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Estimation of genetic parameters using
linkage between a marker gene and a locus

underlying a quantitative character in F2
populations

Z. W. LUO & J. A. WOOLLIAMS
Institute of Animal Physiology and Genetics Research, Ros/in, Edinburgh EH25 9PS, Scot/and, U.K.

A maximum likelihood algorithm is developed for estimating the recombination frequency in a
segregating population (F2), between a marker gene and a locus affecting a quantitative trait as well
as estimating the means and variances of the three genotypes of the quantitative trait. The maximum
likelihood estimates are compared with the moment estimates of these parameters obtained from
the algorithm described by Luo & Kearsey in 1989. It is concluded from computer simulation
results that the maximum likelihood algorithm provides more accurate estimates and is more robust
to changes in the value of the recombination frequency than the moment solutions, particularly with
heterogenous variances. The difference between the genetic model considered here and by Luo &
Kearsey and that by Darwasi & Weller, in 1992, is also discussed. Both methods for estimating r
and gene effects become biased for high values of rand low values of heritability, but the results are
better for data with complete dominance than for additive data.

Keywords: EM algorithm, linkage, marker gene, moment solution, QTL.

Introduction

Mapping quantitative trait loci (QTL) using poly-
morphic marker genes has received attention in both
theoretical quantitative genetic studies and plant!
animal breeding practice. The main objective of the
theoretical analysis involved in QTL mapping concen-
trates on estimating linkage between marker genes and
QTL. Many researchers have addressed the problem
of marker-QTL linkage in different genetic back-
grounds in which the number of marker genes of QTLs
vary (Jayakar, 1970; Hill, 1975; Weller, 1986; Jensen,
1989; Lander and Botstein, 1989). In general, the
problem deals with obtaining estimates of the recom-
bination frequency between marker gene(s) and
individual QTL, the expected effect and residual varia-
tion of the QTL genotypes under question. Luo &
Kearsey (1989, 1991) developed a method to estimate
linkage between a marker gene and a QTL which was
recently criticized by Darvasi & Weller (1992), who
demonstrated divergence of the estimates obtained
from their true maximum likelihood estimates when
the three QTL genotypes had different variances, even
though this was beyond the scope of Luo & Kearsey
(1989, 1991). We will discuss the problem in more

detail and develop a method to derive a maximum likeli-
hood solution to the problem.

Theoretical approach

The structure of a breeding population

Consider an F2 family derived from crossing two
inbred lines, one of which is homozygous for alleles M1
and Q1 of the locus of the genetic marker and the QTL
respectively, and the other is homozygous for the
alleles M2 and Q2. The marker alleles are assumed to
be co-dominant, therefore the three genotypes at the
marker locus are distinguishable. The QTL is linked to
the marker with a recombination frequency of r. The
means and variances of the quantitative trait among the
three marker genotypes of the F2 population are as
shown in Table 1.

The analytical methods

Suppose that phenotypic values of the three QTL
genotypes Q1Q1, Q1Q2 and Q2Q2 are distributed as
N(1, o), N(M2, u) and N(u3, oj) respectively, where
Nu1, o) represents a normal distribution with mean and
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Table 1 Basic statistics of the quantitative trait of the three
marker genotypes in an F

Statistics of
quantitative trait

Marker g

M1M,

enolypes

AI1M, M,M

Samplemean x11 x12 x2

Sample variance S1 I2 '22
Sample size n1 n, n,

variance a. The variance can include both environ-
mental variation and genetical variation at other loci
affecting the quantitative trait but segregating inde-
pendently with the marker gene. In previous papers
(Luo & Kearsey, 1989, 1991) it was assumed that the
three QTL genotypes have the same variance, i.e.
'homoscedastic model'. A more general assumption
that the variances of the three QTL genotypes are
unequal, i.e. 'heteroscedastic model', was made by
Darvasi & Weller (1992) and will he discussed later. In
general, it can be easily verified that the expected
means and variances of marker genotypic groups (X
and S respectively) defined in Table 1 have the follow-
ing forms (Luo & Kearsey, 1989):

X11=(1—r)21+2r(l—r)2+r23 (1.1)

X1-,= r(1 — r)M1 +11 — 2r(I1
— r)]2 + r(1 — r)u3 (1.2)

X22=r21+2r(1—r),+(1—r)23 (1.3)

and

S (1 —r)2[u-t-(p1—X11) i
+ 2r( I — r)[a + (2 — X1 )2 ] + r2[a +( —

x11 (21

(2.1)

S12 r(1 — r)[a .t-(1 —X12)2 I

+ 1 — 2r( 1 — r)][oj+ (u7 — X12)2

+r(1 — r)[a+(3—X12)2j

22 = r2[af +( —
X22)2 ] 2r(1 — r)(a + (2 — X72)2]

Let

+(1 —r)2[a+(3—X22)2J.

e1 =S —)(l —r)2(1 X1 )2

+ 2r(I — r)(2—X11)2 + r2(j3 — X11)2}

e2=S12—{r(1 —r)(u1—X12)2

— 2r(1 — r)](2 — X12)2 r( I — r)(3 —
X12)2}

= S22 —
Ir2(u1

— X22)2 + 2r(1 — r)(m, —

— .\2( —? \U3 22'

Simultaneous equations (1) and (2) can be solved
uniquely for and a respectively, into the following
expressions for any r (0  r <0.5):

((1 — r)2X11
— 2r( I — r)X12 + r2X12}, (3.1)

(1—2r)

1
{r(r— I )X11 +[(1 — r)2 + .2j12

+ r(r— 1)X12}, (3.2)

3 — 2r(1 — r)X1, +(1 — r)2X,2}. (3.3)
(1 —2r,

and substituting into (2)

= ((1 — r)2 e1 — 2r( 1 — r)e2 + r2e3}, (4.1)
(1—2r)

jr( 1)e1 +1(1 —r)2+ r21e2

+ r(r— I )e3}, (4.2)

= — 2r( I — r) e2 + (1 — r)2 e3}. (4.3)
(1 —2r)

Under the homoscedastic model, the estimate of a2
can he solved as

.2 fli + n2e2 +0=——• . (5)
1l + /12 + //3

For a given sample of the F2 family, the means (X1
X1, and X27) and variances (Sfl, S17 and S22) of the
marker groups are known. The statistics at the left side
of equations (3)—(5) are thus functions whose values
are completely determined by just one common
unknown parameter r, i.e. the recombination frequency
between the marker gene and QTL. It can be shown
that equations (3) and (4) are identical to equations

2 2 (12)—( 14) and (18)—(20) of I.uo & Kearsey(1989).
Luo & Kearsey (1989) attempted to use the

invariant property of maximum likelihood estimates
(Mood et a!., 1 974) and searched the log-likelihood
function (7) for just one parameter, r because the QTL
genotypic means (p,) and variance (o or a2) had been
determined by the value of r for a given marker group
mean and variance as shown in equations (3)—(5). How-
ever, these equations are not themselves likelihood
solutions but represent solutions from equating
moments. These estimates will thus he termed the
moment solution. With increasing sample size it is
expected that the errors might decrease and the QTL
means and variance might approximate to the maxi-
mum likelihood estimates.

(2.3)
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The distributions of the quantitative effects for the
three marker genotypes can be expressed as

2 2
g1(y) (1— r) f(y) + 2r(1 — r)f12(y)+ r f(y), (6.1)

g2(y) = r(1 —
r)f21(y) + [1 — 2r( 1 — r)]f22(y)

+ r(1 —
r)f23(y),

g3(y) =r2f31(y)+ 2r(1— r)f32( 1— r)2f33(y),

where f,(y) is a normal distribution density with a
general form of

1

expf__2}.J23w1 2a1

For an F2 sample with size N n1 +n2 + n3, as
described in Table 1, the log-likelihood function, based
on distributions (6), are

M(y; ) =
ln[g1(y11)]+ ln[g2(y21)]+ ln[g3(y3)J.

(7)

The right side of equation (7) consists of three terms,
each of which is the log-likelihood of the density func-
tion of a mixture of three normal distributions. These
have the following general form

g1(y; t)= P1f1(Yk) + P2f2(yk)+ P13f3(YIk)

where Yik is a phenotypic value of the kth individual
with the ith marker genotype (i = 1, 2, 3) and p q is the
proportion of the jth subpopulation in the ith marker
group, which is completely determined by r as shown
in equations (4). Therefore, the maximum likelihood
estimation of linkage between the QTL and marker
gene could be statistically defined by solving the
unknown parameter estimates T=(r, /22, /23'
a, oj) [or jT(r p /22, /23' a2)] which maximize the
log-likelihood function (7) under the constrained con-
ditions:

and o 0(or a2>O)
It was strongly suggested by Kiefer & Wolfowitz

(1956) and shown by Basford & McLachlan (1985)
that under the heteroscedastic model, the log-likeli-
hood functions of mixed distributions (8) might be
unbounded and so the maximum likelihood estimates
may not exist. This is because under the hetero-
scedastic model each sample point could generate a
singularity in the likelihood function, and similarly, any
pair of sample points which are sufficiently close
together would generate a local maximum, as would

triplets, quadruplets, etc. Maximum likelihood could
therefore be inapplicable (Day, 1969; Everitt & Hand,
1981). In the homoscedastic model considered by Luo
& Kearsey (1989), however maximum likelihood
estimates always exist and are strongly consistent

6 2 (Kiefer & Wolfowitz, 1956; Redner, 1981).
The EM algorithm proposed by Dempster et at.

(6.3) (1977) can be developed to solve the problem. One
problem encountered by use of the EM algorithm is its
slow convergence. However, as the moment solutions
of the QTL parameters provide estimates which may
be close to their maximum likelihood estimates if a
reasonably large sample size is considered, these
estimates can be used as initial points of the iterating
algorithm described below.

Description of the algorithm

In general, the EM algorithm is an iterative approach
for analysing incomplete data (Dempster et at., 1977;
Titterington et at., 1985; Little & Rubin, 1987). Each
of the iterations of the algorithm consists of two steps:
and E (exception) step and an M (maximization) step.
The use of the algorithm to find the maximum likeli-
hood estimates of a mixture of distributions has been
considered (Aitkin & Wilson, 1980; Titterington, et at.,
1985; DerSimonian, 1986; McLaren et at., 1991) but
not in this context. In this section we follow the main
principle of the EM algorithm to develop a computa-
tional approach for obtaining the maximum likelihood
estimates of equation (7) for both homoscedastic and
heteroscedastic models.

Let p,7(r) represent the prior probability of the
individual with the ith marker genotype having the jth
QTL genotype (i and j=1, 2, 3). These are from
equations (6).

The moment solutions of the QTL genotypic means
and variance (12,P and â or ), together with the
prior probabilities p(r), are used to initialize the
following iterating algorithm.

The expectation step (E). The probability of the kth

(9 \ individual with the ith marker genotype having the jth
genotype is expected as

(8)

— p,(r)f,J(y/k)
(J)jjk(YIk)

—
3

p(r)f,1(y,,)
j=1

where i, j= 1, 2, 3.

(10)

The maximization step (M). The new estimates of the
QTL means, variance(s) and the mixture proportions
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are estimated for each marker mixed distribution by
using value of w,Jk(ylk) obtained in the previous E-step
as

3

th1=
i=1 k1

I W(y)yj
m1 k=1

3 'I

i Wjjk(yfk)(yk—/LJ)
m1 k=1

or

1

Wk(YIk)(Yk—MJ)2 + 2 + 3 j=1 i=1 k I

depending on whether three or one variances are
estimated.

In the next step, the newly estimated QTL genotypic
means (,á1) and variance (ó) or â' )are used to start
the E-step of the next iteration as if they were the true
estimates of these parameters. In the same way, the E
and M steps are repeated iteratively following equa-
tions (10) and (11), so that a sequence of estimates of
the unknown distribution parameter vector, {1 (t)}= 1, 2,

will be generated. It is expected that the value of the
log-likelihood function (7) will increase monotonically
as the iteration is continued, i.e.

Z'M[Y;] .2M[y;tII.

It has been verified by Wu (1983) that under the
homoscedastic model, the sequence {?M[y; I]},=1, 2
is bounded and the sequence will converge
to its limit value, denoted by 1 (*), which are the
maximum likelihood estimates.

In this process, a value of r has been used to initial
the algorithm in equation (10) of the E step. For any
given estimates of the QTL genotypic means and
variance, the log-likelihood function (7) has been
checked to be a unimodal function of r by plotting the
log-likelihood function against r with hundreds of
different simulations. Therefore, the maximum likeli-
hood esimate of r can be readily searched over the
interval 0  r  0.5 by use of the 'golden search' method
described by Press etal. (1986).

Simulations

In order to check the convergence of the algorithm
developed in the present paper, Monte Carlo simula-
tions were carried out to simulate genetic models of

linkage between a marker gene and a QTL in the F2
population. Computer simulation of the F2 population
has been described elsewhere (Luo & Kearsey, 1989).
Both homoscedastic and heteroscedastic models were

(111) simulated. The simulated means of the three QTL
genotypes were 35.0, 30.0 and 25.0, respectively when
gene effects at the QTL were additive, and 35.0, 35.0

(11 2)
and 25.0 when the increasing allele at the QTL is
completely dominant. In the homoscedastic model, the
residual variance of these genotypes took values of

(113)
12.50, 29.17 and 112.50, equivalent to heritabilities of
0.5, 0.3 and 0.1, respectively, for the quantitative
character in the F2 population. In the heteroscedastic
model, the simulated means for the cases of additive
and dominant gene effect were the same as those
described above, but the extra-genetic variances of the

(11.4) three QTL genotypes were 36.0, 30.25 and 25.0 for
additive gene effects and 36.0, 36.0 and 25.0 for the
dominant gene effect. The parameters were the same as
those used in the simulation studies of Darvasi &
Weller (1992). The recombination frequency between
the marker and QTL was also varied taking the values
of 0.10, 0.20 and 0.30. Five hundred F2 progenies were
used for every simulation, and each parameter com-
bination was replicated 100 times.

The simulation data have been used to check the
convergence of the algorithm described in the previous
section and it was found that for a given r, the log-like-
lihood function (7) increased monotonically with the
estimates obtained from the consecutive iterations. The
convergence of the algorithm to the maximum of the
log-likelihood function was confirmed by extensive
grid searching over all elements of unknown parameter
vector 1 on a subset of the data. The iterative search-
ing was continued as long as the difference of the log-
likelihood values between two consecutive cycles was
greater than 10.

The results of the simulations were analysed by
calculating the following genetic effects: (i) mean of the
QTL homozygotes, â=(â +u3)/2; (ii) the additive
effect, a=(121 ,u3)/2, (iii) the dominance deviation,
d=(22—1â) and (iv) the residual variance within QTL
genotypes (Mather & Jinks, 1982).

Results
The results of the simulations are shown in Tables 2, 3,
4 and 5 for i, a, d, and ô2 (or ó), respectively, for both
moment (M) and likelihood (L) solutions. The
estimates of r, derived from counting simulated recom-
binant gametes, were not significantly different from
their corresponding expected values (x = 0.5, x =0.6
and =0.1 for r=0.1, 0.2 and 0.3 respectively) con-
firming the reliability of the simulation data. When
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Table 2 Means of the estimates of recombination frequency between the marker gene and QTL and their corresponding
standard errors based on 100 replicates. Where r and h2 represent the recombination frequency between the marker and QTL
and the heritability of the quantitative character controlled by the QTL respectively; M and L are abbreviations for the two
methods from which the estimates were obtained, i.e. moment solutions and the maximum likelihood estimates; Horn, Het, Add,
and Dom are abbreviations for homoscedastic, heteroscedastic models, additive and dominant gene effects respectively

Models h2 Methods r=0.1 r=0.2 r0.3

(Horn, Add)
(Hom,Add)
(Horn, Add)
(Hom,Add)
(Hom,Add)
(Horn, Add)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

0.107±0.0052
0.111
0.100 0.0064
0.088±0.0066
0.121±0.0123
0.107

0.0106
0.212±0.0109
0.184±0.0136
0.136

0.289±0.0074
0.285±00075*
0.283 0.0134
0.232±.0138**
0.213±0.0145
0.163

(Hom,Dom)
(Horn,Dom)
(Horn, Dom)
(Horn, Dom)
(Hom,Dorn)
(Horn, Dom)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

0.101±0.0017
0.102±0.0018
0.099±0.0031
0.099±0.0030
0.095±0.0071
0.095 0.0070

0.201±0.0028
0.203±0.0029
0.193±0.0046
0.192±0.0049
0.185±0.0107
0.173 Q.0109**

0.299±0.0031
0.280±0.0069*
0.297±0.0038
0.274±0.0084**
0.279±0.0113
0.197 0.01 32**

(Het,Add)
(Het,Add)
(Het,Dom)
(Het,Dom)

0.3t
0.3t
0.3t
0.3t

L
M
L
M

0.087±0.0078
0.059±0.0056**
0.097±0.0035
0.088±0.0035*

0.176±0.0093**
0.106±0.0076**
0.184±0.0064*
0.132±0.0078**

0.217±0.0109**
0.118±0.0101**
0.281 0.0098
0.129±0.0119**

tApproximate heritability, * <0.05, **J <0.01.

was derived from searching the likelihood surface con-
ditional on the sample QTL means and variances, the
results were consistently unbiased.

Homoscedastic,additive model

With data simulated from a homoscedastic, additive
model, L solutions provided unbiased estimates of r
with the exception of the h2 =0.1. In this case P was
relatively unresponsible to a change in r, with trends
towards overestimation when r = 0.1, and underesti-
mation when r =0.2 and severe underestimation (by 29
per cent) when r 0.3. Corresponding to this, when
h2=0.1, a was overestimated (by 13 per cent) for
r 0.1 and underestimated (by 19 per cent) for r = 0.3.
M solutions underestimated r when r= 0.3, with the
bias increasing from 5 to 46 per cent as h2 decreased
from 0.5 to 0.1. Severe underestimation of r was also
apparent for h2=0.1, r=0.2. The underestimation of
r =0.3 was associated with an underestimation of a by
20—40 per cent and this contributed to an overestima-
tion of a2. Ignoring bias, the standard errors of the
estimates were similar for L and M and increased as r
increased and h2 decreased.

Homoscedastic, non-additive model

L solutions were almost entirely unbiased. The bias in P
when h2 = 0.1 and r = 0.3 was much reduced compared
to the additive case and not significantly different from
zero. When h2 = 0.1 and r = 0.3, a was underestimated.
The residual variance was underestimated when

= 0.1 and r = 0.3 but by less than 4 per cent. M solu-
tions underestimated r for the same combinations of h2
and r as with additive data, with only a slight improve-
ment (34 per cent error for h2=0.1 and r=0.3); but,
bias in a and a was much less than in the additive case.
d was underestimated when r =0.3 for h2 less than 0.5.
Standard errors for estimates were less than in the
additive case, particularly for L solutions.

Heteroscedastic, additive model

L solutions displayed a tendency to underestimate r,
the bias increasing from 13 to 28 per cent as r
increased from 0.1 to 0.3. An estimate of a for r0.3
was underestimated by 18 per cent and the corre-
sponding variances were overestimated. M solutions
severely underestimated r throughout (40 per cent), to
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Table 3 Means of the estimates of the additive effects at QTL and their corresponding standard errors based on 100 replicates.
Where r and h2 represent the recombination frequency between the marker and QTLand the heritability of the quantitative
character controlled by the QTL respectively; M and L are abbreviations for the two methods from which the estimates were
obtained, i.e. moment solutions and the maximum likelihood estimates; Horn, Het, Add, and Dom are abbreviations for
homoscedastic, heteroscedastic models, additive and dominant gene effects respectively

Models h2 Methods r0.1 r=0.2 r=0.3

(Horn,Add)
(Horn,Add)
(Horn,Add)
(Horn,Add)
(Horn, Add)
(Horn, Add)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

4.93±0.0541
4.87±0.0712
5.10±0.0932
4.93±0.0855
5.63 0.2331*
5.81 0.2188**

4.92±0.0715
4.77±0.0960
4.70±0.1195
4.54±0.1162
5.10 0.2066
4.81 0.1884

4.84±0.1165
4.39±0.1216**
4.58±0.1372
2.90±0.1297**
4.04 0.2153**
3.45 0.2038**

(Horn,Dom)
(Hom,Dom)
(Hom,Dorn)
(Horn,Dom)
(Horn,Dom)
(Hom,Dom)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

5.00±0.0267
5.01±0.0267
4.94±0.5080
4.94±0.4979
5.01±0.1104
5.01±0.1087

5.03±0,0393
5.06±0.0454
4.97±0.0633
4.98±0.0688
4.84±0.1644
4.81±0.1688

4.94±0.0645
4.81±0.1051
4.96±0.1081
4.81±0.1355
4.22±0.1962**
4.00±0.2078**

(Het,Add)
(Het, Add)
(Het,Dom)
(Het, Dom)

0.3t
0.3t
0.3t
0.3t

L
M
L
M

5.00±0.1142
4.60 0.0782**
5.03±0.0553
4.91 0.0544

4.87±0.1327
3.89 0.0928**
4.93±0.0937
4.26 0.0990**

4.08±0.1506
2.89 0. 1097**
4.58±0.1544*
2.94 0.1277**

fApproximate heritability, *<0.05, **<0.01.

Table 4 Means of the estimates of the dominance deviations at QTL and their corresponding standard errors based on 100
replicates. Where r and h2 represent the recombination frequency between the marker and QTL and the heritability of the
quantitative character controlled by the QTL respectively; M and L are abbreviations for the two methods from which the
estimates were obtained, i.e. moment solutions and the maximum likelihood estimates; Horn, Het, Add and Dorn are
abbreviations for homoscedastic, heteroscedastic models, additive and dominant gene effects respectively

Models h2 Methods r0.1 r=0.2 r=0.3

(Horn,Add)
(Hom,Add)
(Hom,Add)
(Hom,Add)
(Horn,Add)
(Horn, Add)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

—0.03±0.0443
—0.03±0.0510

0.10±0.0796
0.12±0.0805

—0.17±0.2011
0.33 0,2011

—0.03±0.0598
0.05±0.0734
0.03±0.0889
0.45±0.0927**
0.02±0.2773

—0.51 0.2690

—0.04±0.0761
0.37±0.0845**
0.01±0.1390
0.10±0.1389
0.13±0.3797
0.21 0.3791

(Hom,Dom)
(Hom,Dom)
(Hom,Dom)
(Hom,Dom)
(Hom,Dom)
(Hom,Dorn)

0.5
0.5
0.3
0.3
0.1
0.1

L
M
L
M
L
M

4.99±0.0433
4.97±0.0442
4.96±0.0777
4.97±0.0795
5.34±0.2061
5.34±0.2075

4.93±0.0604
4.88±0.0710
4.87±0.0997
4.85±0.1086
4.94±0.3167
4.85±0.3282

5.01±0.1195
4.83±0.1890
4.66±0.1775
4.36±0.2263**
4.60±0.3775
4.72±0.4103

(Het,Add)
(Het,Add)
(Het,Dom)
(Het,Dom)

0.31'
0.3t
0.31'
0.31'

L
M
L
M

—0.10±0.0785
—0.12±0.0700

4.81±0.0901
4.67±0.1040**

—0.21±0.140
—0.10±0.1046

4.45±0.1368**
3.64±0.1711**

—0.20±0.1745
—0.14±0.1227

3.86±0.2615**
1.96±0.2150

tApproximate heritability, <0.05,
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Table 5 Means of the estimates of the residual variance within Q1'L genotypes and their corresponding standard errors based
on 100 replicates. Where rrepresents the recombination frequency between the marker and QTL; M and L are abbreviations
for the two methods from which the estimates were obtained, i.e. moment solutions and the maximum likelihood estimates;
Hom, Het, Add and Dom are abbreviations for homoscedastic, heteroscedastic models, additive and dominant gene effects
respectively

Model a2 Methods r 0.1 r = 0.2 r = 0.3

(Hom,Add)
(Horn,Add)
(Horn, Add)
(Hom,Add)
(Horn, Add)
(Horn, Add)

12.50
12.50
29.17
29.17

112.50
112.50

L
M
L
M
L
M

12.79±0.242
12.56±0.232
29.57 0.464
29.27±0.473

107.59 1.638**
105.26 1.598**

12.70±0.325
15.46±0.348**
30.10 0.498
33.07±0.525**

105.28 1.667**
108.99 1.652*

12.87±0.416
18.53±0.440**
34.68 Ø•554**
36.07±0.556**

110.49 1.611
112.16 1.668

(Hom,Dom)
(Horn,Dom)
(Hom,Dom)
(Hom,Dom)
(Horn, Dom)
(Horn, Dom)

12.50
12.50
29.17
29.17

112.50
112.50

L
M
L
M
L
M

12.40±0.091
12.47±0.095
29.19±0.278
29.40±0.278

108.00 1.044**
108.76 1.054**

12.36±0.093
12.31±0.103
29.16±0.316
29.33±0.321

109.67 1.560
110.64 1.585

12.36±0.265
12.66±0.430
28.90±0.430
29.51

111.68 1.525
112.22 1.637

(Het,Add)
(Het, Add)
(Het, Add)
(Het,Add)
(Het,Add)
(Het,Add)

36.00
36.00
30.25
30.25
25.00
25.00

L
M
L
M
L
M

34.45±0.849
36.67 0.706
28.66 0.720
31.40±0.516**
24.96±0.590
27.33±0.539**

35.66±0.953
39.87 0.763**
28.54 0.887*
34.11±0.662**
25.52±0.851
30.92±0.805**

36.89±1.111
41.07 0.922**
33.09 0.963**
38.42±0.688**
27.17±0.914**
33.49±0.858**

(Het, Dom)
(Het, Dom)
(Het,Dom)
(Het,Dom)
(Het,Dom)
(Het,Dom)

36.00
36.00
36.00
36.00
25.00
25.00

L
M
L
M
L
M

36.24 0.645
36.96 0.626
35.97±0.513
36.32±0.603
24.88±0.528
27.62±0.840**

34.93 0.860
35.29 0.829
37.07±0.741
41.31±0.826**
27.17±1.114
35.80± 1.484**

32.35 1.219**
38.69 0.956**
37.96±0.956
46.17±0.820**
28.76±1.332*
46.58±1.624**

* <0.05, **<0.01.

the extent that the values of P for r= 0.2 and 0.3 were
very similar. Correspondingly, a was underestimated
(8—42 per cent) and the residual variances were over-
estimated, with bias increasing with r.

Heteroscedastic, non-additive model

L solutions had a tendency to underestimate r slightly
and a was underestimated by 6 per cent when r= 0.3.
Dominance, d, was underestimated for both r= 0.2
and 0.3. M solutions underestimated r grossly for
r=O.2 and 0.3 and this resulted in underestimation of
a and d and an overestimation of the residual
variances.

Correlations

Correlations between L estimates were examined
about their observed means for all models. Positive

correlations (0.1—0.3) were observed between P and a,
large negative correlations (—0.6 to —0.9) between a
and ô. The correlation between the estimates of r
derived by the L and M methods was greater than 0.6.

Discussion

Accurate estimation of the parameters involved in
analysis of linkage between a marker gene and QTL
has been recently emphasized by Dekkers & Dentine
(1991). The efficiency of marker-assisted selection is
determined both by the amount of additive genetic
variance that can be traced to the marker(s) linked with
QTLs under selection and the accuracy of the marker-
QTL linkage estimation (Soller, 1978).

In general, the L method is reliable with both the
homoscedastic and the heteroscedastic data generated
here. The M method was unreliable with the hetero-
scedastic data and its accuracy is more sensitive to the
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value of r than the L method. While a larger sample would
be more informative and reduce errors, this study has
shown the nature of the biases that may occur and has
examined the relative merits of the Land the M methods.
The most common bias for both methods lies in the
underestimation of r, particularly when heritability is
low: thus the methods tend to suggest that linkage is
tighter than it is with a corresponding underestimate of
gene effect and overestimate of residual variance. As an
example, for homoscedastic, additive data when h2 =0.1
and r =0.3, P 0.01 for 30 L estimates of the 100 simul-
ations. Checks were carried out to ensure > 0 for all
simulations because sampling errors might have been
large enough to make linkage appear in the opposite
phase. If so, reparameterization of the model may have
reduced the bias in P and a. However, this was not found
to have occurred.

Statistically, the problem, as discussed above, is
equivalent to parameter estimation of a mixture of
normal distributions. It has been commonly accepted
that the ease of deriving solutions depends mainly on a
difference between the sub-distribution means to be
dissected relative to the common distribution variance
(Everitt & Hand, 1981; Titterington et a!., 1985). The
power of both methods declined as h2 decreased, i.e. as
the distance between the distributions to be dissected
decreased relative to the residual standard deviation,
although the presence and tightness of linkage between
the marker and QTL makes the situation distinct from
the previous studies. The dominance model improved
the power of the estimation as might have been
expected from the greater distinction between the
mixed distributions and the ability conferred by the
markers to. separate homozygotes with the increasing
allele from heterozygotes.

It was shown by the simulation results that the
biased estimates were usually associated with loose
marker-QTL linkage. This is because the power of a
linkage analysis declines rapidly when the two loci are
linked with a recombination frequency larger than or
equal to 0.3 (Ott, 1985; Risch, 1991; Collins &
Morton, 1991).

Weller (1986) and Darvasi & Weller (1992)
suggested a full-dimensional search method to derive
maximum likelihood estimates of the function (7).
Having taken their recently published results as an
example, the value of the log-likelihood function (7)
was evaluated 78,125 times in order to search the like-
lihood surface for the maxima, as they suggested, for
just one single analysis. The program took more than
24 h to finish running on a Macintosh II computer.
However, it spent only 2 mm (on average, because of
the number of iterations in the EM algorithm can vary
for different situations) in obtaining all the necessary

results represented in the present paper for a single
sample. The algorithm discussed here is clearly easier
to use in practice.

In general, for both its estimation accuracy and
robustness, we conclude that the algorithm described
here is an improvement on the previous moment solu-
tion method of the marker-QTL linkage estimation
analysis.

The FORTRAN and PASCAL source programs of the
simulation and analysis programs are available to
interested readers.

Acknowledgements
The authors wish to thank Dr Robin Thompson for his
guidance and many constructive suggestions to this
study. We thank Dr M. J. Kearsey for introducing us to
the problem discussed here and his comments on an
early draft of this paper.

References

AITKIN, M. AND WILSON, 0. T. 1980. Mixture models, outliers,
and the EM algorithm. Technometrics, 22, 325—331.

BASFORD, K. E. AND McLACHLAN, a j. 1985. Likelihood estima-
tion with normal mixture models. App!. Stat., 34,
282—289.

COLLINS, A. AND MORTON, N. E. 1991. Significance of maximal
lods. Ann. Hum. Genet., 55, 39—4 1.

DARvA5I, A. AND WELLER, .i. . 1992. On the use of the moments
method of estimation to obtain approximate likelihood
estimates of linkage between a genetic marker and a quan-
titative locus. Heredity, 68, 43—46.

DAY, N. a 1969. Estimating the components of a mixture of
normal distributions. Biometrika, 56, 463—474.

DEKKERS, J. C. M. AND DENTINE, M. R. 1991. Quantitative genetic
variance associated with chromosomal marker in segrega-
ting populations. Theor. App!. Genet., 81, 2 12—220.

DEMPSTER, A. P., LAIRD, N. M. AND RUBIN, D. B. 1977. Maximum
likelihood from incomplete data via the EM algorithm. J.
R. Statist. Soc. B., 39, 1—22.

DERSIMONIAN, R. 1986. Maximum likelihood estimation of a
mixing distribution. App. Stat., 35, 302—309.

EVERITF, B. S. AND HAND, D. j. 1981. Finite Mixture Distributions.
Chapman and Hall, London.

HILL, A. i'. 1975. Quantitative linkage: a statistical procedure
for its detection and estimation. Ann. Hum. Genet. Lond.,
38, 439—449.

JAYAKAR, S. D. 1970. On the detection and estimation of
linkage between a locus influencing a quantitative charac-
ter and a marker locus. Biometrics, 26, 45 1—464.

JENSEN, . 1989. Estimation of recombination parameters
between a quantitative trait locus (QTL) and two marker
gene loci. Theor. App!. Genet., 78,613—618.

KEIFER, J. AND WOLFOWITZ, .i. 1956. Consistency of the maxi-
mum likelihood estimates in the presence of infinitely



MAXIMUM LIKELIHOOD ESTIMATION OF MARKER-QTL LINKAGE 253

many incidental parameters. Ann. Math. Stat., 27,
887—906.

LANDER, E. S. AND BOTSTEIN, D. 1989. Mapping Mendelian
factors underlying quantitative traits using RFLP linkage
maps. Genetics, 121, 185—199.

LITFLE, R. J. A. AND RUBIN, D. B. 1987, Statistical Analysis with
Missing Data. John Wiley, New York.

LUO, Z. W. AND KEARSEY, M. j. 1989. Maximum likelihood esti-
mation of linkage between a marker gene and a
quantitative locus. Heredity, 63,401—408.

LUO, Z. W. AND KEARSEY, M. j. 1991. Maximum likelihood esti-
mation of linkage between a marker gene and a
quantitative locus. II. Application to backcross and double
haploid populations. Heredity, 66, 117—124.

MATHER, K. AND JINKS, i. L. 1982. Biometrical Genetics, 3rd edn,
Chapman and Hall, London.

McLAREN, C. E., WAGSTAFF, M., BRITFENHAM, G. M. AND JACOBS, A.

1991. Detection of two-component mixtures of lognormal
distributions in grouped, doubly truncated data: analysis
of red blood cell volume distributions. Biometrics, 47,
607—622.

MOOD, A. M., GRAYBILL, F A. AND BOES, D. c. 1974. Introduction to
the Theory of Statistics. McGraw-Hill, New York.

oi-r, . 1985. Analysis of Human Genetic Linkage. The Johns
Hopkins University Press, Baltimore, MA.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A. AND VETrERLING, W.

T. 1986. Numerical Recipes, The Art of Scientific Comput-
ing. Cambridge University Press, Cambridge.

REDNER, R. 1981. Note on the consistency of the maximum
likelihood estimate for nonidentifiable distributions. Ann.
Stat., 9, 225—228.

RI5CE, N. 1991. A note on multiple testing procedures in link-
age analysis. Am. J. Hum. Genet., 48, 1058—1064.

SOL,LER, M. 1987. The use of loci associated with quantitative
effects in dairy cattle improvement. Anim. Prod., 27,
396—404.

TITrERINGTON, D. M., SMITH, A. F. AND MAKOV, U. E. 1985. Statistical

Analysis of Finite Mixture Distributions. John Wiley, New
York.

WELLER, J. i. 1986. Maximum likelihood techniques for the
mapping and analysis of quantitative trait loci with the aid
of genetic markers. Biometrics, 42, 627—640.

wu, c. r. 1983. On the convergence properties of the EM
algorithm. The Annals of Statistics, Vol. 11. No. 1,95—103.


	Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations
	Introduction
	Theoretical approach
	The structure of a breeding population
	Description of the algorithm

	Simulations
	Results
	Homoscedastic, additive model
	Homoscedastic, non-additive model
	Heteroscedastic, additive model
	Heteroscedastic, non-additive model
	Correlations

	Discussion
	Acknowledgements
	References


