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Developments in the meiotic analysis of
hybrids. II. Amended models for tetraploids
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Amended models of meiotic behaviour in tetraploid species' hybrids have been constructed which
better reflect the theory and assumptions about chromosome pairing necessary to conduct such
analyses. In particular they correct problems concerning the distribution of chiasmata among and
within chromosome configurations inherent in the earlier models of Kimber & Alonso (1981). In
general these analyses give similar interpretations to the earlier models but in some cases call the
previous conclusions into question.
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Introduction

The analysis of chromosome pairing in species hybrids
is a fundamental part of the studies in the classification
and evolution of polyploid taxa in plants. The early
work, particularly that of Kihara (see Lilienfeld, 1951),
made a somewhat qualitative assessment of the pairing
patterns observed at metaphase I of meiosis. To the
extent that bivalents were seen in approximate mult-
iples of the basic chromosome number. It was con-
cluded, therefore, that the parental species had that
number of genomes in common.

In recent years more objective, mathematical app-
roaches to quantify the patterns of chromosome pair-
ing have been developed. One by Driscoll eta!. (1979)
distinguishes patterns of association from levels of
pairing. These concepts were extended by Alonso &
Kimber (1981), Kimber & Alonso (1981) and
Espinasse & Kimber (1981) to assess the relative simi-
larity or affinity amongst the genomes in triploid, tetra-
ploid and pentaploid hybrids, respectively. This has
allowed fresh insights into chromosome pairing often
confirming, but sometimes upsetting, conclusions
based on subjective assessments. For example, Kimber
eta!. (1983) were able to show that the M" genome of
Triticum uniaristatum bore no particular resemblance
to the M genome of T. comosum. It was therefore
assigned the symbol Un, which has subsequently been
reduced to the single letter N (Kimber & Tsunewaki,
1988).

For tetraploid hybrids Kimber & Alonso (1981)
proposed three different models of pairing. These are
designated 2:2,2:1:1, and 3:1, with two pairs, one pair,
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and a triplet of equally closely related (not necessarily
homologous) genomes respectively. The remaining
relationships are considered equal and more distant
(Fig. 1). The relative affinity of the more closely related
genomes is designated x, and that of the less related
genomes y, where x> y and x +y— 1. Equations were
developed for the expected frequencies of each type of
meiotic figure taking into account not only x but also
the mean arm-pairing frequency, c, which can be deter-
mined by direct observation. A computer program
optimizes x for each model by varying x and searching
for the best fit as determined by the minimum sums of
squares of difference (SSD) between observed and cal-
culated figure numbers, In choosing among the three
models after optimization, that which gave the smallest
SSD is generally preferred. There is a fourth possible
model, 4:0, which corresponds to the genomic formula
AAAA, when all the genomes are identical, or ABCD,
when they are equally unrelated. This may be regarded
as a special example of the other three models as they
converge on x=y= 0.5.

The tetraploid formulae developed by Driscoll et a!.
(1979), and Kimber & Alonso (1981), have been criti-
cized by Jackson & Casey (1982) and Crane & Sleper
(1989) concerning the placement of the second pair of
bound arms in configurations. The problem is best
understood in the context of an autotetraploid where
the affinities amongst all four chromosomes are equal.
The former group of authors argue that, following the
establishment of one set of bound arms, there remain
seven other possible ways of arm pairing (one on the
same side of the centromere and six involving the other
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set of arms) and that each is equally possible. The latter
group contend that whilst a further one pair of bound
arms might form on the same side, the maximum
possible on the far side is two and that the probabilities
of placement of the second binding are in the same
proportions. The net effect is to change the ratio of
'near-side second binding' to 'far-side second binding'
from 1:6 to 1:2 and change the frequency of the result-
ing configurations accordingly. Crane & Sleper (1989)
have developed a formal proof to substantiate their
opinion, with which we concur, as the former view
implies interference across the centromere which the
theory behind the models expressly excludes.

An additional problem has been identified in con-
nection with the distribution of paired arms. The
models of Kimber & Alonso (1981) partition the num-
ber of paired arms a priori amongst meiotic con-
figurations (set of four homoeologous chromosomes)
according to the expansion of the binomial
[c +(1 —

c)]4, where c is the mean arm pairing fre-
quency, irrespective of the model and value of x. Thus,
if c = 0.5 then configurations are expected to have 0, 1,
2, 3 and 4 paired arms in the ratio 0.0625:
0.2500:0.3750:0.2500:0.0625. In the case of
the ideal 2:1:1 hybrid, however, where the more
closely related genomes are fully homologous and
completely paired and the others have no homology
and remain unpaired, each homoeologous group will
form one ring bivalent and two univalents. While
c = 0.5, every configuration will have two paired arms
only, and the complex ratios of meiotic figures, pre-
dicted by the 2:1:1 model of Alonso & Kimber (1981),
will not be realized (see Table 1). A similar difficulty
arises with the 3:1 model. Furthermore, their solution
to an ideal amphidiploid, where all the figures are ring
bivalents, is ambiguous because a perfect fit is also
given by the 2:1:1 model (Table 1). In some cases this
problem may adversely influence the optimized value
of x and/or lead to the wrong choice among models.

In addition Chapman & Kimber (1 992a) have pro-
posed that in the course of optimization the numbers of

Fig. 1 The three basic models of pair-
ing in tetraploid hybrids. (—) More

4 closely related genomes, relative affi-
nity =x. ( — — — ) Less closely related

0: 1 genomes, relative affinity y.

meiotic figures should be weighted (multiplied) by the
numbers of chromosomes in each. The value of x then
sought is that which minimizes this weighted sums of
squares of difference (WSSD) between observed and
calculated figure frequencies. This removes a bias in
the estimate of x towards solutions favoured by the
smaller figures. In light of these considerations the
models for chromosome pairing in tetraploid hybrids
have been re-examined and amended. These are
reported below. The terms pairing, meiotic figure,
meiotic configuration, arm configuration, dataset, meio-
tic analysis and c are used as discussed by Chapman &
Kimber (1990a).

Theory
As with the models of Kimber & Alonso (1981) and
Crane & Sleper (1989), a number of assumptions and
simplifications are made about the nature of chromo-
some pairing. These were discussed by Chapman &
Kimber (1 992a) and are summarized below.

The first assumption is that the pairing of the two
arms of a chromosome may be considered indepen-
dent and hence the configurations that result are the
product of their individual behaviour. Secondly, the
pairing of one arm with another precludes any involve-
ment of a third. It is also assumed that the role of any
translocations present in generating multivalents is
negligable. Finally, the affinity relationships and ten-
dency to pair of any four homoeologous arms are the
same as those for the genomes as a whole.

In conformity with the models of Kimber & Alonso
(1981), the relative affinity of the more closely related
genomes is defined as x, and that of the less closely
related genomes is defined as y, where x > y and
x +y= 1. In tetraploids any homoeologous group may
form up to four arm pairs. From this it follows that the
mean arm-pairing frequency, c, may be calculated from
an observed dataset as (rod bivalents +2 x (ring biva-
lents + trivalents)+ 3 X open quadrivalents +4 X closed
quadrivalents)/(4 X basic number).
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Table I Comparison of the present models with those of Kimber & Alonso (1981) for idealized datasets for tetraploid hybrids
with a basic number of 7

Representative
genomes Dataset* It [J ® III [yJ

Pairing!
merit function x

AAAAor Ideal 4:0 0.00 0.00 4.67 0.00 0.00 4.67 c 1.000
ABCD K/A 4:0

C/K 4:0
0.00
0.00

0.00
0.00

4.67
4.67

0.00
0.00

0.00
0.00

4.67
4.67

SSD
WSSD

0.000
0.000

0.500
0.500

AABB Ideal 2:2
K/A 2:2
K/A 2:1:1
C/K 2:2
C/K 2:1:1

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

14.00
14.00
14.00
14.00

4.67

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
4.67

c
SSD
SSD
WSSD
WSSD

1.000
0.000
0.000
0.000

696.887

1.000
1.000
1.000
0.500

AABC Ideal 2:1:1
K/A 2:1:1
C/K 2:1:1

14.00
10.48
14.00

0.00
3.51
0.00

7.00
5.23
7.00

0.00
0.01
0.00

0.00
0.01
0.00

0.00
0.00
0.00

c
SSD
WSSD

0.500
27.820
0.000

1.000
1.000

AAAB Ideal 3:1
K/A 3:1
C/K 3:1

9.33
8.75
9.33

0.00
2.34
0.00

2.33
1.75
2.33

4.67
1.75
4.67

0.00
1.17
0.00

0.00
0.29
0.00

c
SSD
WSSD

0.500
16.114
0.000

1.000
1.000

*K/A= analysis of the ideal dataset by the models of Kimber & Alonso (1981); C/K =analysis of the ideal dataset by present
models.
tI =univalents;j rod bivalents;® ring bivalents; III =trivalents; j chain quadrivalents; )=closed quadrivalents.

= mean arm pairing frequency; SSD = sums of squares of difference; WSSD = weighted sums of squares of difference.

The structure of the 2:2, 2:1:1 and 3:1 models for a
single set of four homoeologous chromosome arms is
laid out in Table 2. The four genomes bear the same
relationship to each other as illustrated in Fig. 1. With
the amount of pairing expected in any set of arms being
2c (half that for the whole chromosomes), and the rela-
tive affinities being reflected in the ratio of pairing
amongst the six possible pairwise combinations, the
frequency of pairing between any two arms =
(2c x their relative affinity)/( relative affinities among
all arms) (Table 2, ii).

There are three mutally exclusive patterns of pairing
possible among the four arms. The first is described as
(1—2, 3—4), where only arms 1 and 2, and/or 3 and 4
may pair; the others are correspondingly (1—3, 2—4) and
(1—4, 2—3). Viewing the pairing of arms as being a
sequential process, it follows that the ratio of these
patterns will be the sums of the relative affinities of the
two possible pairs of arms, since the first pairing will
commit the set of arms to one of the three patterns
(Table 2, ii).

Within any one of these patterns the proportion of
any two arms pairing = (frequency of their pairing)/(fre-
quency of the pattern), and the proportion of those two
arms remaining unpaired = (1 — frequency of their pair-
ing)/(frequency of the pattern) (Table 2, iii and iv).
From this the proportion of each pattern with two, one
(either pair) or no paired arms can be determined; and

hence the frequency of the 10 possible 'arm configura-
tions' for a homoeologous set of four chromosome
arms for given values of c and x (Table 2, v).

The nine meiotic configurations that a single
homoeologous group of four chromosomes can form
ranges from four univalents to a ring quadrivalent or
two ring bivalents depending upon the amount of pair-
ing. Their frequencies may be determined by establish-
ing a 10 X 10 array and siting the arm configurations
and their frequencies along the margins. For each cell
within the array the resulting meiotic configuration can
be established from the marginal arm configurations,
and its frequency as the product of the marginal fre-
quencies. Summing for each configuration type over
the whole array gives its frequency, and hence the fre-
quencies of each meiotic figure (univalents through ring
quadrivalents).

The optimization process is performed as described
for the triploid model (Chapman & Kimber, 1 992a) by
first calculating c from the observed frequencies of
figures, and then searching the permissible range of x
(0.5 — 1.0) for that value which gives the minimum
WSSD between the observed and calculated numbers
of meiotic figures. Unlike the triploid model, analytical
solutions are not possible.

A computer program has been developed to carry
out the calculations described above. It is written in
Turbo Pascal and runs on the Apple Macintosh.
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Results and discussion

When applied to theoretical datasets for perfect 4:0,
2:2, 2:1:1 and 3:1 hybrids, the respective models opti-
mize to exact fits with WSSDs of zero (see Table 1). For
the 2:1:1 and 3:1 models, and unlike those of Kimber
& Alonso (1981), when x 1, c cannot exceed 0.5
because the expression 1 — 2 cx, used to calculate pro-
portions of unpaired arms (Table 2), then becomes
negative. It follows that for the 2:1:1 and 3:1 models
x  1/(2c). Thus if c = 1.0 the only acceptable model is
2:2, except for the special case of the 4:0 hybrid, where
the solution is x =y= 0.5 for all models.

Figure 2 shows how the number of figures vary with
x when the basic number =7 and c =0.607 for all three
models. These values have been chosen for direct com-
parison with Figs id, 2d and 3d of Kimber & Alonso
(1981) where the basic number also equals 7, and 17
out of a maximum 28 arm pairs have formed. It is
apparent for the 2:2 model that as x increases the fre-
quency of the bivalents of both types increases, and
that of the larger multivalents declines. The frequency
of univalents is unaffected. The plots for the 2:1:1 and
3:1 models terminate at x=1/(2X0.607)=0.824,
beyond which the expression (1 2 cx) becomes nega-
tive. In the 2:1:1 model the frequencies of univalents,
ring bivalents and trivalents increases with x, whereas
those of rod bivalents and quadrivalents decline. The
same general trends are also true of the 3:1 model,
although the slopes for the ring bivalents and trivalents
differ markedly.

In comparison with the models of Kimber & Alonso
(1981) the slopes are generally smoother, and for the
2:1:1 and 3:1 models do not carry through to x = 1.
Whereas the numbers of trivalents decline slightly in
the former 2:1:1 model, here they rise slightly. The
contrast is greatest in the 3:1 model, where Kimber &
Alonso (1981) suggested that quadrivalent frequencies
were independent of x, whilst the present model shows
a gentle decline for ring quadrivalents and a slight peak
for rod quadrivalents around x =0.7. Furthermore, the
rising slope for trivalents and the declining slope for
rod bivalents are steeper. In one important respect all
models are similar, in that the slopes for all figures flat-
ten around x=0.5. This means that a small change in
the observed numbers of figures in this region can
result in a large change in the estimated value of x, and
may well affect the choice of best-fit model.

Table 3 compares some analyses carried out under
the models of Kimber & Alonso (1981) with the
present ones, presenting the better fits only. It should
be noted that the SSD calculated by Kimber & Alonso
(1981) is not comparable to the WSSD calculated here,
due to the weighting applied to the numbers of figures.

x

Fig. 2 The variation of expected numbers of meiotic figures
withxforthe(a)2:2,(b)2:1:1 and (c) 3:1 models, when
c = 0.607.

Any comparison between the analyses must be done
subjectively.

The first four entries are known examples of the 4:0,
2:2, 2:1:1 and 3:1 models. Both analytical approaches
agree on the choice of model and would give the same
general interpretation of the observations. Inspection,
however, suggests the present analyses give a better fit
to the observed data, especially for the 2:1:1 and 3:1
models. Furthermore, the values of x estimated differ
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Table 3 Comparison of the present analyses with those of Kimber & Alonso (1981)
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Hybrid and genomes Dataset I jj Iii jflj c SSD/WSSD x

Autotetraploid Obs.* 0.06 0.08 4.44 0.06 0.06 4.68 0.992
Hordeumbulbosum K/A4:0 0.00 0.07 4.60 0.00 0.13 4.53 0.070 0.500
BBBB C/K 4:0 0.00 0.01 4.66 0.00 0.01 4.65 0.297 0.500
Triticum boeoticum Obs. 0.40 3.15 9.00 0.30 0.35 0.25 0.850
x T.tauschiiamph. K/A2:2 0.68 2.84 9.20 0.16 0.51 0.17 0.267 0.899
AADD C/K 2:2 0.63 3.25 9.05 0.05 0.27 0.38 1.064 0.972
T. aestivum X Obs. 14.46 2.14 4.40 0.00 0.00 0.00 0.390
Ttauschii K/A2:1:1 13.55 3.49 3.71 0.00 0.00 0.00 3.155 0.999
ABDD C/K2:1:1 14.67 2.39 4.27 0.00 0.00 0.00 0.360 1.000
T triuncialex4x Obs. 9.40 2.35 1.45 2.65 0.70 0.00 0.452
T. umbellulatum K/A 3:1 10.01 2.71 1.47 1.69 0.94 0.19 1.510 0.977
UUUC C/K 3:1 9.61 2.58 1.55 2.63 0.53 0.03 0.737 0.896
T. crassumX Obs. 13.94 4.06 1.46 0.81 0.09 0.03 0.321
T. umbellulatum K/A 2:1:1 14.03 3.98 1.35 0.77 0.23 0.02 0.048 0.909
DDMU C/K 2:1:1 14.03 4.06 1.42 0.70 0.21 0.01 0.361 0.917

T.juvenaleX
T. longissimum
DMUS

Ohs.
K/A 4:0
C/K 3:1

13.14
13.30
13.32

4.17
4.16
4.14

0.42
0.54
0.68

1.40
1.14
1.27

0.35
0.42
0.29

0.03
0.05
0.02

0.320
0.133
0.518

0.500
0.822

T. aestivum x Obs. 12.35 3.35 1.65 1.55 0.25 0.00 0.375
Secalecereale
ABDR

K/A3:1
C/K 3:1

12.28
11.72

3.10
3.55

1.09
1.05

1.50
1.89

0.62
0.34

0.09
0.01

0.521
3.180

0.959
0.887

T. timopheeviix
T. turgidum
AABG

FestucapratensisX
F. arundinacea
PPXG

Obs.
K/A 2:2
K/A 2:1:1
C/K 2:2
C/K2:1:1
Obs.
K/A 2:1:1
C/K 2:2

7.60
6.65
7.96
6.32
8.13
3.19
2.91
1.45

4.20
4.94
3.79
5.68
2.80
2.00
3.04
4.28

3.60
3.63
3.32
2.48
2.80
7.85
7.69
6.94

1.20
1.00
0.92
0.62
1.36
0.75
0.26
0.15

0.30
0.71
0.63
0.69
1.01
0.42
0.46
0.50

0.00
0.10
0.14
0.19
0.14
0.29
0.26
0.42

0.525

0.762

2.608
0.578

21.325
19.219

1.424
30.855

0.812
0.923
0.882
0.869

0.970
0.952

*Obs. =observed numbers of each meiotic figure, averages per cell.
Sources of original data can be found in Kimber & Alonso (1981), except example 4 from Kimber & Yen (1988).

appreciably for entries 2 and 4. In the case of the T.
boeoticum x T tauschii amphiploid, the higher value of
x estimated here suggests that pairing is more confined
to within genomes than the earlier analysis indicated.
For the T. triunciale X autotetraploid T umbellulatum
hybrid the converse is true, a smaller x indicating some
pairing between the C and U genomes necessary to
accommodate the open quadrivalents observed.

The remaining hybrids are less clear-cut. In the fifth
example, a hybrid between hexaploid T. crassum and
diploid T. umbellulatum, the two approaches provide a
similar result with the 2:1:1 model as the best fit, con-
sistent with the pairing being predominantly between
the two D genomes of T crassum. For the sixth
example, a T. juvenale X T longissimum hybrid, the
two fits appear equally good but from the present
analysis it seems three of the genomes are somewhat
more similar to each other than the fourth, rather than
all four being equally dissimilar. The analysis does not,

of course, suggest which three might be, nor does the
pedigree of the hybrid provide any guidance.

For the bread wheat x rye hybrid (example 7), both
approaches give a 3:1 fit, consistent with the three
Triticum genomes, ABD, pairing to the exclusion of
the R of Secale. The present analysis, however, sug-
gests that this is not as exclusive as has been thought.
This arises from the new 3:1 model's sensitivity to the
number of quadrivalents leading to optimization on a
lower value of x to account for them. By contrast the
3:1 model of Kimber & Alonso (1981) shows
quadrivalents as being dependent on the value of c
alone and not, therefore, being taken into account
when x is estimated.

These last two examples also serve to emphasize one
important aspect of all these models. x is a measure of
relative, not absolute, affinity. The high value of x in
example six only indicates that three of the genomes
are similar when compared to the fourth, not that they
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should necessarily be considered the same genome.
Similarly, the A and B genome only appear closely
related in example seven when compared to the more
distant rye; when compared to two sets of the D
genome in example two they seem unrelated.

The case of the T. timopheevii)< T turgidum hybrid
is more complex. Both analytical approaches favour a
2:1:1 solution, and the Kimber/Alonso analysis gives a
fairly good fit. The present analysis gives a poorer fit
and suggests that neither a 2:1:1 nor a 2:2 model is a
good representation of the combined meiotic behav-
iour of the AABG genomes. A further analysis,
reported on in a following paper (Chapman & Kimber,
1992b) suggests that the meiotic behaviour of this
hybrid is generally intermediate between the 2:1:1 and
2:2 models.

The final example is a hybrid which, under the
present analysis, cannot fit the 2:1:1 model because
the value of c is too high. This illustrates a weakness of
the Kimber/Alonso 2:1:1 model because, with an x of
0.970, pairing should be virtually confined to two
genomes only and c should be close to 0.5. Instead, it
appears that the four genomes are pairing two by two,
although the fit is certainly poor, with the calculated

(1989)

figure numbers being too high for rod bivalents and
ring quadrivalents, but low for univalents, ring biva-
lents and trivalents. Nevertheless it tends to lend sup-
port to the older view of Chandrasekharan & Thomas
(1971) that the genomes of Festuca arundinacea should
be designated PPG1G1G2G2 rather than PPGGXX.

Comparisons may also be made with the more com-
plex analysis for tetraploid hybrids of Crane & Sleper
(1989). This is 'overparametized', using more variables
than there are degrees of freedom to account for them.
Hence, it must seek permissible ranges for these var-
iables rather than single best-fit solutions. Moreover,
there is an immense computational burden requiring
the use of one mini- or twelve microcomputers. By
contrast the present analysis uses one microcomputer
and takes between 2 and 3 s to run.

A comparison between the two methods can be
made by estimating the values of s1 ...s6 of Crane &
Sleper (1989), which measure the ratio of pairing
amongst the four genomes, from the x and y values cal-
culated here. Seven examples are presented in Table 4,
being hybrids which are also to be found in Table 3.

Reasonable matches are found in the first five
entries, where the analyses in Table 3 gave good fits

Table 4 A comparison between the present analysis and that of Crane & Sleper

Hybrid and genomes Analysis s1 s2 s3 s4 s5 s6

Autotetraploid C/S high 0.167 0.167 0.167 0.167 0.167 0.167
Hordeumbulbosum C/Slow 0.167 0.167 0.167 0.167 0.167 0.167
BBBB C/K 0.167 0.167 0.167 0.167 0.167 0.167
T. boeoticumx C/S high 0.494 0.036 0.014 0.018 0.019 0.474
T. tauschiiamph. C/Slow 0.473 0.017 0.000 0.000 0.005 0.452
AADD C/K 0.473 0.014 0.014 0.014 0.014 0.473
T. aestivum x C/S high 1.000 0.000 0.000 0.000 0.000 0.000
T tauschii C/S low 1.000 0.000 0.000 0.000 0.000 0.000
ABDD C/K 1.000 0.000 0.000 0.000 0.000 0.000
T. crassumx C/S high 0.701 0.220 0.011 0.095 0.025 0.082
T. umbellulatum C/Slow 0.679 0.103 0.000 0.000 0.010 0.074
DDMU C/K 0.688 0.062 0.062 0.062 0.062 0.062
T.juvenalex C/Shigh 0.297 0.286 0.113 0.272 0.074 0.066
T longissimum C/C low 0.271 0.260 0.057 0.226 0.043 0.033
DMUS' C/K 0.274 0.274 0.059 0.274 0.059 0.059
T aestivumx C/S high 0.621 0.396 0.095 0.149 0.116 0.000
S. cereale C/S low 0.506 0.160 0.000 0.023 0.000 0.000
ABDR C/K 0.297 0.297 0.038 0.297 0.038 0.038
T. timopheevii X C/S high 0.656 0.149 0.00 1 0.069 0.000 0.2 12
T turgidum C/S low 0.646 0.07 1 0.000 0.000 0.000 0.204
AABG C/K 0.570 0.086 0.086 0.086 0.086 0.086

= estimates of metaphase I association due to each combination of genomes.
C/S high Crane & Sleper's highest estimate of s1...s6.
C/S low Crane & Sleper's lowest estimate of s1 ...s6.
C/K =present estimate of s1...s6 from x and y of the best fitting model.
Data sources as in Table 3.
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between observed and calculated figure numbers. In
the case of wheat by rye hybrid (example 6) s1 appears
underestimated and s4 overestimated. Kimber &
Alonso (1981) suggest that among the wheat genomes
A may pair preferentially with D; i.e. this hybrid is
intermediate between the 2:1:1 and 3:1 models. This
would account for the discrepancies noted above. The
seventh example, T. timopheevii X T. turgidum, has also
been noted as an intermediate case, this time between
the 2:2 and 2:1:1 models, hence the underestimate of

It is true that the present analyses present only three
types of model to accommodate a wide range of poss-
ible genomic relationships. These simple models, how-
ever, explain much of the meiotic behaviour observed.
We believe, as in the case of the triploids, that the com-
plexity of Crane & Sleper's approach is difficult to just-
ify when the simplifications it still contains (that the
chromosomes in each homeologous group are similarly
differentiated and that translocations are absent) and
the inherent quality of meiotic data are considered.

In conclusion, the amended models for meiosis in
hybrids, developed here, better reflect the theoretical
properties such models should have than their antece-
dents in Kimber & Alonso (1981). Where hybrids are
known a priori to be good examples of particular
models, the present analyses generally give a better fit
between observed and calculated figure numbers. In
other examples the fit may be better or worse, and may
also lead to differing conclusions about the general
meiotic behaviour of the hybrid in question.

A note on programs

All the programs for the analysis of meiosis in species
hybrids, described in this series of papers, have been
written in Turbo Pascal to run on the Apple Macintosh.
Copies of the source code and the compiled programs
are available from the authors upon reciept of an 800
K or 1.4 MB initialized disk. Use of the source code
requires Turbo Pascal.
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