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Maximum likelihood segregation analysis provides potentially the most powerful method for the
detection of segregating major genes. Segregation analysis requires the comparison of the likelihood
of the data under the combined model (allowing both polygenic and major gene genetic variation)
with the likelihood of the data under the polygenic model (allowing only polygenic genetic varia-
tion). In this study three approximations to the combined model likelihood were compared using
simulated data, both with and without a segregating major gene, containing observations on
paternal haif-sibs. The use of Hermite integration to replace the integration in the combined model
likelihood provided the most powerful test for a major gene. Two approximations, based on exten-
sions of linear-mixed-model theory and estimating transmitting abilities for sires, were also con-
sidered. These approximations were less powerful than the use of Hermite integration, although the
approximation estimating a transmitting ability for each major genotype for the sires was an
improvement over the approximation estimating a single transmitting ability. For each approxima-
tion the frequency of detection of a major gene depended on the proportion of the genetic variance
explained by the simulated major gene and whether the major gene caused the distribution to be
skewed.
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Introduction

Classical animal breeding theory is based on the
assumption that traits are controlled by many genes
each having a small effect. The action of individual
genes cannot be observed directly and traits are gener-
ally described in terms of summary statistics such as
the heritability. However, genes with a large effect on
commercial traits have been identified in favourable
circumstances. Notable examples are the dwarfing gene
in poultry (Merat & Ricard, 1974), the Booroola gene
affecting ovulation rate in sheep (Piper & Bindon,
1982; Piper et a!., 1985), the double muscling gene in
cattle (Rollins et al., 1972; Hanset & Michaux,
1985a,b), and the gene determining halothane sensi-
tivity in pigs (Smith & Bampton, 1977). Where genes
can be identified and individual animals genotyped,
exploitation of the genetic variance can be optimized.
Major genes can also provide raw material for genetic
engineering programmes.
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Despite large phenotypic effects, major genes are
often not immediately apparent due to the obscuring
effects of polygenic and environmental variation. It is
likely, therefore, that genes of major phenotypic and
potential economic importance have yet to be detected.

Segregation analysis has been proposed as a suitable
method to detect a segregating major gene (Elston &
Stewart, 1971). It involves maximizing and comparing
the likelihood of the data under different genetic
models to ascertain the most likely genetic structure.
To identify a major gene the maximum likelihood (ML)
of the data under a polygenic model is compared with
that under the combined model (containing a major
gene and polygenic component). A significant improve-
ment in the likelihood obtained by incorporating a
major gene in the model provides evidence for the
segregation of a major gene in the population under
study.

The size of pedigrees that can be considered under
the exact combined model is effectively limited to
between 10 and 20 by the fact that the number of



300 S. A. KNOTT ETAL.

calculations required to calculate the likelihood
increases exponentially with the pedigree size (see
below).

This paper explores the behaviour of approxima-
tions to the combined-model likelihood suitable for
animal breeding data.

Likelihoods

Equations for the exact combined model and polygenic
likelihoods are obtainable following Morton &
MacLean (1974). A simple sire model with one off-
spring per dam and balanced structure will be used. All
parents are assumed to be unrelated and randomly
mated. A single trait is considered with one observa-
tion for each offspring. Fixed effects, such as herd or
year, will be ignored in the development of the likeli-
hoods, but an extension to include these or more com-
plex pedigree structures is possible.

The model to describe the data for offspring jofsire
i, when offspring j has major genotype d, can be repre-
sented as

YU+ua+ u,+ e,
where y is the performance of the jth offspring of the
ith sire, is the overall population mean of the poly-
genic and environmental components, d is the off-
spring major genotype, set to zero for the polygenic
model, is the effect of major genotype d (for poly-
genic model equals zero). u, is the random effect for
sire i (i.e. polygenic component) independent of dud;
u — N(0, o), and ej is the residual random effect for
each individual, independent of u and /2j; e N(0, o).

Following Morton & MacLean (1974), the polygenic
likelihood can be written as follows

L(poly)= k0(yI ,u1, a du

and the combined model likelihood

L(MM)= p(c)h(u)i1 — c1 j1 d1
x trans(dj c)kd( y,1 I /',/2d, u,, a du,

where s is the number of sires, n is the number of half-
sib offspring per sire, m is the number of major geno-
types, p( c) is the frequency of major genotype c in the
population of sires, and trans(dlc) is the probability of
the offspring having major genotype d when the sire
has genotype c, which is based on Mendelian trans-
mission probabilities and the allele frequency in the
population of dams, and h( u1) is the likelihood that sire
i has polygenic transmitting ability u1.

(1)

1 1
exp ——--(u,)

,J2ra 2u

k(y, I UUd, u,o) is the conditional likelihood that
offspring j of sire i has phenotype y,1when offspring j
has major genotype d and the polygenic component
contributed from sire i is u1.

Xexp [_:y,j_p_pd_uj2].

1
kd( Y11 /2, /2d, U, (7)

'J2ru

The combined-model likelihood involves the integra-
tion of a complicated function, which gives a summa-
tion over each combination of major genotypes for the
pedigree. With n offspring 2' + 3" summations for
each sire are required. This calculation of the likeli-
hood becomes impracticable even with only a small
number of offspring per sire, for example, with five
offspring (n 5), 307 combinations have to be con-
sidered and with 10 offspring, 61, 097 combinations.
Hence, several approximations to this likelihood will
be considered.

Hermite integration

A standard numerical approximation to an integration
is to replace it with a weighted summation, so that
effectively a continuous density function [c(x)] is
replaced by a discrete histogram (for example, see
Hildebrand, 1974).

lb G

c(x)f(x)dr= > wgf(xg)
a g=1

(3)

where G is the number of points in the summation,
Xg

are the abscissae within the range a to b, and
Wgare the

weights.
Suitable weights and abscissae need to be supplied.

As the number of points in the summation increases the
approximation improves, integration being equivalent
to an infinite number of points. By taking into account
the distribution of the function to be integrated, the
abscissae and weights can be optimized to reduce the
number of points required in the summation to provide
a reasonable approximation. In the case of the com-
bined model likelihood, the variable over which inte-
gration takes place appears in the form exp[ — x2] [see
equation (2)] and hence efficient abscissae and weights
can be obtained from the Hermite polynomial
(Hildebrand, 1974). Tables of the weights and
abscissae exist for various numbers of points in the
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summation and are given for a standard curve, sym-
metrically placed about the origin (e.g. Abramowitz &
Stegun, 1972).

The exact combined model likelihood contains an
integration over the transmitting ability (u1) for each
sire. To allow the flexibility to take the summation
around a value other than zero and to alter the variance
of the transmitting ability distribution to have the same
range as the abscissae of the standard curve, the trans-
mitting abilities can be transformed thus

Ui— ii

where 1, are the location parameters, and V1 are the
scaling parameters.

The likelihood can be rewritten as follows

s f+-i 2 2 2
I 2rV u x 1

L(MM)=[I I ___ exp —-—-+— ___i1J- ,j2jro 2a,, 2 J22rV

xexp [—h] p(c) Fl trans(dlc)2 a=i

X
1

exp12 u1)2 du,.
,J2.iru, [ 2c

Rewriting the transform u1 = Fx1 + 1, and hence
du1 = dx1 then changing the integration over u to an
integration over x and finally replacing the integration
over x1 with a summation gives the following combined
model likelihood

L(MM)=[I
1=1 .[2ru g1 c1

p(c)exp
[(VjXg+li)2
[ 2a

21 n rn

+-d [1 trans(dc)
2jJ=d=1

_[YIj_ 1(I'xg+ )J2
xexp 2o,

The Hermite polynomial is appropriate when c(x)
(3) is of the form exp[ — xr], whereas here the variable
to be integrated is 1/J2rexp[—(x/2)]; hence the
abscissae obtained from standard tables (e.g. Abramo-
witz & Stegun, 1972) should be multiplied by ..h and
the weights divided by ,J. This approximation will be
denoted Herm.

On the basis of a study examining the number of
points required in the summation to obtain a reason-
able approximation (Knott, 1990), it was found that 20
points gave a value for the likelihood that was exact to
more than five decimal places. Further refinements to
the scaling of the abscissae and weights could reduce
the number of points required for the same precision,

for example, the use of the sire variance component to
scale the abscissae reduced the required number of
points to 10.

Estimating the mode of each sire's transmitting ability
distribution

Following Le Roy et al. (1989) and incorporating the
mode of the transmitting distribution for each sire for
each combination of major genotypes for the half-sib
family, the exact combined model likelihood can be
rewritten as follows

L(MM) 11 p(c)trans(Dc)(2r) V D=1

1 , I
X exp — —f U, U11) exp

—

2u1, 2CR,

x(y,— lp —Wpp1/—ZJñjCD)'(yf— 1,u

— WDMd—
ziuiCD)]

where V, is the phenotypic variance—covariance matrix
for the offspring of sire i, trans(Dl c) is the probability
that the offspring have major genotype combination D
given that the sire has genotype c, IâiCD is the mode of
the distribution of transmitting ability for sire i, when
he has major genotype c and the combination of major
genotypes for his offspring is D, y, is a vector of pheno-
types for the offspring of sire i, WD is an nxm design
matrix for combination D containing a one for the
major genotype being considered for each offspring
and a zero otherwise, Pd is a vector of major genotype
means, and Z is the column relating to the ith sire of
the design matrix for random effects.

The mode of the distribution of transmitting ability for
each sire has to be calculated for each possible com-
bination of major genotypes for the sire and offspring.
This calculation soon becomes infeasible as the
number of offspring per sire increases, as described for
the exact likelihood. Therefore an approximation to
this likelihood is suggested, where a single estimate of
the mode of each sire's transmitting ability distribution
is calculated taking into account the possible major
genotypes for the sire and offspring. The following
expression is obtained for the combined model likeli-
hood (Le Roy et al., 1989), which will be denoted MEl

2 2112 m n m
L(MM)=FJ h() p(c) IIi=1 fl+) c1 j=1 d1

x trans(dIC)kd(Y,JjP,Pd,a,G) (6)

(5)
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where ñ, is the mode of the transmitting ability distribu-
tion for sire i. h(2,) and kd(y17ju,1u,z2,u) are as
defined previously, now using the mode of the trans-
mitting ability.

This is equivalent to Hermite integration with a
single point in the summation for each sire, the point
taken at an estimate for his polygenic breeding value,
and would be equivalent to the exact combined-model
likelihood if the major genotype of all individuals was
known. A similar likelihood was considered by
Hoeschele(1988).

Estimating the mode of each sfre 's transmitting
distribution for each major genotype

Given the phenotypes of a group of half-sib offspring,
the estimate of the polygenic transmitting ability of the
sire should be dependent on his major genotype.
Hence an approximation is proposed where the trans-
mitting ability for each sire is estimated for each of his
possible major genotypes.

Estimating the mode of each sire's transmitting
ability distribution under the hypotheses of each major
genotype for the sire, so that three estimates are
obtained, gives the following approximation to the
combined model likelihood (ME3) for the half-sib
family structure defined previously

L(MM)= I (2ch/2 p(c)h(1) IIeI j1 dl
x trans( dI c)kd( y, I ,U,Ud, u) (7)

where 2je is the mode of sire i's transmitting ability
distribution given that he has genotype c, h(i) and
kd(yujM,d,z2jC,u) are as defined previously, but now
the transmitting ability of the relevant genotype (c) is
used.

This approximation would be equivalent to the exact
combined model likelihood if the genotypes of all the
offspring were known.

Analyses
A simulation study was carried out to investigate the
performance of the three approximations. Phenotypes
of 20 half-sib progeny from each of 50 sires were simu-
lated, with all parents unrelated and randomly mated.
Two polygenic models were simulated with phenotypes
composed only of a polygenic component and an
individual environmental component. In one model,
the expected heritability was 0.2 and in the other 0.4.
Four combined models, with a major gene, polygenes
and an individual environmental component, were
considered. In all simulations the genetic component

comprised the effects of 25 unlinked loci, each with
two alleles in Hardy—Weinberg equilibrium. For the
polygenic components the alleles at each locus were at
equal frequency with the same additive effect. The
expected frequencies of the two alleles (denoted A and
a) at the major locus and the relative effects of the three
major genotypes are given in Table 1 for the four com-
bined models. In each combined model there are two
within major genotype standard deviations (Jo + a)
between the effects of the homozygotes. One hundred
replicates were simulated for each model.

In the analysis the mean effect of the low-scoring
homozygous genotype (eu) at the major locus, and the
deviation from this mean of the other two major geno-
type means (PAA and MAa), were estimated. The
population was assumed to be in Hardy—Weinberg
equilibrium and a single allele frequency [p(A)J was
estimated. Two analyses of each dataset were carried
out, the first assuming that the polygenic heritability
was known, and estimating just the residual variance,
and the second estimating the polygenic heritability as
well as the residual variance.

Hermite integration was used with 20 points in the
summation with the abscissae located around zero
(l= 0) and using the square root of the sire variance
estimate (an) from the previous iteration as the scaling
parameter (1/,).

The Herm likelihood was maximized using a quasi-
Newton algorithm (Numerical Algorithms Group,
1988) and the MEl and ME3 likelihoods were maxi-
mized using an EM algorithm. This algorithm is
described by Le Roy et a!. (1989) and Hoeschele
(1988) for the MEl likelihood and can easily be
extended for the ME3 likelihood. Parameter estimates
are required from which the maximization process can
start. If these are close to the global maximum, con-
vergence to this maximum is more likely to be
obtained. In these simulations the expected (i.e. simu-
lated) parameters are known and hence these were
used as initial estimates. In practice this would not be
the case and several starting points would be used in
order to confirm that the global maximum has been
attained. The EM algorithm is sensitive to the initial
parameter estimates and therefore the MEl and ME3
likelihoods were maximized from an additional set of
starting values. These alternative starting values
explained the expected total mean and variance of the
data but contained a major gene of different effect.
They are given in Table 1. For each sire the initial
estimate for his transmitting ability was zero. The poly-
genic heritability was fixed for the first few iterations
otherwise the sire estimates remain at zero and con-
vergence cannot be attained. For the polygenic data,
the starting values for the combined model analyses



POWER OF SEGREGATION ANALYSIS 303

Table 1 Expected parameter values for the mixed models simulated and the
alternative set of starting values used for the maximization process for each model

Model p(A) AA /Aa 4aa C h;0 hig

Additive 0.2 0.5 20 10 0 5 95 0.2 0.33
Additive 0.4 0.5 20 10 0 10 90 0.4 0.33
Dominant 0.5 20 20 0 5 95 0.2 0.43
Rare 0.2 20 10 0 5 95 0.2 0.24

Alternative starting values for maximization
Additive 0.2 0.5 25 12.5 0 4 68 0.2 0.52
Additive 0.4 0.5 25 12.5 0 7 65 0.4 0.52
Dominant 0.5 20 10 0 6 119 0.2 0.29
Rare 0.5 20 10 0 4 78 0.2 0.38

p(A) = frequency of the high scoring allele in the parent population.
the effect of the major genotype d, relative to the effect of the low scoring
homozygote (laa).

= the additive polygenic sire variance component.
a— the residual variance.

—_____
poy_

h2— Gmg
mg 2 2 2a+ a+ Umg

aig= the variance contributed by the major gene.

assumed that the major gene was additive with equal
allele frequencies and explained 50 per cent of the total
phenotypic variation and additionally for the ME 1 and
ME3 methods, assuming the major gene explained 13
per cent of the variation.

In exact ML analyses, a test statistic is provided by
twice the difference between the natural logarithms of
the MLs under the combined model and the polygenic
model (2[In L(MM)—In L(poly)]). Under the null
hypothesis of no major gene component, this test
statistic is expected asymptotically to follow a clii-
squared distribution with 3 d.f. (Wilks, 1938), as three
parameters [p(A), AaI are estimated in the
combined model but fixed in the polygenic model.

The distribution of the test statistic for the three
approximations for data simulated with and without a
major gene can be used to explore their usefulness and
power in the analysis of animal breeding data.

To enable a prediction of the number of individuals
required to obtain a certain power, the analyses were
repeated using different numbers of sires and half-sib
offspring per sire. The combined models simulated
with an additive major gene with equal allele fre-
quencies and a polygenic heritability of 0.2 (additive
0.2 model) and with a dominant major gene (dominant
model) were used. To consider the effect of the size of
the major gene, two additional combined models were

simulated. The data were simulated for 50 sires each
with 20 half-sib progeny under a model with a poly-
genic heritability of 0.2 and with a major gene with
additive effect and alleles at equal frequency. In one
case there was one within-major gene phenotypic
standard deviation (Ia+ a) between the homo-
zygotes and in the other three standard deviations. The
results from 10 repeat simulations of each situation
were considered.

Results

Analyses of polygenic data

The results from analyses of the simulated polygenic
data are summarized in Table 2 as the mean and
standard deviation of the test statistic distributions and
the number of analyses giving significant results at the 5
and 1 per cent significance levels of a chi-squared dist-
ribution with 3 d.f. To compare the observed test statis-
tic distribution with the expected distribution, the
observed number of statistics falling within 10 equal
probability classes of a chi-squared distribution were
compared with the expected number (i.e. 10) using a
chi-square test. The results are given in Table 3.

Using Herm to analyse data simulated under the null
hypothesis produced mean values of the test statistic
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Table 2 Mean and standard deviation of the test statistic (setting negative test statistics to zero) from the analysis of polygenic
data, the number of analyses where the test statistic was zero and the number significant at the 5 and 1 per cent significance
levels of a chi-square distribution with 3 d.f.

Model Analysis
(heritability)

Herm MEl ME3

Mean s.d. Zero 5% 1% Mean s.d. Zero 5% 1% Mean s.d. Zero 5% 1%

0.2 Fixed 2.89 2.33 0 5 0 0.16 0.76 95 0 0 0.41 1.14 78 0 0
0.2 Estimated 3.35 2.51 1 6 0 2.07 2.72 43 4 1 2.66 2.76 20 5 1
0.4 Fixed 3.06 2.99 1 5 3 0.01 0.00 99 0 0 0.30 1.54 89 1 1
0.4 Estimated 3.48 3.24 0 8 4 0.21 1.14 94 1 0 1.11 2.84 79 6 3
0.4 Fixed at 0.2 8.50 5.98 0 47 28 0.40 1.84 88 1 0 4.48 4.57 15 19 7

Based on 100 replicates of each simulation.

Table 3 Comparison of the observed test statistic
distribution from analysis of polygenic data with the
expected chi-square distribution with 3 d.f. The number of
observed test statistics falling in 10 equal regions of the
expected distribution were compared with the expected
number (10) using a chi-square test

Model
(heritability)

Analysis
x2 value

Herm MEl ME3

0.2 Fixed 4.4 803.6 642.8
0.2 Estimated 10.4 155.2 38.0
0.4 Fixed 6.6 880.2 747.6
0.4 Estimated 7.8 806.8 532.6
0.4 Fixed at 0.2 295.2 747.6 612.0

close to three with no significant difference between
the observed and expected distributions. This suggests
that the test statistic distribution does follow a chi-
squared distribution with 3 d.f. This is the case both
when the polygenic heritability was assumed to be
known and hence fixed at its expected value and when
the heritability was estimated.

The results presented from the MEl and ME3
methods are based on the combined model analysis
that gave the highest likelihood. For some of the
analyses the test statistic obtained was negative for the
ML obtained from both initial estimates, i.e. the com-
bined model was less likely than the polygenic model,
and these test statistics have been set to zero. All of the
observed distributions using the MEl and ME3
methods were significantly different from the expected
distribution when the expected and observed number
of analyses were compared for 10 equal regions of the
chi-squared distribution. This was mainly because of
the high number of analyses resulting in a zero test
statistic. Removal of these analyses gave mean test
statistics closer to the expected value of three and the

test statistic distribution was not significantly different
from the expected distribution (results not shown).
Using the ME3 method the results were closer to the
expected distribution than using the ME 1 method.

When the polygenic heritability was fixed at a value
less than that simulated, the mean and variance of the
test statistic distribution increased along with the
number of significant analyses, especially for the Herm
and ME3 methods. The observed distribution of test
statistics with the Herm method became significantly
different from the expected distribution.

Analyses of combined-model data

The results from the analyses of combined-model data
are given in Table 4. The mean test statistic over the
100 analyses is always highest using the Herm and
lowest using the MEl method. Using a comparison of
the test statistic with the 5 and 1 per cent quantiles of
the chi-squared distribution with 3 d.f. as a criterion for
significance, major genes were detected most fre-
quently using the Herm method. The test statistics
obtained from the MEl and ME3 methods, plotted
against the test statistic from the Herm method for the
same set of data, are shown in Fig. 1 for data simulated
under the additive model with equal allele frequencies
and an expected polygenic heritability of 0.2 (additive
0.2 model), fixed in the analyses, and in Fig. 2 for the
simulated dominant major gene analysed (dominant
model) with fixed polygenic heritability. There is a
strong, positive linear relationship between the test
statistics for each method if the zero test statistics are
excluded, however, for each analysis, the Herm test
statistic is highest, the ME 1 test statistic is lowest and
the ME3 intermediate.

For all three approximations, when the simulated
major gene had an allele with dominant effect a major
gene was detected in virtually all analyses. Considering
the simulated additive major genes, for all the approxi-
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Table 4 Mean and standard deviation of the test statistic (setting negative test statistics to zero) from the analysis of mixed-
model data, the number of analyses where the test statistic was zero and the number significant at the 5 and 1 per cent
significance levels of a chi-square distribution with 3 d.f.

Model Analysis

Herm MEl ME3

Mean s.d. Zero 5% 1% Mean s.d. Zero 5% 1% Mean s.d. Zero 5% 1%

Additive 0.2 fix 12.80 6.84 0 75 59 0.58 2.38 90 4 1 6.70 4.96 5 33 14
Additive 0.2 est 5.09 3.71 0 20 7 3.31 5.31 33 13 5 3.34 4.43 30 13 5

Additive 0.4 fix 7.01 4.86 0 36 16 0.00 0.00 100 0 0 2.27 2.69 59 3 1

Additive 0.4 est 4.34 3.52 0 15 5 1.36 8.30 78 8 4 1.71 4.87 71 9 5

Dominant fix 47.28 14.72 0 100 100 31.32 14.52 1 92 92 38.26 14.31 0 99 97

Dominant est 41.13 12.89 0 100 100 37.22 13.53 0 99 98 37.34 13.44 0 99 99
Rare fix 12.04 7.24 0 65 41 2.63 5.09 47 11 7 7.45 8.63 3 38 19
Rare est 6.47 4.51 0 33 13 4.21 5.29 28 18 7 4.58 4.42 17 18 7

fix =analyses with the polygenic heritability fixed at the expected value in the analyses.
est analyses with the polygenic heritability estimated.
Based on 100 replicates of each simulation.

10 20

Herm test statistic

Fig. I ME3 (0) and MEl (+ ) test statistic plotted against
the Herm test statistic obtained from analysis of the same set
of data for the simulated additive major gene with equal
allele frequencies and an expected polygenic heritability of
0.2 fixed in the analyses. All negative test statistics have been
set to zero. The solid line indicates a line of unity.

mations except when using the Herm method with
fixed polygenic heritability, evidence for a major gene
was found in the highest number of analyses when one
of the alleles was rare. For the Herm method with fixed
heritability the number of analyses in which evidence
for a major gene was found was dependent on the
amount of genetic variance explained by the major
gene (i.e. the additive 0.2 model is higher than the rare
model which is higher than the additive 0.4 model). For
all three approximations, both when the polygenic
heritability was fixed and when it was estimated, the

100

Fig. 2 ME3 (0) andMEl (+ )teststatistic plotted against
the Herm test statistic obtained from analysis of the same set
of data for the simulated major gene with an allele with
dominant effect and an expected polygenic heritability of 0.2
fixed in the analyses. The solid line indicates a line of unity.

mean test statistic and number of significant results
were higher when the simulated polygenic heritability
was 0.2 than when it was 0.4, although the major gene
explains the same proportion of the total variance.

Using the Herm and ME3 methods the mean test
statistic decreased when the polygenic heritability was
estimated and hence fewer analyses gave significant
results. Using the MEl method the mean test statistic
distribution increased when the heritability was esti-
mated, mainly because of the decreased number of
analyses that resulted in a polygenic model with zero
test statistic.
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Sample size and gene magnitude effects

The mean test statistic from the analyses of 10 repli-
cate datasets generated under each of the dominant
(dominant) and additive (additive 0.2) models were
considered for different numbers of sires and half-sib
progeny. The relationship between the mean test statis-
tic obtained using the Herm method and the total
number of offspring in the data, regardless of the num-
ber of sires, is shown in Fig. 3 for the data containing
the dominant major gene. A regression of the mean test
statistic on the total number of progeny gives a linear
relationship for all of the methods when analysing data
containing the dominant major gene, both when esti-
mating the polygenic heritability and when fixing it at
the expected value. A quadratic relationship was also
significant for most of the methods. However, fitting
both the linear and quadratic components together
explained less than an additional 2 per cent of the var-
iance in the test statistic means compared with fitting
just the linear component (which explains, on average
56 per cent). The constant was not significantly differ-
ent from three, as expected, this being the degrees of
freedom under this test. With the dominant major gene,
considering only analyses with a total of 1000 offspring
(with 5, 10, 20, 25, 40, 50, 100 or 200 sires), there was
found to be a small negative relationship between the
mean test statistic and the number of sires in the data
and a small positive relationship with the number of
progeny. Regression of the mean test statistic on the

U

(a
'.3

0a
C
(a
0)

140

120
x

number of sires and the total number of progeny shows
that the number of sires explain much less (only 2—3
per cent) of the variation in the mean test statistics than
the total number of offspring (on average 56 per cent).
However, fitting the number of sires together with the
total number of offspring to the test statistic means
removed or reduced the evidence for the quadratic
component. Considering the combined model simu-
lated with an additive major gene (additive 0.2 model),
a linear relationship between the total number of
offspring and the mean test statistic was observed. For
this model, however, some of the analyses (on average
30 out of 80 analyses for the MEl arid 8 out of 80 for
the ME3 method) resulted in a zero test statistic. Con-
sidering the ME 1 method, where a large proportion of
analyses resulted in zero test statistics, a contingency
chi-square test indicated that the number of zero test
statistics was not dependent on the sample size. With
the ME3 method, the number resulting in zero was
small, and hence a test cannot be carried out.

Using the data containing 1000 offspring, as the
number of offspring per sire increased the mean test
statistics for the MEl and ME3 methods became
closer to the value obtained from Herm. Figure 4 illu-
strates this, giving the mean MEl and ME3 test statis-
tics as a deviation from the Herm test statistic. With an
increased number of offspring per sire the probability
of being each major genotype for the sires is closer to
one or zero for the three methods. When the sires are
genotyped with absolute certainty the MEl likelihood
is equivalent to the ME3 likelihood. The increased
probability with which sires are genotyped with
increasing number of offspring also reduces the differ-
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Fig. 3 Mean test statistic for different numbers of sires and
half-sib progeny per sire plotted against the total number of
progeny in the data from the analysis of data simulated under
a mixed model containing a dominant major gene. Means are
based on 10 replicates of each sample size, except for the
mean from data containing 50 sires each with 20 half-sib
progeny which is based on 100 replicates.
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Fig. 4 A comparison of the mean MEl (n) and ME3 (•)
test statistics with the Herm test statistics, as a deviation from
the Herm statistic, for different numbers of progeny per sire
with the total number of progeny fixed at 1000.



Table 5 Mean and standard deviation of the test statistic (setting negative test
statistics to zero) from the analyses of mixed-model data containing additive major
genes of different effect with alleles at equal frequency. Also given are the
proportion of analyses which resulted in a zero test statistic
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MEl
Gene
effect Analysis Mean s.d. Zero Mean s.d. Zero Mean s.d. Zero

3 fix 34.36 14.54 0.0 11.54 12.87 0.2 22.09 13.32 0.0
2 fix 12.80 6.84 0.0 0.58 2.38 0.9 6.70 4.96 0.1
1 fix 3.56 3.08 0.0 0.00 0.00 1.0 1.52 2.17 0.6
3 est 16.29 5.91 0.0 14.34 6.10 0.0 14.34 6.10 0.0
2 est 5.09 3.71 0.0 3.31 5.31 0.3 3.34 4.43 0.3
1 est 2.45 1.20 0.0 1.50 1.71 0.5 1.91 1.44 0.2

Gene effect =phenotypic standard deviations simulated between the major gene
homozygotes.
fix =analyses with the polygenic heritability fixed at the expected value in the

analyses.
est analyses with the polygenic heritability estimated.
Models 1 and 3 are based on 10 repeat simulations and model 2 is based on 100.

ence between the ME3 and Herm likelihoods.
However, although correct account is taken of the
uncertainty in major genotype of the sire, the uncer-
tainty in the offspring major genotypes, given the sire's
is not correctly accounted for in the ME3 likelihood,
and so the ME3 method is not expected to be asymp-
totically equivalent to the Herm likelihood.

Table 5 gives the mean test statistic from the
analyses of combined model data containing additive
Iiajor genes of different effect. Increasing the effect of
fhe major gene increases the mean test statistic, the
Ihcrease being in proportion to the variance of the
major genes. In addition, increasing the effect of the
major gene improves the MEl and ME3 methods
giving mean test statistics closer to that obtained with
the Herm method. When the simulated gene has a large
effect the sires are genotyped with high probabilities
giving the same effect as increasing the number of
offspring per sire. With the polygenic heritability esti-
mated in the analyses, the MEl and ME3 methods
result in the same major gene models for the data with
the largest gene effect.

Discussion

In this study we have developed methods of segrega-
tion analysis that can be applied to a half-sib popula-
tion structure typical of many cattle and sheep
populations and have shown that it is possible to detect
segregating major genes in such populations. The three
approximations to the combined model likelihood
developed have been compared in terms of the test

statistic obtained when analysing data containing
phenotypes controlled by only polygenic and environ-
mental components or these components plus a major
gene.

From the analyses of polygenic data, the chi-square
distribution with 3 d.f. provides a reasonable descrip-
tion of the observed distribution of test statistics using
the Herm approximation and, hence, a suitable crite-
rion against which to compare the test statistic for
evidence of a major gene. With the MEl and ME3
methods the observed test statistic distribution did not
follow this chi-square distribution because a high
proportion of analyses resulted in zero test statistics.
However, the chi-square distribution does provide a
conservative test for the detection of a major gene for
the MEl and ME3 methods.

The number of analyses in which evidence for a
major gene was detected was dependent on the distri-
bution of the phenotypes, as well as the proportion of
the genetic variance explained by the simulated major
gene. The dominant major gene both explained a high
proportion of the genetic variance (79 per cent) and
caused the phenotypic distribution to be skewed (mean
skewness of the 100 simulations was —0.317). This
skewed distribution cannot be explained by the poly-
genic model and hence the inclusion of a major gene
can improve the likelihood significantly. Considering
major genes simulated with the same effect but with
different allele frequencies (rare versus additive 0.2
model), a major gene was detected more frequently
when one of the alleles was rare despite the major gene
explaining less of the variance. This could, again, be

Herm ME3
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caused by the skewness of the distribution (mean skew-
ness over the 100 analyses was 0.118 for the simulated
major gene with a rare allele, and 0.003 when the
alleles were at equal frequency). For the two simula-
tions with an additive major gene with equal allele
frequencies, a major gene was detected most frequently
when the simulated gene explained a higher proportion
of the genetic variance even though it explained the
same proportion of the total variance.

Using the MEl approximation to the combined
model likelihood there is a problem in identifying the
major gene because the test statistic is frequently zero.
The relationship of non-zero ME 1 test statistics with
the test statistics from the same data obtained with the
Herm method is strong, positive and linear, suggesting
that it might be possible to reduce the threshold for
significance for the test statistic or obtain a threshold
by simulation. The latter approach was used by Le Roy
et al. (1989) but involves intensive computer usage.
Furthermore the large number of zero test statistics
obtained analysing data containing a major gene
suggests that the power will never be high.

It has been suggested that the polygenic heritability
can be fixed in segregation analysis, thus reducing the
number of parameters to be estimated (Le Roy et al.,
1989). Certainly, analysing data simulated with a major
gene with the polygenic heritability fixed at the value at
which it was simulated, the polygenic likelihood is
much less than the combined model likelihood using
the Herm and, to some extent, ME3 approximations.
This occurs in part because the fixed polygenic herit-
ability poorly explains the total genetic variation, both
major gene and polygenic. When the polygenic herit-
ability is estimated, the difference between the poly-
genic and combined model likelihood is reduced,
because an increased heritability in the polygenic
model can explain some of the major gene variance.
Thus when the heritability is estimated the test statis-
tics are smaller and this results in the major gene being
detected less frequently for the additive models. A
corollary to this, however, is that, if the polygenic herit-
ability was underestimated and fixed in analyses at that
value, a combined model is sometimes inferred, simply
because the major gene can explain the additional poly-
genic variation in the data. Thus, analyses in which the
polygenic heritability is fixed must be treated cautiously.

The results from the analyses with different numbers
of individuals can be used to predict the number of
individuals required to obtain, on average, a certain
power with a given error for the simulated major genes
considered here. In these analyses the non-central
component of the mean test statistic approximately
doubled with a doubling of the sample size, whether
the increase in sample size was caused by an increase in

the number of sires or the number of offspring per sire.
Hence, the mean test statistic obtained from analysis of
the 100 replicates, each with 50 sires and 20 half-sib
progeny, given here, can be used to obtain an indica-
tion of the number of individuals required for a given
power. To obtain 90 per cent power with an error of 5
per cent, assuming a non-central chi-square distribu-
tion, the non-central component of the mean test statis-
tic needs to be 14.171 (Pearson & Hartley, 1976).
Using Herm with fixed heritability, the mean test statis-
tic for the 100 analyses was 47.28 (Table 4). Assuming
the linear relationship described above only 320 indivi-
duals would be required to obtain this mean test statis-
tic for this model. It would seem likely that for more
complicated pedigree structures this simple relation-
ship between the number of individuals and the mean
test statistic will not hold. Even for the simple pedigree
considered here this linear relationship is a simplifica-
tion, but should give an indication of the number of
individuals required in a balanced half-sib design.

For a given pedigree structure, increasing the effect
of the simulated major gene increases the Herm mean
test statistic approximately in proportion to the
increase in the variance explained by the major gene.
This relationship can be used to obtain an estimate of
the number of individuals required to detect a major
gene of given size and frequency.

What is wrong with the MEl likelihood?

The ME 1 approximation to the combined model likeli-
hood is appealing because of its similarity to the classi-
cal mixed-model methods, breeding value estimation
and ease of inclusion of fixed effects. Its performance
in terms of the power, however, was poor. Further
investigation of this approximation was carried out in
order to explain this poor performance. The MEl
likelihood was investigated using a simple model where
the sires can have the major genotype AA or aa and the
dams have the major genotype AA. Hence, there is no
segregation of the major genotype within half-sib
families and the exact likelihood (5) can be written in
the same form as the ME3 likelihood, estimating a
transmitting ability for each major genotype of each
sire. This likelihood can be simplified, because the
difference between the two sire estimates (one for each
major genotype) is constant over all sires and is a func-
tion of the difference between the major genotype
means. This difference will be called A and its maxi-
mum likelihood estimate (A) is equal to

n(1u1—u2)
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where p1 and 2 are the mean effects of the two major
genotypes. The MEl likelihood can be obtained by
setting A to 0. Data were simulated with 50 unrelated
sires each with 20 half-sib offspring. The polygenic
heritability was 0.2 and the two major genotypes each
had a frequency of 0.5 and with about two-thirds
phenotypic tandard deviations between the means.
The major genotype means (,u1u2), population geno-
type frequency [p( 1)] and the residual variance (u)
were fixed at their ML estimates for the exact likeli-
hood. For each method the sire effects (u,1 and A or u,)
were estimated using an EM algorithm based on first
derivatives. Under these conditions the maximum
value of the exact likelihood is greater than that of the
MEl likelihood. The difference between the likeli-
hoods can be explained in terms of the sire effects, A,
and the conditional sire genotype probabilities [q(c)],
which are different in the two methods as a con-
sequence of the other changes. The solid line in Fig. 5
gives the difference between the exact and ME 1 log
likelihoods for each sire plotted against his conditional
probability of being genotype 2 estimated under the
MEl likelihood [q,0(2)]. When q0(2) is equal to 1 or 0
the exact and approximate models give the same likeli-
hood value, as then, effectively the genotype of the sire,
and hence also of his offspring, is known. Otherwise
the approximation always underestimates the likeli-
hood, the largest difference being when the conditional
probability under MEl is equal to 0.5.
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Fig. 5 Approximations to explain the difference between the
exact and ME 1 likelihoods for each sire plotted against the
conditional probability of the sire being genotype 2
estimated using MEl. The major genotype means and
frequencies and the residual variance are fixed at their ML
estimates. A two genotype model with no segregation within
half-sib families is used. See text for an explanation of the

approximations. (—) ln L(exact)-ln L(ME1), (
approx. 1,(———)approx. 2.

A Taylor expansion can be used to explain the exact
likelihood in terms of the MEl likelihood. A first
approximation would be to assume that the difference
can be explained in terms of A. The partial second
derivatives with respect to u and A can be approxi-
mated assuming that the conditional probabilities of
each genotype for each sire [q1((c)] are constants. The
first derivatives can be arranged into a series of equa-
tions and minus the coefficient matrix from these equa-
tions used to approximate the second derivatives. The
derivatives with respect to the transmitting abilities can
be absorbed into the derivatives with respect to A to
give the following equation for the exact likelihood,
ignoring terms beyond a quadratic:

in L(A)ln L(0)+A2 q0(1)q10(2).2u ,
Alternatively the ME 1 likelihood could be approxi-

mated in terms of the exact likelihood and second
derivatives could be approximated using the first
derivatives from the exact likelihood giving the follow-
ing equation:

In L(0)a> in 2
i=1

These approximations, rearranged as the difference
between the likelihoods [in L(A) — ln L(0)], are given in
Fig. 4 as approximations 1 and 2 respectively.

It can be seen that in both cases the difference
between the exact and MEl likelihoods can be
correctly estimated when the conditional probability of
being genotype 2 is equal to 0.5. Otherwise the condi-
tional probabilities from ME 1 underestimate the
difference and those from the exact likelihood overes-
timate the difference. At 0.5 the conditional probability
does not change with a change in A and the approxima-
tion can correctly estimate the difference between the
approximate and exact likelihoods, because correct
account is taken of the change in the transmitting abil-
ity which accompanies a change in A. At other values
of the conditional probabilities they are not constant
with a change in A, and as A approaches zero the con-
ditional probabilities become more extreme (closer to
Oorl).

Incorporating the observed second derivatives and
making different assumptions about the change in the
transmitting abilities that accompany a change in A
were not improvements on the first approximations
given above.

Fixing A at zero causes a term to be excluded from
the log likelihood. A large component of this term is a
function of the difference between the major genotype
means, A, and the conditional sire probabilities. Using
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Conth1iona probability of genotype 2 estimated using MEl
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the two genotype model and assuming that there is
prior knowledge that the difference between the means
is zero, or more precisely, that the difference follows a
normal distribution with expectation zero and with
variance a would give the following likelihood:

ln L(prior)=ln L()_2).

It can be shown that the MEl likelihood can be
written in a similar form. i is a function of the differ-
ence between the major genotype means and its var-
iance can be obtained from the inverse of the matrix of
partial second derivatives (which in the exact case is the
same as the first derivative coefficient matrix).

It is suggested, therefore, that estimating a single sire
effect is similar to using the exact likelihood with prior
information that the difference between the major
genotype means is zero. If there is considerable
evidence in the data to suggest that this is not the case
then a combined model will be more likely than a poly-
genic model. Otherwise, the prior will outweigh the
data information and a polygenic model will be
suggested with zero test statistic. From the simulation
study it seems that evidence from the data has to be
strong before a major gene is inferred.

Concluding remarks

The methods described here can be used to detect
major genes in half-sib populations of farm animals.
Using the Herm method, the power to detect a major
gene was reasonable. However, with larger pedigrees
and the inclusion of fixed effects the computation
required may become prohibitive. The MEl method,
in comparison with the Herm, appears to require
strong evidence in the data before a major gene is
detected. The ME3 method detected a major gene
more frequently than the ME 1 but still provides a less
powerful test than the Herm method.

Using paternal half-sibs the mean test statistic has an
approximately linear relationship to the total number
of offspring, with the constant term being equal to the
degrees of freedom of the test. Hence from the mean
test statistic obtained with a given sample size the
number of individuals required to achieve a particular
power can be predicted using the expected distribution
of the non-central chi-square. The mean test statistic
increases in proportion to the variance explained by
the major gene for alleles of different effect but the
same mode of action and frequency.

The results given here suggest that approximations
to segregation analysis are capable of detecting a segre-
gating major gene. In this study the effects of the major

gene were fairly large (explaining 24 , 33 and 43 per
cent of the total variance for the additive major gene
with a rare allele, additive with equal allele frequencies
and dominant models respectively) making the condi-
tions for finding a major gene favourable. Nonetheless,
the half-sib data structure used omits many potentially
useful relationships and an improvement in the power
of the methods might be obtained by using more com-
plex pedigrees.
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