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Finite island model for organelle and nuclear
genes in plants
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Recurrence equations for genetic diversities and differentiation were developed for hermaphrodite
plant species in an island model of population structure. This was made possible by the definitions
of diversities at all hierarchical levels from gamete to total population and by the definition of
migration rates specific to plants for both nuclear and cytoplasmic genomes. Mating system was
also incorporated. Numerical computations were used to compare equilibrium values of differentia-
tion obtained with our equations with those predicted by classical formulas. We show that the differ-
ences (sometimes high) result from the interpretations of the definition of gene diversity in a
population of finite size. We interpret it as the probability that two genes sampled with replacement
are different alleles (instead of without replacement). The effects of several parameters (ploidy level,
mode of inheritance, outcrossing rate, population size) on genetic subdivision were evaluated.
Contrary to the situation in animals, plant migration is intrinsically asymmetrical because a gene
transmitted to the next generation through the male gamete may migrate in the pollen grain and in
the seed, whereas a gene transmitted through the female gamete can migrate only in the seed. As a
consequence, mode of inheritance (in the case of cytoplasmic genes) and outcrossing rate have
strong impacts on subdivision, especially when pollen migration is larger than seed migration (a
likely situation in many plant species). Parameters estimated in a survey of oak populations
(Quercus robur L.) were used to examine whether our understanding of a real situation could he
improved by the model, in particular, the rate of return to equilibrium was studied after a perturba-
tion, i.e. a temporary decrease of population sizes (a bottle-neck).
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Introduction

An accurate description of the genetic structure of
plant species, and especially of the geographic
component of this structure, is desirable for conserva-
tion and breeding purposes. We have shown (Kremer ci
a!., 1991; Petit eta!., 1993) that the level of subdivision
of organelle gene diversity among oak populations is
very high, despite the fact that the species studied were
characterized by low nuclear subdivision. A larger
differentiation for cytoplasmic than for nuclear genes
was reported for animal species (Desalle et a!., 1987;
Hale & Singh, 1987) and was interpreted with the help
of a finite island model for individuals with separate
sexes (Birky eta!., 1989). Our objectives here are: (i) to
extend the model to the case of hermaphrodite plants

*Correspondence

with varying ploidy levels and outcrossing rates; (ii) to
quantify the impact of several variables on the magni-
tude of genetic differentiation; and (iii) to apply the
model to a real case, namely the above mentioned
study of oak populations.

The theoretical approach directly derives from the
classical Wright—Fisher model for nuclear genes at a
single locus with neutral alleles (Wright, 1943). Genes
are sampled at a discrete generation n to make the
next, non-overlapping generation, n + 1. Drift, muta-
tion and migration can be included. However, if muta-
tion is much smaller than migration, it will have little
effect on the level of subdivision (Gst) (Crow & Aoki.
1984; Birky et a!., 1989). As our focus here is on
genetic subdivision (or differentiation among popula-
tions), we will not consider the effect of mutation. The
parameter of genetic subdivision used (Gç,), an
extended version of Wright's Fst in the case of multiple
alleles (Nei, 1973), was shown to reach equilibrium very
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quickly (Crow & Aoki, 1984). This is of particular
interest as indirect methods to estimate gene flow from
values of differentiation rely on the assumption of
equilibrium (Slatkin, 1985). Nevertheless, some
populations of plants are subjected to frequent disturb-
ances and it is seldom clear whether the equilibrium
assumption is valid. This is especially problematic in
the study of many forest trees, where climatic shifts that
have modified the ranges of taxa during the Quaternary
have occurred at a rapid pace relative to mean genera-
tion times. There is at present no straightforward
method to test that equilibrium conditions have indeed
been reached. We show here that dynamic study of
both nuclear and cytoplasmic differentiation of a spe-
cies may cast some new light on this problem.

Definitions

The general outline of the study is provided by Wright's
island model (1943) using the following notations and
assumptions. There are L (sub) populations (colonies,
demes or islands). The mixed mating model is used;
there is self-fertilization with probability 1 — t and
random mating within the population with probability
t. The populations all have the same size (N individ-
uals).

Effective migration rates

For nuclear genes in animals with separate sexes, the
effective migration rate which has been used by
Takahata & Palumbi (1985) and Birky et a!. (1989) is
the sum of the male and female migration rates where
these are defined as the proportion of migrating males
(females) relative to the total population size (including
both males and females):

me mf+ mm.
For cytoplasmic genes, the effective migration rate used
by the same authors was:

meo amf+I3mm,
where a is the fraction of cytoplasmic genomes in a
zygote which originates from the female gamete and /3
is the fraction which originates from the male gamete
(a + /3 = 1). This omits the transient contribution of
cytoplasmic genomes which will not be transmitted to
the next generation. With balanced sex ratios, mf and
mm each have a maximum value of 0.5, and m0 is then
bounded by 0.5. The cytoplasmic effective migration
rate may approach its maximum value of I only when
the sex ratio is strongly skewed in the direction of the

sex transmitting the cytoplasmic genome (e.g. a large
female excess when a 1).

In the case of plants, migration may occur through
gametes (pollen) and/or seeds. To define migration
rates which can be compared with each other, we
define (artificially, as female gametes are not actually
mobile in plants) migration rates for male and female
gametes. We first define m1 and mym as the proportion
of gametes of each sex which migrate, relative to the
total number of all gametes. Depending on the power
of the investigation, the gametes which are considered
may be limited to the successful gametes or may
include all gametes produced. The latter definition will,
however, rarely be useful. An effective gamete migra-
tion rate will be, for nuclear genes:

mye= mf+ mym,
and for cytoplasmic genes:

mC,) amf+f3mym.
These expressions can be related to the pollen and
seed migration rates. A fertilized ovule may migrate in
a seed with probability m, (i.e. m, is defined as the pro-
portion of seeds which migrate, relative to the total
number of seeds produced). If we consider in the above
definitions only the successful gametes, then
mf= m,/2 as there will be exactly half female and half
male gametes and a female gamete will migrate with
probability m,. For the same reason, mym = 1/2(m +
in, — mm,), where m is defined as the proportion of
pollen grains that migrate, relative to the total number
of successful pollen grains. This is because a male
gamete may migrate in three different ways.

by pollen only: m(I — m,);
by seed only:(1 — m)m,;
by both: mom,.
Total: m + m, —mm,.

Finally, for nuclear genes:

= l/2m, + 1/2(m, + rnp — mm,)= m,

+ 1/2(m—mm,)

and for cytoplasmic genes:

(1)

meo = am, + /3(m, + mp — mm,)= m, + fi(m — mom,).

(2)

Because such a definition greatly simplifies the recur-
rence equations, we define the migration rates as the
fraction exchanged each generation by each subpopu-
lation with the entire population, following Maruyama
(1970). A certain proportion of individuals are then
expected to be returned to the population from which
they originally came.



632 R. J. PETIT ETAL.

Gene diversity parameters

The gene diversity K considered by Birky et a!. (1989)
is the probability that, at a given locus, two randomly
sampled genes will be genotypically different alleles.
All hierarchical levels, from zygote to the total popula-
tion, were considered. We will consider in addition the
gametic level. Thus, the K parameters are:

(1) Kg for sampling two distinct genes (i.e. sampling
without replacement) from a single gamete;

(2) K5 for sampling two distinct genes from a single
zygote;

(3) K11 for sampling two distinct genes from a single
adult cell;

(4) Kb for sampling two genes from two distinct adult
cells in the same individual;

(5) K for sampling two genes from different individ-
uals in a population; and

(6) Kd for sampling two genes from different popula-
tions within an entire set of populations.

Because two distinct nuclear genes cannot be sampled
form a single haploid gamete, Kg can be used only for
diploid gametes (or gametes characterized by higher
ploidy levels) and for cytoplasmic genes (because, even
if the cytoplasmic genes are homoplasmic, there are
several copies of these genes per gamete).

Actually, Birky eta!. (1989) considered two kinds of
sampling within a given hierarchical level, i.e. sampling
in two different units (K), or sampling in two different
units or in the same unit (K). We extend here these
notations to all hierarchical levels, from the single cell
to the total population. As defined, the K* parameters
correspond to the original definition of diversity (Nei,
1973). Indeed, the formula given by Nei (1973) for
diversity (h = 1 p where the sum is made
over the m alleles and p. is the frequency of allele i),
corresponds to sampling with replacement of the
genes, in a population of finite size. If sampling is made
without replacement, the marginal allel frequencies are
modified after the sampling of the first gene.

The K* parameters are:

(1) K for sampling two genes within a gamete (the
genes may be distinct or not);

(2) Kfor sampling two genes within a zygote;
(3) K for sampling two genes within a single adult

cell;
(4) K for sampling two genes from two adult cells

within an individual (the cells may be distinct or
not):

K={K+K,,(C— 1)}/C,
where C is the number of cells;

(5) K for sampling two genes within a population (the
two genes may be sampled from the same individ-
ual or from distinct individuals):

K==(K+K(N— 1)}/N, (4)

where N is the number of individuals;
(6) K(=K1 of Birky eta!., 1989) for sampling two
genes from anywhere in the total population:

K,={K+Kd(L- 1)}/L, (5)

where L is the number of subpopulations.
In the following, we will not consider the case of
heteroplasmy, whether for nuclear or for cytoplasmic
genes. Consequently, we have K=K=K but

K11
=K K,,. We will use only Kand K5. In this case,

eqn 4 can be re-written as:

K={K+K5(N— 1)}/N.

Subdivision

(6)

We use G,,, the fractional reduction of diversity due to
subdivision (Nei, 1973), as a measure of differentiation.
With our definitions of diversity parameters, we have:

G' =(K,-K)/K,.St (7)

We used this definition for both cytoplasmic and
nuclear, genes. However, Birky et a!. (1989) used a
different definition for nuclear genes, namely:

(K(2 — (8)

where K2)={KC+Kd(L—1)}/L. We will compare
both definitions of G51.

Results

For comparative purposes, we derived recurrence
equations for hermaphrodite animals first, and then for
hermaphrodite plants. Tables 1—4 can be understood
with the following considerations.

Inheritance. Because we are dealing with sexually
reproducing organisms, sampled genes originate from
gametes. The parameters a and 3 define the rules of
inheritance of the genes to be studied (in particular,
a 0.5 for nuclear genes). Hence, two genes will
come from an egg with probability a 2, both will come
from a sperm cell with probability 32, and one will
come from an egg and the other from a sperm cell with
probability 2a/3.

(3 Mating system. A pollen grain may have fertilized the
individual which produced it, with probability 1 — t, or
it may have fertilized at random any individual in the
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population (including the individual which produced
it), with probability t.

Migration. As seen in the definitions of the effective
migration rates, there is a two-step' migration process
in the case of genes coming from male gametes in
plants, wherein these genes can migrate by pollen
before fertilization and by seed after fertilization. How-
ever, note that genes coming from male gametes
migrate only by seed and not by pollen if they fertilize
the plant that produced them.

Genes sampled in different individuals. Let K and K,
be the diversities K and Kd at generation n + 1. If at
least one of two sampled alleles has migrated, then,
regardless of where these alleles were sampled at
generation n + 1 (i.e. in two different individuals of the
same or of different populations), the probability that
they are genotypically different is K ( K,). This is
because a gene may migrate into the population from
which it originated (c.f. definitions), and more than one
migration event does not affect this probability. This
was considered differently in the work of Birky et a!.
(1989, p. 616); our treatment has the advantage of
being more consistent with the definition of the migra-
tion rate. If neither of the genes has migrated, then the
probability that they are different alleles will depend on
where they were sampled at generation n + 1 (i.e. Kd if
they were sampled in different populations, or K if
they were sampled from different individuals in the
same population (this is because the genes may have
belonged to the same individual in generation n)).

Genes sampled in the same individual (Tables 1 and 2).
We focus on K' instead of K (Birky et al., 1989) for
two reasons (the (') again denotes values in the next
generation). Firstly, the analogy of K' with K' and K',,
is then more obvious, as the possibility that the two
sampled genes originated from gametes of the same sex
is retained when K' is used. Secondly, K appears to
be more informative than K. Indeed, consider the
following example: the maximum value of K is one at
a diploid locus with two different alleles or at a tetra-
ploid locus where all four alleles are different. If we use
K instead, the diversity will be higher in the tetraploid
(0.75) than in the diploid (0.5), allowing the distinction
of the two cases. The maximum value of one will only
be approximated when a gamete has a large number of
copies of a gene each characterized by a different allele.
This definition of diversity corresponds to the original
concept of Nei (1973) as explained above.

If both genes sampled come from a male gamete
(with probability /32) or both from a female gamete
(with probability a2), they come from the same gamete

because a zygote is made up of only one gamete of
each sex but they may still be different alleles in the
case of polyploidy or heteroplasmy. Without poly-
ploidy or heteroplasmy, K= 0 (gametes are haploid
for the nuclear locus considered and gametes are also
effectively haploid for cytoplasmic genes because we
do not consider heteroplasmy). When the two genes
are sampled from one male and one female gamete,
they will be different alleles with probability K if the
male gamete has fertilized the same plant (with prob-
ability 1 — t); otherwise (with probability t) they will be
different with probabilities K or K', depending on the
migration events, as seen above for K or K,,.

Genes sampled in the same gamete. Consider the
sampling of nuclear genes from a zygote to make a
gamete in an autopolyploid species. It must in theory
lie between the two following extremes: sampling with
replacement or sampling without replacement of half
of the number of copies of each gene (two copies for a
tetraploid species, three for an hexaploid species, etc.).
For a gene located on the centromere, all the copies in
the gamete will be from non-identical chromatids (i.e.
sampling without replacement). However, as a conse-
quence of pseudoreductional meiotic events (Demarly,
1963), sister chromatids can be found in the same
gamete in polyploid species. Although the true situa-
tion is probably closer to the case of sampling without
replacement, it will only be possible to derive an exact
solution when the frequency of such meiotic events is
known. We will limit ourselves here to the presentation
of both extreme cases. Firstly, if we consider sam-
pling without replacement, we have Kg =K,
K= K(2x — 1)/2x where 2x indicates the ploidy level
(e.g. 2x = 4 for an autotetraploid species), and
K=Kg(xl)/X, hence K2K'(x—1)/(2x—1). In
the case of sampling with replacement, Kg =K
instead, and K'—K(x— 1)/x.

Table 1 Principle of the derivation of a recurrence equation
for K* (zygotic diversity) at nuclear genes in hermaphrodite
animals. The gene diversity for the next generation depends
on the K values in the preceding generation, weighted by a
probability (product of the terms situated on the left).
Expansion of these terms gives eqn 9

K

a2 K
2a/3 t rn K
2a3 t 2 m (1—rn) K,,*

2aj3 I (1—rn)2 K
2a/3 (i—t) K*

/32 K
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Recurrence equations can be derived by summing
the products of the terms situated horizontally with the
corresponding K parameter in Table 1 (animals) and
Table 3 (plants) for KZ', and Table 2 (animals) and
Table 4 (plants) for K',. and K',, (presented together in
the Tables). For nuclear genes, a =/3 1/2, and K 0
for diploid organisms. For cytoplasmic genes, in the
absence of heteroplasmy, we have K=0 (i.e. we
assume rapid segregation in the case of biparental
inheritance). Except for this difference, recurrence
equations for cytoplasmic and nuclear diversities are
expressed in the same way. The recurrence equations
calculated using Tables 1 —4 greatly simplify. We obtain
the following results:
(i) Hermaphrodite animals
From Table 1, we have:

K*= K(a2+/32)+2a/3{K(1 — t)+ Kt(1 — rn)2

+Ktrn(2—rn)},
and therefore

K =K( 1
— t) + Kt( 1— )2

+ Ktrn(2 — m).

From Table 2:

K,'=K(1—rn)2+Krn(2—rn)and (11)

K,',=Kd(1—rn)2+Km(2—rn). (12)

K,'" can be obtained from eqn 6, K from eqn 5 and G,
from eqn 7 or 8. Note that K,. will be identical to K,.
only when t= 1.

(ii) Hermaphrodite plants
From Table 3, we have:

K' = K(a2 + /32) 2a/3{K(1 — t)+ Kt(1 — rn)2

and

x (1 — rn)+ K,,t{rn(2— rn)+(1 — m)2rn}] (13)

K = K( 1— t) + Kt(1 — m,)2(1
—rn)

+ Kt{m(2 — rn)+ (1— rn)2m}. (14)

Table 2 Principle of the derivation of recurrence equations
for K and Kd (diversity within and among populations) in
hermaphrodite animals. Expansion of these terms gives eqns
11 and 12

K. K,

2
rn2
rn (I

(1
—rn)
—rn)2

K,
K
K

K
K
K,.,

Table 3 Principle of the derivation of a recurrence equation
for K' at nuclear genes in hermaphrodite plants. Expansion
of these terms gives eqn 13

K"

a2 K,'
2a/3
2a/3

t
t

rn2
rn2

in,
(1—tn)

K
K

2a/3

2a/3

2a/3

t
1

t

2
2

n,
rn

(1—rn,)rn
(l—rn)
(1—,n)2rnp

(1—rn)

K"k
a

k'*

2a/3 t (1—rnj2 (1—rn) K
2a/3 (1 —t) K,.'
/32 K

Table 4 Principle of the derivation of recurrence equations
for K, and K,, (diversity within and among populations) in
hermaphrodite plants. Expansion of these terms gives eqns

(10) l5andló

K'e K'd

a rn K K
a2 2 rn (1—rn) K,, K,
a2 (1— in)2 K! K,,
2a/3 t rn rn K K
2aj3

2a/3

t
t 2

rn
rn, (1—rn,) rnp

(1—rn) Kj
K*ci

K
K

2a/3
2aj3

i'
t

2 rn, (1—rn,)
(1—rn,)2 rn

(1—rn) K,,
K

K,,
K

2a/3

2a/3

2a/3

t
(1—t)
(i-i) 2

m2

rn,

(1—rn,)2

(1-rn,)

(1—rn) K"
K*ci

K
K,,
K
K

2a/3 (1— t) (1 — rn,)2 K' K,.,
/32

/32

32
/32

/32

/32

/32

/32

/32

/32

/32

/32

,32

/32

2
t2
2
2
t2
t2
t2
t2
t2

2t(1—t)
2t(l—t)

2t(1 —t)

21(1 — t)
2t(1 — t)

2

2
4
2

2

2
2

rn
rn
rn
rn,
rn,
rn,

rn
rn
rn,
rn,

(1 — rn,)
(1 — rn,)

(1—rn,)
(1
—

rn,)2
(1 — rn,)2
(1 — rn,)2

(1—rn,)
(1—rn,)
(1—rn,)2

rn
rn

rn
rn

m'
rn

rn

rn

rn

(1 —rn)
(1 — rn)2

(1 — rn)
(1— rn)2

(1 — rn)
(1—in)2

(1—rn)

(1— rn)

K,,
Kj
K,,
K,,
K,,
K
K
K)
K
K,,
K)
K*ci

K
K,,*

K,,
K
K,,
K,,
K,,
K)
K)
K
Kd
K,,
K
K
K
K)

/32

/32

2t( 1 — t)
(1 1)2 rn

(1 — rn,)2 (1 — rn) K"
K

K,,
K,,

/32 (1 — )2 2 rn, (1 — rn,) K K
/32 (1— )2 (1 — rn,)2 K' K

(9)
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From Table 4:

K= K(1 — m)2(1 — fltm)2 + K{m(2 — m)
+ fit( 1 m)2m(2 —

KKd(l —
m8)2(1 —fitm)2+K{m(2— m)

+ /3t(1 — m)2m(2 —
/3tm)}.

As for hermaphrodite animals, K" can be obtained
from eqn 6, K from eqn 5 and G1 from eqn 7 or 8.
Note that K will be different from K even when t = 1,
contrary to the case for hermaphrodite animals.

Numerical analyses
We are interested in evaluating the evolution of popula-
tion subdivision. We solved the recurrence equations
numerically, starting from populations with extreme
non-equilibrium conditions and studying the evolution
of K parameters and of We first compared numeri-
cal results of G, obtained with our recurrence equa-
tions for hermaphrodite animals and for plants with
those obtained using an equilibrium formula for Ge,.
We then focused on plants only and studied the effects

of several important parameters on nuclear and cyto-
plasmic subdivision, i.e. level of ploidy, mode of inheri-
tance and outcrossing rate. Finally, we considered a

(15) tree species for which we have empirical results on
nuclear and cytoplasmic differentiation: Quercus robur
L. (the pedunculate oak). We tested the effect of popu-

(16) lation size on the rate of approach to equilibrium for
nuclear and cytoplasmic genes, by simulating a popula-
tion bottle-neck and then allowing populations to grow
back to their carrying capacity. This was intended to
mimic the early phase of post-glacial recolonization of
Europe by this species.

Equilibrium values of

We consider a diploid nuclear gene, either in
hermaphrodite animals or in plants, and several sets of
values for migration and effective population size. We
checked numerically that GJ and G (calculated
using eqns 7 and 8) had reached equilibrium. After
1000 generations, we had in all cases studied
G,— G,j 1015, whichever formula for subdivision

was used. We then compared the values of G> and
with each other and with G=— 1/{1 +2N(L/L — 1){1/

Table 5 Subdivision at equilibrium for different effective migration rates (me) and effective population sizes (N) in
hermaphrodite animals or plants. The subdivision (G51) corresponds to the ratio of interpopulation diversity relative to the total
diversity, where the diversities are defined as the probability that two sampled genes are different alleles, using sampling with
replacement (G) or without replacement (G)) of the individuals, and is derived using the formula of Takahata & Nei
(1984) for differentiation at equilibrium. When the same effective migration rates are used for animals and plants, the results are
nearly identical. In both cases, it is important to specify exactly which definition of diversity is used to compute G5, especially
with high migration rates

m m me N Gç) G(5 Gc)/

Animals 0.01495
0.01495
0.01495

10
100

1000

0.63768
0.14267
0.01626

0.61875
0.13844
0.01578

0.61570
0.13809
0.01577

1.03
1.03
1.03

0.145
0.145
0.145

10
100

1000

0.16123
0.01798
0.00182

0.11786
0.01315
0.00133

0.11752
0.01314
0.00133

1.37
1.37
1.37

0.28
0.28
0.28

10
100

1000

0.09683
0.01012
0.00102

0.05020
0.00525
0.00053

0.05010
0.00525
0.00053

1.93
1.93
1.93

Plants 0.01
0.01
0.01

0.01
0.01
0.01

0.01495
0.01495
0.01495

10
100

1000

0.63767
0.14267
0.01626

0.61874
0.13844
0.01578

0.61570
0.13809
0.01577

1.03
1.03
1.03

0.1
0.1
0.1

0.1
0.1
0.1

0.145
0.145
0.145

10
100

1000

0.16118
0.01798
0.00182

0.11782
0.01315
0.00133

0.11752
0.01314
0.00133

1.37
1.37
1.37

0.2
0.2
0.2

0.2
0.2
0.2

0.28
0.28
0.28

10
100

1000

0.09677
0.01012
0.00102

0.05016
0.00525
0.00053

0.05010
0.00525
0.00053

1.93
1.93
1.93
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(1 — m)2 — 1}] (eqn 4 of Takahata & Nei, 1984, using
our symbols and assuming no mutation). Note that
their definition of the migration rate is the same as
ours. The results indicate that when the same effective
migration rates are used, equilibrium G,1 for herma-
phrodite animals and plants are nearly identical (Table
5). In addition, closely approximates in all
cases. Actually, the formula for G() above was derived
by Nei (1975) by considering the sampling of different
genes for the computation of diversity and hence differ-
entiation; this is equivalent, in the case of randomly
mating hermaphrodite animals (where K ICE, as dis-
cussed above) to the sampling of different individuals,
as in the definition of

On the contrary, Gç) is always larger than G() and
especially in the case of high migration rate (by

37 per cent in the case where me= 0.145 and t = 1, and
by 93 per cent when me =0.28, regardless of the value
of N). This indicates the importance of the measure of
diversity considered in the computation of differentia-
tion, despite the fact that the measure of within-popula-
tion diversity itself is only slightly modified (except
when N is very small). Empirical studies where Nei's
(1973) concept of diversity is used actually present
unbiased estimates of

m
V' 2h=1— 2-2,

i= 1

which corresponds to our K* parameters, as discussed
previously. Consequently, the definition of (in eqn
7) appears to be more relevant to these empirical
studies. It would therefore be useful to develop new
equilibrium formulas for the genetic differentiation, to
which numerical and empirical results may be com-
pared, and which would in addition include the out-
crossing rate t, for animals as well as for plants. In the
remaining analyses, we study only which will be
called G1 for simplicity.

Effect of varying parameter values on nuclear and
cytop/asmic subdivision

Several parameters were kept constant throughout. L
(number of populations) was fixed at 50. The product
Nme was also kept constant (Nm= 11.3), based on
results obtained in a study of oaks (Müller-Starck &
Ziehe, 1991). We used N= 100 (effective number of
individuals) as well as identical pollen and seed migra-
tion rates (m=m=0.077) or a high pollen/seed
migration ratio (m/m =557, which yields m =0.225
and m=0.0004 in the case where N100), as
derived from relative empirical values of organelle and
nuclear gene differentiation (Petit, 1992). Previous esti-

mates of nuclear (Zanetto et at., 1993) and cytoplasmic
(Petit et al., 1993) diversities for Q. robur were used as
initial values in the recurrence equations (except in the
studies of ploidy level and mode of inheritance, where
both diversities were set to the same value as the goal
was to compare nuclear and cytoplasmic differentia-
tioñ).

Ploidy level. We have illustrated the dedifferentiation
(the evolution towards a genetically less structured
organization of diversity among populations, i.e. start-
ing from a G1 higher than the equilibrium one) of a
biparentally inherited cytoplasmic gene, for which
rapid vegetative segregation is responsible for a com-
plete absence of heteroplasmy (Fig. 1).

This case can be compared with a diploid nuclear
(i.e. biparentally inherited) gene. The rates of approach
to equilibrium are similar but the level of subdivision at
equilibrium is higher for the cytoplasmic gene. If we
now consider a tetraploid gene, where the two genes
which make up the diploid gametes are sampled either
with or without replacement (discussion above) from
the four genes of the sporophyte, we again note a dec-
rease of the value of subdivision at equilibrium with an
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Fig. 1 Effect of the ploidy level on genetic subdivision in
populations of hermaphrodite plants. values for nuclear
genes (in the case of a diploid or a tetraploid species) and for
a biparentally inherited cytoplasmic gene (a = = 0.5) are
plotted vs. time. Tetraploid (1): the two genes of the diploid
gamete are sampled without replacement among the four
genes of the sporophyte. Tetraploid (2): with replacement.
Seed and pollen migration rates are equal (m2= m=0.077).
N= 100, t= 1,initial conditions: K =0, Kd=O.65 (G,= 1)
for both nuclear and organelle genes.
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increase in the ploidy level. The type of polyploid
gametes that can be produced (sampling with replace-
ment vs. sampling without replacement) also has an
effect on the value of differentiation at equilibrium as
sampling of genes without replacement from the sporo-
phyte yields a lower subdivision at equilibrium than
sampling with replacement.

Mode of inheritance. In plants, all possible types of
cytoplasmic inheritance (i.e. maternal, biparental and
paternal) have been reported. We have compared the
dedifferentiation of cytoplasmic genes (with three
modes of transmission, a 1, 0.5 or 0) and nuclear
genes (a = 0.5), using first identical seed and pollen
migration rates (Fig. 2). Although the differences are
small at equilibrium, paternally inherited genes show
the lowest subdivision among cytoplasmic genes. This
is clearly a result of the two-step process of paternally
transmitted genes, which migrate with both pollen and
seed. The fastest rate of decrease of G,1 is also shown
by paternally inherited genes. However, around the
17th generation, in this example, the nuclear (Gç)
becomes smaller than the cytoplasmic G, (G).
Biparentally inherited cytoplasmic genes show exactly
the same initial behaviour as nuclear genes but again
nuclear subdivision is lower at equilibrium.

Using a high m/m, ratio, we see that the transmis-
sion rate has a much greater impact on the equilibrium
values of cytoplasmic subdivision (Fig. 3). Although
G, is still very low at equilibrium for paternally
inherited genes, it is now much higher for maternally
inherited genes. If we compare strict maternal inherit-
ance with maternally biased biparental inheritance
(a = 0.95 or 0.99), it becomes clear that even a small
paternal leakage of cytoplasmic genes has a strong
impact on subdivision.

To understand the fact that G, for paternally
inherited genes may be lower than G5 during the
initial non-equilibrium phase, although it is always
higher at equilibrium, the formula of Crow & Aoki
(1984) for the time required for to go half way to
equilibrium is helpful:

=Ln2/{2m. + 1/(2Ne)}.

Similarly, for cytoplasmic genes, Birky et al. (1989)
found:

= Ln2/(2meo + 1/Ne0).

At equilibrium, depends on the absolute value of
the product of the effective number of genes by the
effective migration rate: 2Neme for nuclear genes and
Neomeo for cytoplasmic genes (Birky eta!., 1989). High
values of the effective migration rate increase the rate
of approach to equilibrium. For a paternally inherited

Fig. 2 Effect of the mode of inheritance on genetic subdivi-
sion in populations of hermaphrodite plants. values for
cytoplasmic genes (showing maternal, paternal or biparental
inheritance) (—) and for a diploid nuclear gene ( ) are
plotted vs. time. Seed and pollen migration rates are equal
(m= m= 0.077). N= 100, t = 1, initial conditions: K( = 0,
Kd = 0.65 (G = 1) for nuclear and organelle genes.

Fig. 3 Effect of the mode of inheritance on genetic subdivi-
sion in populations of hermaphrodite plants. Same as Fig. 2
except that seed and pollen migration rates are very different
(m =0.225, m =0.0004). N = 100, t = l,initial conditions:
K =0, Kd =0.65 (G,, = 1) for nuclear and organelle genes.

gene, meo m, + m mm whereas, for nuclear
genes, me=ms+0.5(mp—mpms). Hence, we have
meo > me (and tt) < tc1)) but Neomeo <2Neme. For
dedifferentiating populations, G5, will reach equili-
brium more quickly and could therefore become
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initially lower than G51, but ultimately G, becomes
lower. For differentiating populations, on the other
hand, G1 will again reach equilibrium more quickly
and it will therefore remain higher than Gcj from the
outset. As a consequence, for conifer trees (charac-
terized by paternal chloroplast inheritance; Chesnoy,
1987), a lower subdivision for chloroplast genes than
for nuclear genes may indicate a non-equilibrium situa-
tion where dedifferentiation is occurring.

Outcrossing rate. For strictly maternally inherited cyto-
plasmic genes, t does not affect the values of gene
diversities and subdivision (see eqns 13—16). However,
t will affect the evolution of diversity at biparentally or
paternally inherited cytoplasmic genes. The effect of t
on strictly paternally inherited cytoplasmic genes is
particularly important since all genes will be affected
by a decrease in t (note that only those genes deriving
from male gametes are affected by t in the case of
biparental (e.g. nuclear) inheritance). From eqns 15 and
16, we can see that transmission and outcrossing rates
are always present in the form of their product fit.
Although this is not so in eqn 13, it does indicate
their nearly parallel effect on migration and differ-
entiation. For instance, a paternally inherited gene
(a =0; /3=1) in a partial (t=0.05) outcrosser was
shown to display the same evolution of differentiation
as a gene showing biparental (a = 0.95; /3=0.05)
inheritance in a strict outcrosser (t= 1) (results not
shown). Hence, in a species characterized by a high
pollen/seed migration ratio, a small amount of out-
crossing will strongly affect differentiation, as does a
small paternal leakage of cytoplasmic genes in a strict
outcrosser (Fig. 3).

Effects of a bottle-neck and of population size

Our goal here is to test the effects of several possible
values of population size in oaks. Postglacial popula-
tion expansions of several forest tree species, including
oaks, have been inferred from pollen data (Bennett,
1983). Current oak populations must have started with
only a few individuals at the outset of postglacial
recolonization. Using Bennett's data, we developed a
logistic population growth model to allow directional
changes in the population sizes from the beginning of
postglacial recolonization. The equation we used for
population growth is: N1÷1 =NR/{1 +(R — 1)N/K},
with R (reproductive rate) = 2. Indeed, sexual maturity
for this oak species may be reached within 50 years
(probably faster in a colonizing phase and slower
during successional phases), and doubling time found
by Bennett (1983) was 60—73 years in the initial phase
of oak (probably Quercus robur) range expansion.

We assumed strict maternal inheritance of the
chloroplast genome and random mating (the outcros-
sing rate for this species has been shown to be close to
one (Bacilieri et al., 1993)). We used several values of
K (asymptotic value of population size) ranging from
30 to 50000, starting with equilibrium conditions
(N=K) and letting N drop to five individuals during
the first generation of recolonization (simultaneously
in all populations). The logistic model predicts about
1200 years for population size to reach 95 per cent of
its value at equilibrium (K), which is consistent with the
1140 years duration of Q. robur expansion in Norfolk
described by Bennett (1983).

Figure 4 shows how such bottle-necks may affect
nuclear gene differentiation. Owing to accelerated drift,
subdivision overshoots its equilibrium value during the
logistic growth phase. The evolution back to equili-
brium is very slow for K higher than 200. As observed
nuclear subdivision is actually very low among popula-
tions of western Europe (Zanetto et a!., 1993), the
effective population sizes of Q. robur may be smaller
than 200 if the hypotheses underlying the model are
correct.

For maternally inherited cytoplasmic genes, a bottle-
neck will also increase the level of differentiation above
the equilibrium value (Fig. 5). With K larger than 50,
non-equilibrium conditions will prevail for cytoplasmic
genes. However, as G., was already high before the

Fig. 4 Effect of population sizes at carrying capacity on the
rate of approach of nuclear genetic subdivision to equili-
brium in populations of hermaphrodite plants after a bottle-
neck (N = 5). Before the bottle-neck, equilibrium conditions
for subdivision were assumed. For each value of population
size N at carrying capacity, the migration rates were deter-
mined assuming that Nm = 11.3 and = 557. t = 1,
initial conditions. K =0.373, K1 =0.38 (G,, 0.02).
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bottle-neck, the absolute and relative increases in G,
are limited.

Note that initial G1 values (before the bottle-neck)
in Fig. 4 and 5 differ among the different K values.
This is because G, depends on population sizes (as a
consequence of the dependency of K on population
size; eqn 4).

Discussion

Prout (1981) introduced a 'Pollen-Seed' island model
and derived a formula for the variance of nuclear gene
frequencies at equilibrium. The work of Asmussen &
Schnabel (1991) also included a migration model for
plants in their study of the dynamic of cytonuclear
structure. Here, we have defined an effective migration
rate for both nuclear and cytoplasmic genes, which
incorporates variable transmission rate of cytoplasmic
genomes and accounts for the two-step migration of
genes originating from male gametes in plants. We
devised tables for the computation of recurrence equa-
tions for gene diversity, as functions of migration and
the outcrossing rate, for several hierarchical levels of
subdivision. These tables should provide the basis for
computation of recurrence equations in even more
complex situations (e.g. with dioecy or gyno-dioecy).
Heteroplasmy could also be easily included, as did
Birky eta!. (1989).

C0

V
Cl)

Fig. 5 Effect of population sizes on the rate of approach of
cytoplasmic genetic subdivision to equilibrium in popula-
tions of hermaphrodite plants after a bottle-neck. Cytoplas-
mic genes are maternally inherited. Before the bottle-neck,
equilibrium conditions were used. For each value of popula-
tion size N at carrying capacity, the migration rates were
determined assuming that Nme= 11.3 and m/m= 557.
t = 1, initial conditions: K( =0.0477, Kd =0.65 (G 0.92).

To derive diversity equations, a clear definition of
diversity itself is a prerequisite. We advocate the use of
a gene sampling scheme with replacement, contrary to
other authors who explicitly or implicitly consider
sampling without replacement. In so doing, we exactly
apply the definition of diversity of Nei (1973) to
populations of finite size. Such a definition seems most
appropriate, for example, to describe diversity in very
small populations (as for instance when one considers
sampling within a zygote).

We have shown that maternal and paternal cytoplas-
mic inheritance do not have symmetrical effects on the
level of subdivision of cytoplasmic genes, even when
seed and pollen migration rates are equal. When seed
migration rate is much smaller than pollen migration
rate, which is probably the case for most tree species
(Ganeshaiah & Uma Shaanker, 1991), the equilibrium
level of subdivision of maternally inherited cytoplasmic
genes differs drastically from that of nuclear genes.
Thus, a high pollen/seed migration ratio could account
for the observed contrast between low nuclear and high
cytoplasmic subdivision found in oaks (Kremer eta!.,
1991; Petit eta!., 1993).

Furthermore, subdivision at equilibrium appears to
be lower for nuclear genes in diploid species (and even
more so in polyploid species) than for cytoplasmic
genes, regardless of the mode of transmission of the
cytoplasmic genes, as a consequence of the higher
effective number of nuclear genes. However, we have
found that a paternally inherited gene may show tem-
porarily lower subdivision than nuclear genes in cases
of dedifferentiating populations. This is important
because a whole group of forest trees (Conifers) have
paternal chloroplast inheritance (some Conifers even
have paternal mitochondrial inheritance (Neale et al.,
1989)).

In addition, our results suggest that dedifferentiation
may be more likely to occur in nature than differentia-
tion as a temporary reduction of population size (i.e. a
bottle-neck) induces a rapid increase of both nuclear
and cytoplasmic subdivision above their equilibrium
values. In the cases of Conifers, a test of equilibrium is
possible: if accurate measures of the subdivision of
paternally inherited genes and of nuclear genes are
available, and if G5, <G,, then a non-equilibrium
situation could be inferred. Study of the range of
covariation of nuclear and cytoplasmic genes at
equilibrium further illustrates the possibility to detect
non-equilibrium situations (Petit, 1992).

For plants with a high pollen/seed migration ratio,
both paternal leakage of cytoplasmic genes (in the case
of predominantly maternal cytoplasmic inheritance)
and outcrossing (for predominant selfers) have a
tremendous impact on cytoplasmic subdivisions.

Time in generations
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Although this may appear intuitive, our model allows a
quantitative assessment of the effect on subdivision of
the transmission and outcrossing rates.

Finally, our results clearly show that the effect of a
bottle-neck is to strengthen nuclear gene subdivision,
regardless of the asymptotic values of population sizes
(K), despite high levels of gene flow. In our oak
example, for G,,, to decrease from 15 to 20 per cent
back to its low initial value (2 per cent) within less than
100 generations or so required relatively low popula-
tion sizes (less than 200) at the demographic equili-
brium, otherwise G5, would remain apparently 'frozen'
at values higher than those typically observed. Another
indication that these 'idealized' oak populations
(Crawford, 1982) must be quite small is the existence
of a heterozygote deficit (Bacilieri et at., 1993) which
indicates that the samples of trees studied are not
panmictic. Bottle-necks could constitute a major cause
of continuing departure from equilibrium for cytoplas-
mic genes, unless population sizes were even lower
(less than 50).

On the other hand, situations have been described
where the net effect of extinction and recolonization
was an increase in gene flow (i.e. a decrease in differen-
tiation) (Slatkin, 1977; McCauley, 1991). This requires
that the founding groups are formed of individuals
belonging to different populations and that the newly
formed population grows immediately to its carrying
capacity. This last hypothesis is not realistic in our
example, though, as indicated by the pollen data of
Bennett (1983). Moreover, the composition of the
founding groups does not matter much in a situation
where there is little differentiation at the outset.

To model any real situation, knowledge of the details
of the population structure is necessary. The island
model of population structure presents an extreme in
terms of long-distance gene flow. Another extreme
would be local gene flow among neighbouring popula-
tions, which would be better represented by a stepping-
stone model (Malécot, 1948; Slatkin & Barton, 1989)
in the case of continuously distributed species. This
model of population structure should be considered in
future studies of diversity and subdivision in the
three major plant genomes.
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