Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. review
  4. article
Developments in the prediction of effective population size
Download PDF
Download PDF
  • Review
  • Published: 01 December 1994

Review Article

Developments in the prediction of effective population size

  • Armando Caballero1 

Heredity volume 73, pages 657–679 (1994)Cite this article

  • 5789 Accesses

  • 431 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Effective population size is a key parameter in evolutionary and quantitative genetics because it measures the rate of genetic drift and inbreeding. Predictive equations of effective size under a range of circumstances and some of their implications are reviewed in this paper. Derivations are made for the simplest cases, and the inter-relations between different formulae and methods are discussed.

Article PDF

References

  • Avery, P J. 1984. The population genetics of haplo-diploids and X-linked genes. Genet Res, 44, 321–341.

    Google Scholar 

  • Barton, N H. 1993. The probability of fixation of a favoured allele in a subdivided population. Genet Res, 62, 149–157.

    Google Scholar 

  • Barton, N H, and Charlesworth, B. 1984. Genetic revolutions, founder effects and speciation. Ann Rev Ecol Syst, 15, 133–164.

    Article  Google Scholar 

  • Begon, M, Krimbas, C B, and Loukas, M. 1980. The genetics of Drosophila subobscura populations. XV. Effective size of a natural population estimated by three independent methods. Heredity, 45, 335–350.

    Article  Google Scholar 

  • Briscoe, D A, Malpica, J M, Robertson, A, Smith, G J, Frankham, R, Banks, R G, and Barker, J S F. 1992. Rapid loss of genetic variation in large captive populations of Drosophila flies. Implications for the genetic management of captive populations. Conserv Biol, 6, 416–425.

    Google Scholar 

  • Bulmer, M G. 1980. The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford.

    Google Scholar 

  • Burrows, P M. 1984a. Inbreeding under selection from unrelated families. Biometrics, 40, 357–366.

    Google Scholar 

  • Burrows, P M. 1984b. Inbreeding under selection from related families. Biometrics, 40, 895–906.

    Google Scholar 

  • Caballero, A. 1994. On the effective size of populations with separate sexes, with particular reference to sex-linked genes. Genetics, (in press).

  • Caballero, A, and Hill, W G. 1992a. Effective size of non-random mating populations. Genetics, 130, 909–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero, A, and Hill, W G. 1992b. A note on the inbreeding effective population size. Evolution, 46, 1969–1972.

    PubMed  Google Scholar 

  • Chesser, R K, Rhodes, O E, Sugg, D W, and Schnabel, A. 1993. Effective sizes for subdivided populations. Genetics, 135, 1221–1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chia, A B, and Pollak, E. 1974. The inbreeding effective number and the effective number of alleles in a population that varies in size. Theor Pop Biol, 6, 149–172.

    CAS  Google Scholar 

  • Choy, S C, and Weir, B S. 1978. Exact inbreeding coefficients in populations with overlapping generations. Genetics, 89, 591–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockerham, C C. 1969. Variance of gene frequencies. Evolution, 23, 72–84.

    Article  PubMed  Google Scholar 

  • Crow, J F. 1954. Breeding structure of populations. II. Effective population number. In: Kempthorne, O., Bancroft, T. A., Gowen J. W., and Lush, J. L. (eds) Statistics and Mathematics in Biology, pp. 543–556. Iowa State College Press, Ames, IA.

    Google Scholar 

  • Crow, J F, and Denniston, C. 1988. Inbreeding and variance effective population numbers. Evolution, 42, 482–495.

    PubMed  Google Scholar 

  • Crow, J F, and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Crow, J F, and Morton, N E. 1955. Measurement of gene frequency drift in small populations. Evolution, 9, 202–214.

    Google Scholar 

  • Emigh, T H, and Pollak, E. 1979. Fixation probabilities and effective population numbers in diploid populations with overlapping generations. Theor Pop Biol, 15, 86–107.

    Google Scholar 

  • Ethier, S N, and Nagylaki, T. 1980. Diffusion approximations of Markov chains with two time scales and applications to population genetics. Adv Appl Prob, 12, 14–49.

    Google Scholar 

  • Ewens, W J. 1979. Mathematical Population Genetics. Springer, Berlin.

    Google Scholar 

  • Ewens, W J. 1982. On the concept of effective population size. Theor Pop Biol, 21, 373–378.

    Google Scholar 

  • Falconer, D S. 1989. Introduction to Quantitative Genetics, 3rd edn. Longman, Harlow, Essex.

    Google Scholar 

  • Felsenstein, J. 1971. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics, 68, 581–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, R A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb, 52, 399–433.

    Google Scholar 

  • Fisher, R A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R A. 1939. Stage of development as a factor influencing the variance in the number of offspring, frequency of mutants and related quantities. Ann Eugen, 9, 406–408.

    Google Scholar 

  • Frankham, R. 1994. Conservation of genetic diversity for animal improvement. Proc 5th World Cong Genet Applied to Lives Prod, 21, 385–392.

    Google Scholar 

  • Gallego, A, and Caballero, A. 1990. The cumulative effect of artificial selection on the reduction of population effective size. Experimental and simulated data. J Anim Breed Genet, 107, 180–187.

    Google Scholar 

  • Gallego, A, and Garcia-Dorado, A. 1986. Evolution de l'effectif génétique de lignées de Drosophila melanogaster soumises à une sélection artificielle. Génét Sél Évol, 18, 249–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghai, G L. 1969. Structure of populations under mixed random and sib mating. Theor Appl Genet, 39, 179–182.

    CAS  PubMed  Google Scholar 

  • Gowe, R S, Robertson, A, and Latter, B D H. 1959. Environment and poultry breeding problems. 5. The design of poultry control strains. Poultry Sci, 38, 462–471.

    Google Scholar 

  • Gregorius, H-R. 1991. On the concept of effective number. Theor Pop Biol, 40, 269–283.

    CAS  Google Scholar 

  • Haldane, J B S. 1924. A mathematical theory of natural and artificial selection. II. The influence of partial self-fertilisation, inbreeding, assortative mating, and selective fertilisation on the composition of Mendelian populations, and on natural selection. Proc Camb Phil Soc, (Biol Sci), (later Biol Rev), 1, 158–163.

    Google Scholar 

  • Haldane, J B S. 1939. The equilibrium between mutation and random extinction. Ann Eugen, 9, 400–405.

    Google Scholar 

  • Hedrick, P W, and Cockerham, C C. 1986. Partial inbreeding: equilibrium heterozygosity and the heterozygosity paradox. Evolution, 40, 856–861.

    PubMed  Google Scholar 

  • Hill, W G. 1972a. Estimation of genetic change. I. General theory and design of control populations. Anim Breed Abstr, 40, 1–15.

    Google Scholar 

  • Hill, W G. 1972b. Effective size of populations with overlapping generations. Theor Pop Biol, 3, 278–289.

    CAS  Google Scholar 

  • Hill, W G. 1979. A note on effective population size with overlapping generations. Genetics, 92, 317–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, W G. 1985a. Effects of population size on response to short and long term selection. J Anim Breed Genet, 102, 161–173.

    Google Scholar 

  • Hill, W G. 1985b. Fixation probabilities of mutant genes with artificial selection. Génét Sél Évol, 17, 351–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, W G. 1986. Population size and design of breeding programmes. Proc 3rd World Cong Genet Applied to Lives Prod, 12, 245–256.

    Google Scholar 

  • James, J W. 1962. The spread of genes in random mating control populations. Genet Res, 3, 1–19.

    Google Scholar 

  • James, J W, and McBride, G. 1958. The spread of genes by natural and artificial selection in a closed poultry flock. J Genet, 56, 55–62.

    Google Scholar 

  • Johnson, D L. 1977. Inbreeding in populations with overlapping generations. Genetics, 87, 581–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, L P. 1969. Effect of artificial selection on rates of inbreeding in populations of Drosophila melanogaster. 1. Effect on early generations. Aust J Biol Sci, 22, 143–155.

    CAS  PubMed  Google Scholar 

  • Kimura, M. 1963. A probability method for treating inbreeding systems, especially with linked genes. Biometrics, 19, 1–17.

    CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kimura, M, and Crow, J F. 1963a. The measurement of effective population number. Evolution, 17, 279–288.

    Google Scholar 

  • Kimura, M, and Crow, J F. 1963b. On the maximum avoidance of inbreeding. Genet Res, 4, 399–415.

    Google Scholar 

  • Latter, B D H. 1959. Genetic sampling in a random mating population of constant size and sex ratio. Aust J Biol Sci, 12, 500–505.

    Google Scholar 

  • Lande, R, and Barrowclough, G F. 1987. Effective population size, genetic variation, and their use in population management. In: Soulé, M. E. (ed.) Viable Populations for Conservation, pp. 87–123. Cambridge University Press, Cambridge.

    Google Scholar 

  • Li, C C. 1976. First Course in Population Genetics. Boxwood, Pacific Grove, CA.

    Google Scholar 

  • Lush, J L. 1947. Family merit and individual merit as bases for selection. Am Nat, 81, 241–261, 362–379.

    Google Scholar 

  • Malécot, G. 1948. Les Mathématiques de l'Hérédité. Masson et Cie, Paris.

    Google Scholar 

  • Malécot, G. 1951. Un traitment stochastique des problémes linéaires (mutation, linkage, migration) en génétique de population. Ann Univ Lyon, Sci, Sec, A, 14, 79–117.

    Google Scholar 

  • Milkman, R. 1978. Selection differentials and selection coefficients. Genetics, 88, 391–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, P A P. 1962. The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

    Google Scholar 

  • Moran, P A P, and Watterson, G A. 1959. The genetic effects of family structure in natural populations. Aust J Biol Sci, 12, 1–15.

    Google Scholar 

  • Motro, U, and Thompson, G. 1982. On heterozygosity and the effective size of populations subject to size changes. Evolution, 36, 1059–1066.

    PubMed  Google Scholar 

  • Nagylaki, T. 1981. The inbreeding effective population number and the expected homozygosity for an X-linked locus. Genetics, 97, 731–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagylaki, T. 1992. Theoretical Population Genetics. Springer, Berlin.

    Google Scholar 

  • Nei, M, and Murata, M. 1966. Effective population size when fertility is inherited. Genet Res, 8, 257–260.

    CAS  PubMed  Google Scholar 

  • Nei, M, and Tajima, F. 1981. Genetic drift and estimation of effective population size. Genetics, 110, 495–511.

    Google Scholar 

  • Nunney, L. 1991. The influence of age structure and fecundity on effective population size. Proc R Soc B, 246, 71–76.

    CAS  Google Scholar 

  • Nunney, L. 1993. The influence of mating system and overlapping generations on effective population size. Evolution, 47, 1329–1341.

    PubMed  Google Scholar 

  • Nunney, L, and Campbell, K A. 1993. Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol, 8, 234–239.

    CAS  PubMed  Google Scholar 

  • Nunney, L, and Elam, D R. 1994. Estimating the effective size of conserved populations. Conserv Biol, 8, 175–184.

    Google Scholar 

  • Orive, M E. 1993. Effective population size in organisms with complex life-histories. Theor Pop Biol, 44, 316–340.

    CAS  Google Scholar 

  • Pérez-Enciso, M, Fernando, R L, and Gianola, D. 1992. The use of the uncertain relationship matrix for computing inbreeding effective population size. Proceedings of the 43rd Meeting of the European Association of Animal Production, p. 264. Madrid.

  • Pollak, E. 1977. Effective population numbers and their interrelations. Proceedings of the Washington State University Conference on Biomathematics and Biostatistics, pp. 115–144. Department of Pure and Applied Mathematics, Washington State University, Spokane, WA.

    Google Scholar 

  • Pollak, E. 1980. Effective population numbers and mean times to extinction in dioecious populations with overlapping generations. Math Biosci, 52, 1–25.

    Google Scholar 

  • Pollak, E. 1987. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics, 117, 353–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak, E. 1988. On the theory of partially inbreeding finite populations. II. Partial sib mating. Genetics, 120, 303–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak, E. 1990. The effective population size of an age-structured population with a sex-linked locus. Math Biosci, 101, 121–130.

    CAS  PubMed  Google Scholar 

  • Robertson, A. 1961. Inbreeding in artificial selection programmes. Genet Res, 2, 189–194.

    Google Scholar 

  • Robertson, A. 1964. The effect of nonrandom mating within inbred lines on the rate of inbreeding. Genet Res, 5, 164–167.

    Google Scholar 

  • Robertson, A. 1965. The interpretation of genotypic ratios in domestic animal populations. Anim Prod, 7, 319–324.

    Google Scholar 

  • Santiago, E, and Caballero, A. 1994. Effective size of populations under selection. Genetics (in press).

  • Templeton, A R. 1980. The theory of speciation via the founder principle. Genetics, 94, 1011–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ugarte, E, Gallego, A, and Caballero, A. 1990. The prediction of effective size in selected populations. Investigación Agraria: Productión y Sanidad Animales, 5, 17–23.

    Google Scholar 

  • Waples, R S. 1989. A generalized approach for estimating effective population size from changes in allele frequency. Genetics, 121, 379–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woolliams, J A, Wray, N R, and Thompson, R. 1993. Prediction of long-term contributions and inbreeding in populations undergoing mass selection. Genet Res, 62, 231–242.

    Google Scholar 

  • Wray, N R, and Thompson, R. 1990. Predictions of rates of inbreeding in selected populations. Genet Res, 55, 41–54.

    CAS  PubMed  Google Scholar 

  • Wray, N, Woolliams, J A, and Thompson, R. 1990. Methods for predicting rates of inbreeding in selected populations. Theor Appl Genet, 80, 503–512.

    CAS  PubMed  Google Scholar 

  • Wray, N R, Woolliams, J A, and Thompson, R. 1994. Prediction of rates of inbreeding in populations undergoing index selection. Theor Appl Genet, 87, 878–892.

    CAS  PubMed  Google Scholar 

  • Wright, S. 1922. Coefficient of inbreeding and relationship. Am Nat, 56, 330–338.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16, 97–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1933. Inbreeding and homozygosis. Proc Natl Acad Sci USA, 19, 411–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1938. Size of population and breeding structure in relation to evolution. Science, 87, 430–431.

    Google Scholar 

  • Wright, S. 1939. Statistical genetics in relation to evolution. Exposés de Biométrie et de Statistique Biologique. Herman & Cie, Paris, France.

    Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations, vol 2, The Theory of Gene Frequencies. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Yoo, B H. 1980. Long-term selection for a quantitative character on large replicate populations of Drosophila melanogaster. 5. The inbreeding effect of selection. Aust J Biol Sci, 33, 713–723.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK

    Armando Caballero

Authors
  1. Armando Caballero
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caballero, A. Developments in the prediction of effective population size. Heredity 73, 657–679 (1994). https://doi.org/10.1038/hdy.1994.174

Download citation

  • Received: 09 March 1994

  • Issue Date: 01 December 1994

  • DOI: https://doi.org/10.1038/hdy.1994.174

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • heterozygosity
  • inbreeding
  • nonrandom mating
  • population numbers
  • random genetic drift

This article is cited by

  • Large effective size as determinant of population persistence in Anostraca (Crustacea: Branchiopoda)

    • Lucía Sainz-Escudero
    • Marta Vila
    • Mario García-París

    Conservation Genetics (2023)

  • The history of genetic diversity and effective population size of an isolated Microtus oeconomus population on Kis Balaton

    • Veronika Sládkovičová
    • Dávid Žiak
    • Győző Horváth

    Mammalian Biology (2022)

  • Mitochondrial genetic diversity of the Greater Cane rat (Thryonomys swinderianus) populations from the Eastern Arc Mountains ecosystem, Tanzania

    • Shadia I. Kilwanila
    • Charles M. Lyimo
    • Alfan A. Rija

    Molecular Biology Reports (2022)

  • Estimation of the census (Nc) and effective (Ne) population size of a wild mandrill (Mandrillus sphinx) horde in the Lopé National Park, Gabon using a non-invasive genetic approach

    • Amour GuibingaMickala
    • Anna Weber
    • Nicola Anthony

    Conservation Genetics (2022)

  • Genome properties of key oil palm (Elaeis guineensis Jacq.) breeding populations

    • Essubalew Getachew Seyum
    • Ngalle Hermine Bille
    • David Cros

    Journal of Applied Genetics (2022)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity) ISSN 1365-2540 (online) ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Live Expert Trainer-led workshops
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2023 Springer Nature Limited