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Variation of ribosomal gene spacer length
among wild and cultivated banana

C. LANAUD,* H. TEZENAS du MONTCEL, M. P. JOLIVOT, J. C. GLASZMANN &
D. GONZALEZ DE LEON

BIOTROP, CIRAD, BP 5035, 34032 Montpe/ller Cédex, et */RFA, do, IN/BAP, 7bd de Ia Lironde,
34980 Montferrier-sur-Lez, France

The diversity of rDNA spacer length (IGS) of 107 wild and cultivated clones of banana belonging to
different genetic groups, was studied using a sulphonated wheat rDNA probe. The length of the
rDNA unit was between 10 and 12.6 kb and was highly variable. Fifteen different types of IGS
could be observed. IGS diversity within the acuminata complex was greater among the diploid
cultivars than among the triploid cultivars. Variation was also found among BB genotypes and
confirms the diversity of this species. As opposed to previous studies, based on enzymatic or poly-
phenolic markers, there was no obvious relation between the rDNA structure and the classification
into genetic groups. More particularly, the IGS variations did not differentiate between the A and B
genomes. This analysis, however, indicates a relationship between the geographical origin and the
IGS structure of Thai and Indonesian clones.
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Introduction

Banana is a vegetatively propagated plant which origi-
nates from South East Asia. Its genetic organization is
based on two diploid species Musa acuminata and
Musa balbisiana, which possess two different genomes,
A and B, respectively. Wild, seminiferous and usually
non-parthenocarpic genotypes are still encountered in
these two species (Fig. 1). Some parthenocarpic AA
diploid cultivars can also be found in Asia and the
Pacific but most cultivated bananas are triploid and are
consumed as a vegetable or dessert (Simmonds, 1966;
Champion, 1967). Musa acuminata has diversified into
several sub-species. Shepherd (1987) studied the cyto-
logy of hybrids between these sub-species and ident-
ified seven regional groups. They differ from each
other by the presence of one or several translocations,
or by one inversion. All the diploid cultivars studied so
far have been shown to be heterozygous for one or
more translocations (Dodds, 1943; Dodds &
Simmonds, 1946, 1948; Wilson, 1946; Hutchinson,
1966; Shepherd, 1987; Dessauw, 1989). Some of these
cultivars may represent hybrids between the regional
groups.

The genetic origin of triploid cultivars is not well
known. It probably involved several diploid cultivars
which were partly sterile and produced non-reduced
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gametes. The taxonomy of triploid cultivars and classi-
fication into genetic groups was first studied by
Simmonds & Shepherd (1955) using 15 morpho1ogicaL
characters that differentiate Musa acuminata from
Musa balbisiana. The probable genetic origin and
classification of the cultivars are drafted on Fig. 2
(Tézenas du Montcel, 1989).

Enzymatic and polyphenolic markers were applied
by Jarret et al. (1986a, b), Jarret (1987), Horry & Jay
(1988) and Horry(1989)to the study of genetic diver-
sity and to shed new light on the extent of variability
among wild and cultivated genotypes and the possible
origin of diploid and triploid cultivars.

Nevertheless, many uncertainties remain. In a study
of genetic diversity of bananas using RFLP markers,
we analysed the variation of ribosomal RNA gene
spacer length. The structure of RNA genes (rDNA) has
been described iii many plant species (Hemleben et al.,
1988). The rDNA genes are organized in tandemly
repeated units ranging from 250 to 22,000 copies per
genome (Rogers & Bendich, 1987). Each unit contains
coding sequences which give rise to 18, 5.8 and 25 5
after cleavage of an rRNA precursor, and a non-coding
intergenic spacer (IGS) which contains signals for tran-
scription initiation and termination. The rDNA en-
coding regions tend to be highly conserved between
different species and genera (Appels & Dvorak, 1982)
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while the IGS usually shows extensive intra and inter-
specific variation.

rDNA varies in three features: the number of copies
of each type of unit, IGS and the conserved region.
These three features do not evolve in a similar way.
The copy number may evolve rapidly, faster than the
IGS, and changes may occur even among the somatic
cells of an individual (Rogers & Bendich, 1987) or
under stress (Culls, 1981, 1986). The IGS evolves
faster than the coding region (Appels & Honeycutt,
1986; Zimmer eta!., 1988).

Each type of variation involves different mechan-
isms of evolution. Variation in the conserved region of
rDNA results from accumulation of point mutations

Fig. 1 A diploid and fertile wild
banana clone.

Fig. 2 Possible origin of the main
genetic groups and sub-groups of the
bananas (revised by Tezenas du
Montcel, 1989).

and has been used for phylogenetic studies (e.g. in
Fusarium spp., Guadet eta!., 1989). This kind of varia-
tion may correspond to ancestral differentiation, simi-
lar to that revealed by isozyme markers. IGS variation
may be interpreted otherwise. The IGS is made of var-
iable numbers of small repeated sub-units. In many
plants, variation in IGS is related to the number of
subrepeat-units that the spacer contains (Appels &
Dvorak, 1982) which can be generated by unequal
crossovers between tandem arrays of IGS units (Coen
et a!., 1982; Rogers et a!., 1986). This IGS length is
potentially useful as a marker of diversity and evolu-
tion between species; in this paper, we present some of
its variation among wild and cultivated bananas.
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Materials and methods

Plant materials

Thematerials surveyed consisted of 107 banana clones
tentatively classified in different genetic groups and
'sub-groups' at IRFA (Institut de Recherches pour les
Fruits etAgrumes) (CIRAD/IRFA, 1986, 1987, 1988/
89) (Table 1). They are representative of the IRFA ban-
ana collection based in Guadeloupe (French West
Indies) and of accessions more recently collected from
Thailand and Indonesia (Tézenas du Montcel, 1985).

RFLPprocedures

DNA was extracted from leaves according to the
method of Dellaporta et al. (1983) modified by Cor-
desse et al. (1990). DNA was digested by EcoRl or
BamHI, or both of these enzymes, and then separated
by gel electrophoresis in 0.8 per cent agarose with a 40
mM Tris-acetate pH 7.5,2 mivi EDTA buffer. DNA was
then transferred to a Nytran nylon membrane and
hybridized with the rDNA probe of wheat PTA 71
(Gerlach & Bedbrook, 1979). The probe was labelled
by sulphonation of cytosine residues using an Orgenic's
kit. Detection of hybridizations was done using anti-
bodies against sulphonated cytosine and the alkaline
phosphatase linked antibody reaction as described by
Lebacq etal.(1988).

Analysis of rDNA diversity

A synthetic visualization of rDNA diversity was
obtained using a modification of the principal com-
ponent analysis, developed by Benzecri (1973), termed
Factor Analysis of Correspondences (FAC). Each type
of spacer was defined as a character with presence and
absence as the two possible states for each clone and
without taking into account the variation in IGS copy
number. In this analysis, the FAC identifies several
independent axes which are linear combinations of the
characters and reflect the largest part of the variation.
Each clone is located along these axes.

Results

EcoRI and BamHI restriction map of rDNA unit

Restriction patterns obtained after digestion by EcoRI,
BamHI, and after a double digestion by these two
restriction enzymes are shown in Fig. 3. The interpre-
tation, based on the simplest cases, led to the model
proposed in Fig. 4; in this model, the two EcoPJ sites
(Ec) and the two BamHI sites (Ba) were located in the
conserved part of the rDNA unit. These sites would

result in the two fragment lengths observed, i.e. 1 and
2.9 kb, within the conserved region as shown in Fig. 4.

Even in the case of partial digestion, such as that
shown in lane 2 of Fig. 3, the results could be inter-
preted within the framework of our model without
ambiguities.

The length of the entire rDNA unit was confirmed
after digestion of total banana DNA by EcoRV, which
has a unique restriction site in the rDNA unit (data not
shown).

Molecular diversity of rDNA spacer length

Distribution ofspacer length among the genetic groups.
Fifteen different spacer lengths were observed in the
clones studied. The spacer lengths varied from 6.1 to
8.7 kb. Up to five, and in one case six spacer lengths
could be observed in several genotypes.

Examples of banding patterns are shown in Fig. 5.
The results are presented in Table 1 in terms of each
genetic group.

In wild diploid species (AAw and BBw), the mean
number of spacers present in a single banana clone was
2.2 and 2.1; this average was 3.1 in diploid cultivars,
and varied between 2.9 and 3.4 among the groups of
triploid cultivars (Table 1).

The various rDNA spacers showed distinctive dis-
tributions between wild and cultivated genotypes or
between genetic groups (Table 1).

Type 3 was commonly present in all cultivars
groups, absent from the wild AA group and in one wild
BB accession.

Types 5 and 6 were found in wild and cultivated AA
diploids. They were completely absent from the AAA
and ABB groups, while type 6 only was present in
AAB cultivars and AAAB cultivars.

Types 1, 2, 5 and 13 were present, albeit infre-
quently, in the AA diploids only.

Type 14 was present only in seven of the 13 triploid
cultivars, three of which were dwarf mutants.

Type 15 was found only in Pisang Cici, a wild AA
diploid.

Synthetic analysis of genetic diversity. The FAC was per-
formed on the following matrix: 107 banana
clones X 30 characters that correspond to the presence
or absence of the 15 different spacer lengths observed.
A better representation of the total diversity was
obtained after excluding from the active variables four
characters that corresponded to very rare spacer types.

The first two axes accounted for 33 per cent of the
total diversity. The characters that contribute mostly to
the construction of the first axis are the spacer types 6,
7 and 9, and to a lesser extent 13 and 14. Those that
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Fig. 4 Interpretation of the location of restriction sites on rDNA unit. This diagram is based on the results obtained for the
clone shown on lanes 1—3 on Fig. 3. Ec = EcoRI restriction site, Ba = BamHI restriction site. A, B, B', C, D, D', E, F, F'
restriction fragments obtained after enzyme digestion.
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Fig. 3 Total DNA from six different clones digested by EcoRl (Ec) (lanes 1, 4, 7, 10, 13, 16), BamHI (Ba) (lanes 2, 5, 8, 3, 14, 17)
and EcoRI + BarnHI (Ec+Ba) (lanes 3,6, 9, 12, 15, 18), and hybridized with a wheat rDNA probe.
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152 C.LANAUDETAL.

VARIABLE
SPACER
FRAGMENTS [

CONSERVED
FRAGMENTS

contribute mostly to the construction of the second
axis are spacers 3,4, 8 and 12, and to a lesser extent 10
and 11.

In this study the extent and organization of diversity
is first compared with the tentative genetic group and
sub-group classification (Fig. 6). They are then
analysed according to the assumed geographical origin
of the clones (Fig. 7a and b).

There was no obvious relation between the rDNA
structure revealed by this analysis and the classification
into genetic groups (AA, BB, AAA, AAB, ABB).
More particularly, this analysis does not differentiate
between the A and B genomes. Thus, most groups
were scattered all over the first FAC plane. Only the
AAA cultivars had a narrower distribution on the left
side of the plane. Additional observations about each
genetic group are as follows.

Among the wild bananas, the pool of Musa
balbisiana, usually considered as homogeneous, dis-
played some variability, even though the number of
clones studied was low. Only two were identical to one
another. The Musa acuminata wild genotypes were
also highly diversified even within sub-species such as
malaccensis or siamea.

The variability of the diploid cultivars encompassed
the total diversity revealed across the collection of
clones studied.

Fig. 5 Polymorphism of rDNA in
banana cultivars. A suiphonated probe
of wheat rDNA was used to reveal the
diversity.

Among triploid cultivars, some sub-groups, such as
'Red', 'Cavendish', 'Silk', 'Laknau', 'Bluggoe' displayed
within sub-group diversity. By contrast, the five clones
of the 'Ibota' sub-group were similar in spite of their
varied origins. Moreover, the three cultivars of the
'Popoulou' sub-group showed no detectable differences
in rDNA structure in spite of important morphological
differences between them.

In the Plantain sub-group, all the cultivars that orig-
inated from Africa (including the Comores accession)
contained the same types of IGS but differed from the
only plantain cultivar originating from Indonesia
(Pisang Tandok).

If we consider the geographical origin of the clones,
additional information may be obtained.

The distribution of the clones from Indonesia and
Thailand on the first FAC plane is given in Fig. 7a and
b respectively. Approximately half of the material
surveyed had these two geographical origins. The dis-
tribution of each of these two sets of clones on the first
FAC plane was apparently non-random. Above the
first axis, both sets of clones intersected, but below it,
they tended to have a disjunct distribution. Thus, the
Indonesian clones were concentrated on the lower left
quarter of the plane, while the Thai clones occupied
the lower right quarter, irrespective of the genetic
group to which each belonged. One exception was the
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axis are spacers 3,4, 8 and 12, and to a lesser extent 10
and 11.

In this study the extent and organization of diversity
is first compared with the tentative genetic group and
sub-group classification (Fig. 6). They are then
analysed according to the assumed geographical origin
of the clones (Fig. 7a and b).

There was no obvious relation between the rDNA
structure revealed by this analysis and the classification
into genetic groups (AA, BB, AAA, AAB, ABB).
More particularly, this analysis does not differentiate
between the A and B genomes. Thus, most groups
were scattered all over the first FAC plane. Only the
AAA cultivars had a narrower distribution on the left
side of the plane. Additional observations about each
genetic group are as follows.

Among the wild bananas, the pool of Musa
balbisiana, usually considered as homogeneous, dis-
played some variability, even though the number of
clones studied was low. Only two were identical to one
another. The Musa acuminata wild genotypes were
also highly diversified even within sub-species such as
malaccensis or siamea.

The variability of the diploid cultivars encompassed
the total diversity revealed across the collection of
clones studied.

Fig. 5 Polymorphism of rDNA in
banana cultivars. A suiphonated probe
of wheat rDNA was used to reveal the
diversity.

Among triploid cultivars, some sub-groups, such as
'Red', 'Cavendish', 'Silk', 'Laknau', 'Bluggoe' displayed
within sub-group diversity. By contrast, the five clones
of the 'Ibota' sub-group were similar in spite of their
varied origins. Moreover, the three cultivars of the
'Popoulou' sub-group showed no detectable differences
in rDNA structure in spite of important morphological
differences between them.

In the Plantain sub-group, all the cultivars that orig-
inated from Africa (including the Comores accession)
contained the same types of IGS but differed from the
only plantain cultivar originating from Indonesia
(Pisang Tandok).

If we consider the geographical origin of the clones,
additional information may be obtained.

The distribution of the clones from Indonesia and
Thailand on the first FAC plane is given in Fig. 7a and
b respectively. Approximately half of the material
surveyed had these two geographical origins. The dis-
tribution of each of these two sets of clones on the first
FAC plane was apparently non-random. Above the
first axis, both sets of clones intersected, but below it,
they tended to have a disjunct distribution. Thus, the
Indonesian clones were concentrated on the lower left
quarter of the plane, while the Thai clones occupied
the lower right quarter, irrespective of the genetic
group to which each belonged. One exception was the
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AA cultivar, THAIJ52, considered to be a Thai cult-
ivar, but which was included in the Indonesian pool of
clones.

Note that the zebrina accession, which was found in
Martinique (FWI), but originated from Indonesia
(Simmonds, 1962; Horry, 1989) fell among the Indon-
esian accessions on the first FAC plane; however only
two of the siamea accessions fell among the Thai
clones. M. acuminata siamea is known to have origin-
ated from Thailand.

Discussion

The analysis of 107 banana clones revealed that the
rDNA spacer was highly variable. The length of the
rDNA unit was between 10 and 12.6 kb, and was thus
similar to that found in many other plant species
(Hemleben eta!., 1988). The 15 different types of IGS
length observed differed by about 100-400 bp. Varia-
tion in IGS length is generally considered to be a reflec-
tion of the variation in the number of sub-repeat units
located within the IGS; these subrepeat units range
from 100 to 350 bp (Appels & Dvorak, 1982; Rogers
& Bendich, 1987). Our results were therefore consist-
ent with these observations.

Several types of IGS can be encountered in a single
individual. The clones SUPARI and KINKALA
number 1, for example, show four different spacer
types each (lanes 5 and 6 on Fig. 5). Cytological studies
have shown the hybrid nature of all the diploid cult-
ivars that have been analysed. This may explain the
larger mean number of types of spacer found within
AAcv clones (3.1) as compared to that found in AAw
accessions (2.2) (Table 1).

Within the acuminata complex (AA and AAA), IGS
diversity was greater among the diploid than among tn-
ploid cultivars. This confirms the hypothesis of a loss
of genetic variability during the domestication process
as was recently put forward by Horry & Jay (1988) and
Horry (1989) on the basis of isozyme and polyphenolic
marker data. In the BB group, eight different types of
spacers were encountered despite the small number of
clones analysed. Both these observations and those of
Horry (1989) demonstrate that M. balbisiana is far
from being a genetically homogeneous species.

The extensive polymorphism of rDNA detected
between and within individuals may be related to the
vegetative propagation of banana clones. This would
allow the maintenance of new recombinant forms;
hybrid forms, giving rise to sterile and parthenocarpic
clones, have been preferentially conserved during
domestication (Simmonds, 1 962). Moreover, barriers
to genetic exchange, due to the presence of transloca-
tions in hybrid clones, may have limited the relative
uniformity of rDNA types that would be expected after
successive generations of crossing.

As opposed to enzymatic or polyphenolic markers
(Jarret & Litz, 1986a; Horry & Jay, 1988; Horry,
1989), variation in rDNA did not distinguish between
the A and the B genomes but seemed to reveal a rela-
tionship between the geographical origin and the IGS
structure of the clones. This could be related to differ-
ences in their respective modes of evolution. IGS
rDNA is generally considered to be a non-transcribed
region. However, it has been shown that it may be as so-
ciated with transcriptional activity in some organisms
such as Xenopus laevis (Moss, 1983; Reeder et a!.,
1983). In maize, for example, it has been suggested that
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AA cultivar, THAO52, considered to be a Thai cult-
ivar, but which was included in the Indonesian pooi of
clones.

Note that the zebrina accession, which was found in
Martinique (FWI), but originated from Indonesia
(Simmonds, 1962; Horry, 1989) fell among the Indon-
esian accessions on the first FAC plane; however only
two of the siamea accessions fell among the Thai
clones. M. acuminata siamea is known to have origin-
ated from Thailand.

Discussion

The analysis of 107 banana clones revealed that the
rDNA spacer was highly variable. The length of the
rDNA unit was between 10 and 12.6 kb, and was thus
similar to that found in many other plant species
(Hemleben et al., 1988). The 15 different types of IGS
length observed differed by about 100-400 bp. Varia-
tion in IGS length is generally considered to be a reflec-
tion of the variation in the number of sub-repeat units
located within the IGS; these subrepeat units range
from 100 to 350 bp (Appels & Dvorak, 1982; Rogers
& Bendich, 1987). Our results were therefore consist-
ent with these observations.

Several types of IGS can be encountered in a single
individual. The clones SUPARI and KINKALA
number 1, for example, show four different spacer
types each (lanes 5 and 6 on Fig. 5). Cytological studies
have shown the hybrid nature of all the diploid cult-
ivars that have been analysed. This may explain the
larger mean number of types of spacer found within
AAcv clones (3.1) as compared to that found in AAw
accessions (2.2) (Table 1).

Within the acuminata complex (AA and AAA), IGS
diversity was greater among the diploid than among tn-
ploid cultivars. This confirms the hypothesis of a loss
of genetic variability during the domestication process
as was recently put forward by Harry & Jay (1988) and
Horry (1989) on the basis of isozyme and polyphenolic
marker data. In the BB group, eight different types of
spacers were encountered despite the small number of
clones analysed. Both these observations and those of
Horry (1989) demonstrate that M balbisiana is far
from being a genetically homogeneous species.

The extensive polymorphism of rDNA detected
between and within individuals may be related to the
vegetative propagation of banana clones. This would
allow the maintenance of new recombinant forms;
hybrid forms, giving rise to sterile and parthenocarpic
clones, have been preferentially conserved during
domestication (Simmonds, 1962). Moreover, barriers
to genetic exchange, due to the presence of transloca-
tions in hybrid clones, may have limited the relative
uniformity of rDNA types that would be expected after
successive generations of crossing.

As opposed to enzymatic or polyphenolic markers
(Jarret & Litz, 1986a; Horry & Jay, 1988; Harry,
1989), variation in rDNA did not distinguish between
the A and the B genomes but seemed to reveal a rela-
tionship between the geographical origin and the IGS
structure of the clones. This could be related to differ-
ences in their respective modes of evolution. IGS
rDNA is generally considered to be a non-transcribed
region. However, it has been shown that it may be asso-
ciated with transcriptional activity in some organisms
such as Xenopus laevis (Moss, 1983; Reeder et a!.,
1983). In maize, for example, it has been suggested that
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£ 0

Fig. 7 Distribution of banana clones
originating from Indonesia (a) and
Thailand (b) on the first two axes of the
FAC. Ke'y as for Fig. 6.

the spacer sub-units may play an important role in
rDNA transcription (McMullen eta!., 1986; Toloczyki
& Feix, 1986). Variation in IGS length has been related
to several selection factors: change in the rDNA IGS
composition has been reported during cycles of selec-
tion in various plant species such as barley (Saghai-
Maroof et a!., 1984) and maize in which there was an
increase in the frequency of the larger IGS types
(Rocheford et at., 1990). In Drosophi!a me!anogaster, it
has been suggested that the presence of longer spacer
elements may favour a greater rDNA transcriptional
activity (Cluster et a!., 1987). rDNA variation has also
been correlated with ecological factors. In wild popula-
tions of Triticum dicoccoides from Israel, Flavell et a!.
(1986) demonstrated that rDNA polymorphism is
correlated with climatic factors; the variance in the

total number of the different fragments was explained
by the combination of three temperature variables. In
18 wild populations of barley from Israel and Iran,
Saighai-Maroof et a!. (1990) found a correlation
between allele frequencies of two rDNA loci and nine
factors of the physical environment, indicating the dif-
ferent adaptative properties of the genotypes marked
by the spacer length variants. In rice, Cordesse et a!.
(1990) also mention an association between ecotypes
and rDNA variations: short IGS types were found in
the Japonica group and longer ones in the Indica
group. The variation within the group Japonica is also
noteworthy. This group was found to be homogeneous
on the basis of 15 isozyme loci (Glaszmann, 1988) and
RFLPs using 10 probes and five enzyme/probe com-
binations, (Wang & Tanksley, 1989). However, marked
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the spacer sub-units may play an important role in
rDNA transcription (McMullen et a!., 1986; Toloczyki
& Feix, 1986). Variation in IGS length has been related
to several selection factors: change in the rDNA IGS
composition has been reported during cycles of selec-
tion in various plant species such as barley (Saghai-
Maroof et al., 1984) and maize in which there was an
increase in the frequency of the larger IGS types
(Rocheford eta!., 1990). In Drosophila melanogaster, it
has been suggested that the presence of longer spacer
elements may favour a greater rDNA transcriptional
activity (Cluster et al., 1987). rDNA variation has also
been correlated with ecological factors. In wild popula-
tions of Triticum dicoccoides from Israel, Flavell et a!.
(1986) demonstrated that rDNA polymorphism is
correlated with climatic factors; the variance in the

total number of the different fragments was explained
by the combination of three temperature variables. In
18 wild populations of barley from Israel and Iran,
Saighai-Maroof et a!. (1990) found a correlation
between allele frequencies of two rDNA loci and nine
factors of the physical environment, indicating the dif-
ferent adaptative properties of the genotypes marked
by the spacer length variants. In rice, Cordesse et a!.
(1990) also mention an association between ecotypes
and rDNA variations: short IGS types were found in
the Japonica group and longer ones in the Indica
group. The variation within the group Japonica is also
noteworthy. This group was found to be homogeneous
on the basis of 15 isozyme loci (Glaszmann, 1988) and
RFLPs using 10 probes and five enzyme/probe com-
binations, (Wang & Tanksley, 1989). However, marked
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differences in rDNA structure were reported between
the tropical forms and the temperate forms of this
group (Sano & Sano, 1989). In sugarcane, a similar
tendency has been observed within the most variable
species Saccharum spontaneurn in which Indian forms
and more meridional ones can be distinguished with
rDNA, as opposed to the randomly distributed iso-
zyme variation (Glaszmann eta!., 1989, 1990).

In our study, the FAC suggested that there may be a
relationship between geographical origin and rDNA
variation in the case of the Indonesian and the Thai
clones. However, another hypothesis could also explain
the organization of this diversity in acordance with the
hypothesis of multiple places of independent domesti-
cation of Simmonds (1962). Indonesian and Thai
clones belonging to different genetic groups could have
originated from different ancestors that have each
marked the present geographical groups.

In our results, and those obtained in rice and in
sugarcane, isozyme classification did not correspond to
IGS rDNA classification. rDNA may evolve faster than
other genomic sequences as a result of mechanisms in
addition to the accumulation of point mutations. This
raises the question of whether IGS variation may re-
flect more recent changes than those revealed by
isozyme or other RFLP markers.
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