Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus

Abstract

Two Oregon populations of the partially self-fertilizing Mimulus guttatus, located on Iron Mountain and Cone Peak, were surveyed for the frequency of recessive chlorophyll-deficient lethals by selfing plants collected as seed from the wild. Allelism tests were used to determine the number of different loci with lethal alleles present in the carriers isolated in the population surveys. The frequency of carriers was 0.065 for the Iron Mountain population (23/356) and 0.024 for the Cone Peak population (8/327). Allelism tests of the 31 carriers isolated from both populations revealed the existence of 26 different independently acting loci and two different duplicate locus systems with lethal alleles. These results indicate that the component of inbreeding depression caused by chlorophyll-deficient lethals is not due to single locus heterozygote advantage and is probably caused by mutation-selection balance at many loci. Estimates of the genomic and per locus mutation rates for this class of lethals are in close agreement with those obtained in studies of chlorophyll-deficient lethals in several agricultural plant species. Genetic analysis of a California population of M. guttatus, reported in the literature to exhibit an unusually high per locus mutation rate and segregation distortion for a chlorophyll-deficient lethal, revealed that chlorophyll-deficiency is inherited as a duplicate gene system. This mode of inheritance, not recognized previously, can explain the appearance of unusually high mutation rates and segregation distortion.

References

  1. Allendorf, F W. 1976. Amount of polymorphism expected at duplicate loci. Genetics, 83, s1.

  2. Apirion, D, and Zohary, D. 1961. Chlorophyll lethals in natural populations of the orchard grass (Dactylis glomerata L.). A case of balanced polymorphism in plants. Genetics, 46, 393–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bryan, F, and Soltis, D E. 1987. Electrophoretic evidence for allopolyploidy in the fern Polypodium virginianum. Syst Bot, 12, 553–561.

    Article  Google Scholar 

  4. Charlesworth, D, and Charlesworth, B. 1979. The evolutionary genetics of sexual systems in flowering plants. Proc Roy Soc Lond B, 205, 513–530.

    CAS  Article  Google Scholar 

  5. Charlesworth, D, and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst, 18, 237–268.

    Article  Google Scholar 

  6. Charlesworth, D, Morgan, M T, and Charlesworth, B. 1990. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution, 44, 1469–1489.

    CAS  Article  Google Scholar 

  7. Christiansen, F B, and Frydenberg, O. 1977. Selection-mutation balance for two nonallelic recessives producing an inferior double homozygote. Am J Hum Genet, 29, 195–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clausen, R E, and Cameron, D R. 1950. Inheritance in Nicotiana tabacum: XXIII. Duplicate factors for chlorophyll production. Genetics, 35, 4–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Crow, J F. 1964. More on the heterozygous effects of lethals in Drosophila populations. Am Nat, 98, 447–449.

    Article  Google Scholar 

  10. Crow, J F, and Temin, R G. 1964. Evidence for the partial dominance of recessive lethal genes in natural populations of Drosophila. Am Nat, 98, 21–33.

    Article  Google Scholar 

  11. Crow, J F, and Simmons, M J. 1983. The mutation load in Drosophila. In: Ashburner, M, Carson, H. L. and Thompson, J. N. (eds), The Genetics and Biology of Drosophila. Academic Press, London, pp. 1–35.

    Google Scholar 

  12. Crumpacker, D W. 1967. Genetic load in maize (Zea mays L.) and other cross-fertilized plants and animals. Evol Biol, 1, 306–423.

    Google Scholar 

  13. Curran, P L. 1963. Balanced polymorphisms in Dactylis glomerata sub-species woronowii. Nature, 197, 105–106.

    Article  Google Scholar 

  14. Demerec, M. 1923. Inheritance of white seedlings in maize. Genetics, 8, 561–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dobzhansky, T, and Spassky, B. 1968. Genetics of natural populations. XL. Heterotic and deleterious effects of lethals in populations of Drosophila pseudoobscura. Genetics, 59, 411–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobzhansky, T, and Wright, S. 1941. Genetics of natural populations. V. Relations between mutation rate and accumulation of lethals in populations of Drosophila pseudoobscura. Genetics, 26, 23–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Falconer, D S. 1981. Introduction to Quantitative Genetics. 2nd edn. Longman, London.

    Google Scholar 

  18. Ferris, S D, and Whitt, G S. 1977. Loss of duplicate gene expression after polyploidization. Nature, 265, 258–260.

    CAS  Article  Google Scholar 

  19. Fisher, R A. 1935. The sheltering of lethals. Am Nat, 69, 446–455.

    Article  Google Scholar 

  20. Ganders, F R. 1972. Heterozygosity for recessive lethals in homosporous fern populations: Thelypteris palustris and Onoclea sensibilis. Bot J Linn Soc, 65, 211–221.

    Article  Google Scholar 

  21. Gastony, G J. 1991. Gene silencing in a polyploid homosporous fern: paleopolyploidy revisited. Proc Natl Acad Sci USA, 88, 1602–1605.

    CAS  Article  Google Scholar 

  22. Greenberg, R, and Crow, J F. 1960. A comparison of the effect of lethal and detrimental chromosomes from Drosophila populations. Genetics, 45, 1153–1168.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gustafsson, A. 1947. The advantageous effect of deleterious mutations. Hereditas, 33, 573–575.

    Google Scholar 

  24. Haldane, J B S. 1933. The part played by recurrent mutation in evolution. Am Nat, 42, 5–19.

    Article  Google Scholar 

  25. Hayes, H K, and Brewbaker, H E. 1924. Frequency of mutations for chlorophyll-deficient seedlings in maize. J Hered, 15, 497–502.

    Article  Google Scholar 

  26. Hedrick, P W. 1987. Genetic load and the mating system in homosporous ferns. Evolution, 41, 1282–1289.

    Article  Google Scholar 

  27. Houle, D. 1989. Allozyme-associated heterosis in Drosophila melanogaster. Genetics, 123, 789–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jinks, J L. 1983. Biometrical genetics of heterosis. In: Frankel, R. (ed.), Heterosis: Reappraisal of Theory and Practice. Springer-Verlag, Berlin, pp. 1–46.

    Google Scholar 

  29. Jørgensen, J H, and Jensen, H P. 1986. The spontaneous chorophyll mutation frequency in Barley. Hereditas, 105, 71–72.

    Article  Google Scholar 

  30. Kiang, Y T. 1970. A natural population of Mimulus guttatus maintaining a high frequency of an albino lethal gene. PhD Dissertation, University of California, Berkeley.

    Google Scholar 

  31. Kiang, Y T. 1972. Pollination study in a natural population of Mimulus guttatus. Evolution, 26, 308–310.

    CAS  Article  Google Scholar 

  32. Kiang, Y T, and Libby, W J. 1972. Maintenance of a lethal in a natural population of Mimulus guttatus. Am Nat, 106, 351–367.

    Article  Google Scholar 

  33. Klekowski, E J. 1970. Populational and genetic studies of a homosporous fern, Osmunda regalis. Am J Bot, 57, 1122–1138.

    Article  Google Scholar 

  34. Klekowski, E J. 1976. Genetics of recessive lethality in the fern, Osmunda regalis. J Hered, 67, 146–148.

    Article  Google Scholar 

  35. Klekowski, E J. 1984. Mutational load in clonal plants: a study of two fern species. Evolution, 38, 417–426.

    Article  Google Scholar 

  36. Klekowski, E J. 1988. Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.

    Google Scholar 

  37. Lande, R, and Schemske, D W. 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution, 39, 24–40.

    Article  Google Scholar 

  38. Li, W-H. 1980. Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes. Genetics, 95, 237–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lloyd, D G. 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat, 113, 67–79.

    Article  Google Scholar 

  40. Lynch, M, and Gabriel, W. 1990. Mutation load and survival of small population. Evolution, 44, 1725–1737.

    Article  Google Scholar 

  41. Maruyama, T, and Takahata, N. 1981. Numerical studies of the frequency trajectories in the process of fixation of null genes at duplicated loci. Heredity, 46, 49–57.

    Article  Google Scholar 

  42. Mather, K, and Jinks, J L. 1982. Biometrical Genetics. Chapman and Hall, London.

    Google Scholar 

  43. Mukai, T, and Burdick, A B. 1959. Single gene heterosis associated with a second chromosome recessive lethal in Drosophila melanogaster. Genetics, 44, 211–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nei, M. 1968. The frequency distribution of lethal chromosomes in finite populations. Proc Natl Acad Sci, USA, 60, 517–524.

    CAS  Article  Google Scholar 

  45. Nei, M. 1969. Gene duplication and nucleotide substitution in evolution. Nature, 221, 40–41.

    CAS  Article  Google Scholar 

  46. Nei, M, and Roychoudhury, A K. 1973. Probability of fixation of nonfunctional genes at duplicate loci. Am Nat, 107, 362–373.

    Article  Google Scholar 

  47. Ohnishi, O. 1982. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Japanese. J Genet, 57, 623–639.

    Google Scholar 

  48. Ohno, S. 1972. So much ‘junk’ DNA in our genome, In: Smith, H. H. (ed.), Brookhaven Symposia in Biology No 23. Gordon and Breach, New York, pp. 366–370.

    Google Scholar 

  49. Ohta, T, and Cockerham, C C. 1974. Detrimental genes with partial selfing and effects on a neutral locus. Genet Res, Camb. 23, 191–200.

    Article  Google Scholar 

  50. Prout, T. 1952. Selection against heterozygotes for autosomal lethals in natural populations of Drosophila willistoni. Proc Natl Acad Sci, USA, 38, 478–481.

    CAS  Article  Google Scholar 

  51. Riman, L. 1963. A synoptic survey of maize genes. Maydica, 8, 99–123.

    Google Scholar 

  52. Robertson, A, and Narain, P. 1971. The survival of recessive lethals infinite populations. Theor Pop Biol, 2, 24–50.

    CAS  Article  Google Scholar 

  53. Schnick, S M, Mukai, T, and Burdick, A B. 1960. Heterozygote viability of a second chromosome recessive lethal in Drosophila melanogaster. Genetics, 45, 315–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuler, J F. 1954. Natural mutations in inbred lines of maize and their heterotic effect. I. Comparison of parent, mutant and their F1 hybrid in a highly inbred background. Genetics, 39, 908–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Simmons, M J, and Crow, J F. 1977. Mutations affecting fitness in Drosophila populations. Ann Rev Genet, 11, 49–78.

    CAS  Article  Google Scholar 

  56. Soulé, M. 1986. Conservation Biology. Sinauer Association, Sunderland, MA.

    Google Scholar 

  57. Sprague, G F. 1983. Heterosis in maize: theory and practice. In:Frankel, R. (ed.), Heterosis: Reappraisal of Theory and Practice. Springer-Verlag, Berlin.

    Google Scholar 

  58. Werth, C R, Guttman, S I, and Eshbaugh, W H. 1985. Recurring origins of allopolyploid species in Asplenium. Science, 228, 731–733.

    CAS  Article  Google Scholar 

  59. Werth, C R, and Windham, M D. 1991. A model of divergent, allopatric speciation of polyploid Pteridophytes resulting from silencing of duplicate-gene expression. Am Nat, 137, 515–526.

    Article  Google Scholar 

  60. Wettstein, D V, Henningsen, K W, Boynton, J E, Kannagara, G C, and Nielsen, O F. 1971. The genie control of chloroplast development in barley. In:Boardman, N. K. and Smillie, R. M. (eds), Autonomy and Biogenesis of Mitochondria and Chloroplasts. North Holland Press, The Hague, Netherlands, pp. 205–223.

    Google Scholar 

  61. Williams, W, and Brown, A G. 1956. Genetic response to selection in cultivated plants: gene frequencies in Prunus avium. Heredity, 10, 237–245.

    Article  Google Scholar 

  62. Willis, J H. 1991. The role of inbreeding depression in the evolution of two partially self-fertilizing populations of Mimulus guttatus. PhD Dissertation, University of Chicago.

    Google Scholar 

  63. Wright, S. 1937. The distribution of genes in populations. Proc Natl Acad Sci, USA 23, 307–320.

    CAS  Article  Google Scholar 

  64. Wright, S. 1969. Evolution and the Genetics of Populations, Vol 2 The Theory of Gene Frequencies. University of Chicago Press, Chicago.

    Google Scholar 

  65. Wright, S. 1977. Evolution and the Genetics of Populations, Vol 3 Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.

    Google Scholar 

  66. Wright, S, Dobzhansky, T, and Hovanitz, W. 1942. Genetics of natural populations. VII. The allelism of lethals in the third chromosome of Drosophila pseudoobscura. Genetics, 27, 363–394.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willis, J. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus. Heredity 69, 562–572 (1992). https://doi.org/10.1038/hdy.1992.172

Download citation

Keywords

  • chlorophyll-deficient mutations
  • genetic load
  • inbreeding depression
  • Mimulus
  • over-dominance
  • recessive lethals

Further reading

Search

Quick links