those
from the other individual will be copies of their father's
maternal alleles. Conditional on this genealogy and no
mutation, they will match if and only if the paternal
alleles at the loci in question in one particular individ-
ual in the previous generation match the maternal
alleles at the loci in question in another particular
individual in the previous generation.

In case 2, the matching of the alleles at one locus will
depend on the genealogical history of one pair of
grandparents, while matching at the other locus will
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Fig. 3 Some possibilities in tracing
lineages back one generation with k =2
loci. The parental generation is repre-
sented above the current generation.
Pairs of alleles at each locus are shown
in rows (paternal on the left, maternal
on the right) and the alleles under con-
sideration in suspect and criminal are
marked with a cross. Lines link alleles
with the allele from which they are des-
cended in the previous generation. (a)
Chosen (paternal) criminal alleles are
all descended from the maternal allele
of the criminal's father and the chosen
(paternal) suspect alleles are all des-
cended from the maternal allele of the
suspect's father. (b) At one locus the
alleles in question are descended from
both paternal grandmothers, at the
other locus they are descended from
the criminal's paternal grandfather and
the suspect's paternal grandmother. (c)
Criminal and suspect have the same
father and the pairs of alleles in
question at the two loci are descended
from the same allele in the previous
generation. (d) Criminal and suspect
have the same father, but at one locus
the criminal allele in question is des-
cended from the father's paternal allele
while the suspect allele is descended
from the father's maternal allele.

depend on the genealogical history of a distinct pair of
grandparents. (Here distinct means that the pairs of
grandparents are not identical. It may be, however, that
one individual appears in both pairs.) We will see below
that in this case, matching events at the two loci are
effectively independent, so that conditional on this
genealogy and no mutation, the match probability is
M, as given by the product rule.

In case 3 both pairs of alleles will be identical. That
is, conditional on this genealogy and no mutation, the
match probability is 1.

Treatment of case 4 also involves consideration of
subcases. It may be that at one of the two loci, the
alleles in criminal and suspect are descended from the
same allele in the father, but that at the other locus, one
is descended from the maternal allele in the father and
one from the paternal allele. Conditional on this
genealogy and no mutation, the alleles at one locus are
sure to match, and those at the other will match with
probability M1, by the definition of M1 and the
assumption of random mating. In the other subcase, at
both loci the alleles in criminal and suspect are
descended one from the paternal allele in the father
and one from the maternal allele in the father. Condi-
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tional on this genealogy and on no mutation, the match
probability is the same as that in the final two subcases
treated under (1) above, namely the probability that the
paternal alleles at the loci in question in one particular
individual in the previous generation match the mater-
nal alleles at the loci in question in another particular
individual in the previous generation. (Our assumption
of random mating means that this probability is the
same as the probability that the paternal alleles match
the maternal alleles at the loci in question in a single
individual.)

We now extend the consideration of possible
ancestry for two loci to all k loci under consideration
and calculate the probabilities associated with the
various events of interest.

Consider the paternal pairs of alleles at each of the k
loci in suspect and criminal. Recall that we are writing
Mk for the probability that the alleles in each pair
match each other. We will write M1, / = 1, 2, ..., k, for
the probability that the paternal pairs of alleles match
at 1 loci. By assumption, this probability is the same for
any subset of / of the k loci. (Of course, these probabi-
lities also apply to matches of the maternal pairs of
alleles at each locus in the two individuals.)

0
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0 0
(a) 0

0

(b)0
0

(c)

(d)

000
00

00
00

0
0
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0
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0
0

00
00
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For a particular one of the alleles under considera-
tion there are two possibilities as to the paternal grand-
parent from which it is descended. Thus at a particular
locus there are four possible choices for the paternal
grandparents from which the pair of alleles (one in
each of suspect and criminal) is descended. Writing the
grandparent from which the suspect allele is descended
first, these are {grandfather, grandfather}, {grand-
mother, grandmother}, {grandfather, grandmother} and
grandmother, grandfather}. Denote by K1, K2, K3 and

K4, respectively, the number of the k loci for which
each of these choices of grandparents applies. At a
particular locus, the choice of grandparent for the
suspect allele is independent of that for the criminal
allele, and each of the four choices is equally likely. As
the loci are assumed unlinked, the choices associated
with different loci are independent. It follows that the
variables (K1, K2, K3, K4) are distributed multino-
mially with parameters k and (1/4, 1/4, 1/4, 1/4).

The key observation is that (under our assumptions,
notably random mating) if the suspect and criminal
have distinct fathers, for two loci associated with differ-
ent choices of grandparents the events that the pairs of
alleles match at each locus are effectively independent,
because they depend on the genealogical history of
nonidentical pairs of individuals. (They are still not
strictly independent in most population genetics
mOdels because the assumption of fixed or regulated
population size induces correlations in sibship sizes
between different families, but this effect will be of
order g2 (for example, Kingman, 1982) in such models
and we will ignore it. Also if the two loci make the same
choice of grandparent for one of the two individuals,
there will be correlations in the mutation processes in
their ancestry. This could in principle be incorporated
explicitly, but as the dependence on mutation rates is
small we will neglect it.) This ('effective') independence
applies to sets of loci associated with different choices
of grandparents, for the same reasons.

Now suppose (K1, K2, K3, K4) were known and that
suspect and criminal had different fathers. The K1 loci
associated with the choice {grandfather, grandfather}
will have alleles which match with probability MK1. (We
define M0 to take the value 1.) The K2 loci associated
with {grandmother, grandmother} will have alleles
which match with probability MK2. The K3 loci asso-
ciated with {grandfather, grandmother} will have alleles
which match with probability AK3, where At1 is defined
to be the probability that the maternal alleles at 1 of the
loci under consideration in one individual match the
paternal alleles at those loci in another individual. (We
define M0 to take the value 1.) Finally, the K4 loci asso-
ciated with {grandmother, grandfather} will have alleles
which match with probability 1121K4.These events for the

four sets of loci are independent, for the reasons given
above.

Now suppose (K1, K2, K3, K4) were known and that
suspect and criminal had the same father. In the
absence of mutation, all the pairs of alleles at the
K1 + K2 loci associated with the first two choices of
grandparents will be identical because each member of
the pair is descended without mutation from the same
allele in the previous generation. At the remaining
K3 + K4 loci, the pairs will match with probability
M3÷ K4

Averaging over the distribution of the random
variables (K1, K2, K3, K4) then gives

Mk (1 — 21uT)((1 —g)E(MK1MKZI7IK3MK4)

+ gE(MK3+K4)). (1)
The inequality here, and in eqns 2 and 3 below, arises
from our assumption that any mutation to any of the
alleles under consideration since the previous genera-
tion necessarily implies a nonmatch. This assumption
will cause our calculation to understate the true match
probability.

Similar arguments apply to the matching of maternal
alleles in one individual to paternal alleles in another,
except that in this case the alleles in any pair cannot
have a common ancestor in the previous generation.
Thus
Mk  (1 — 2,T)E(MK1MK2MK3IcIK). (2)
Successive application of eqns 1 and 2 allows the
probability Mk to be bounded in terms of M1 and the
parameters g and /T

In considering matches of paternal and maternal
pairs of alleles in criminal and suspect at each of the
loci there is the additional complication that the
individuals concerned may share zero, one or two
parents. Recall that we use c to denote the conditional
probability that individuals who share one parent also
share the other parent. An argument similar to the one
above, incorporating this additional complication, then
gives

k  (1 — 4T)[(1 — 2g + gc)(E(M1M2IIIJcJ))2
+ 2g( I — c)E(A21K3+ K4YE(MKlMK2MK3MK4)

+gc(E(AIK3+K4))2]. (3)
Finally, to calculate the probability that the genotypes
at each locus match between the individuals we must
sum over the probabilities associated with each of the
possible assignments of observed alleles as paternal or
maternal. This gives

kk
P (observed configuration of matches) .

i=O
(4)
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