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Maximum likelihood estimation of linkage
between a marker gene and a quantitative

trait locus.
II. Application to backcross and doubled

haploid populations
Z. W. LUO* & M. J. KEARSEY
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The algorithm for estimating both the recombination fraction between a marker gene and a locus
affecting a quantitative trait, and also the means and variances of the QTL genotypes, is extended to
backcross and doubled haploid populations. The simulation experiments show that estimates of
these parameters can be obtained with acceptable accuracy and results are compared with those
obtained using F2 populations studied previously (Luo & Kearsey, 1989).
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Introduction

Since the publication of the paper by Botstein et al.
(1980), we have witnessed growing interest in the use
of molecular genetic markers to locate unknown genes,
particularly those genetic factors associated with
quantitative variation. These approaches are all
developed from a variety of methods examined by
biometric geneticists in the last 40 years.

Three aspects of the use of markers have attracted
the interest of biometricians and geneticists. Firstly, the
detection of polygenes (or QTLs) with associated
developments of statistical approaches appropriate to
various breeding experiments (Thoday, 1961; Jayakar,
1970; Hill, 1975; Lander & Botstein, 1989 and Luo,
1989); secondly, measurement of the statistical power
of different experimental designs for polygene detec-
tion (McMillan & Robertson, 1974; Soller & Brody,
1976; Soller & Genizi, 1978; Luo & Kearsey, 1989);
finally, estimation of linkage between a given marker
gene and a putative QTL. Jayakar (1970) developed
formulae to estimate marker-QTL recombination frac-
tions in two different designs for use in studying natural
populations, but they were unrealistic in practice
through lack of appropriate estimates of environmental
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variance. Weller (1986) applied maximum likelihood
techniques to the analysis of the F2 generation of a
cross between two inbred lines in order to estimate not
only the recombination fraction between a marker
locus and a QTL but also the nature and size of the
effect. Because the numerical algorithm employed by
Weller to search the likelihood surface was based on an
unreasonable assumption, i.e. the parameters to be esti-
mated in the likelihood function were independent of
each other, his algorithm could not confirm that the
estimates obtained were, in fact, the maximum likeli-
hood estimates. In an attempt to overcome this
problem we described, in a previous paper (Luo &
Kearsey, 1989), a maximum likelihood approach for
estimating the recombination fraction in a segregating
population (F2) between a marker gene and a QTL as
well as estimating the means and variances of the three
genotypes of the QTL. In this paper, we extend the
algorithm to two other experimental designs, i.e. back-
crosses and doubled haploids.

Theoretical approach
We consider a breeding programme starting with two
inbred lines, one of which is homozygous for the alleles
M1 and 01 for the marker and QTL respectively, while
the other is homozygous for the alleles M2 and Q2• The
marker alleles are assumed to be co-dominant, and the
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recombination fraction between the two loci is denoted
by r. The F1 is either crossed to the parent with
genotype M2M2Q2Q2 to produce a backcross genera-
tion with family size of tib or used to generate d'
doubled haploid families (e.g. by anther culture). For
simplicity, we further assume that all the families have a
constant size of n. The means and variances of the
quantitative trait among the marker genotypes are as
shown in Table 1.

Development of the analytical method

Since the linkage between marker and QTL is incom-
plete, the individuals within each of the two possible
marker genotypes are a mixture of two quantitative
trait genotypes, i.e. 0102 and 0202 for the backcross
design but Q1Q1 and Q2Q2 for the doubled haploids.
Let and ,u22 represent the means and a121,
a and a represent the variances of the three geno-
types for the quantitiative trait. The variances include
not only environmental variation but also genetic varia-
tion at other loci affecting the quantitative trait. There-
fore, the means of the marker classes can be
partitioned into the following:

for the backcross,

X12=(1—r)12+r22 (la)

X22= r+(1 — r)22
and for the doubled haploids,

X11(1—r)11+r22 (ib)

while the variances of the marker groups can be parti-
tioned as

2 2 2 2 2
S12=(1 —r){(12—X12) +a12]+r[(s22—X12) + U22]

Table 1 Basic statistics of the marker genotypes in (a) the
backcross and (b) the doubled haploid

Statistics of the
quantitative trait M1M1 M1M2 M2M2

Means
Variances

X11
S1

X12
S2

X22

Sample size
(a) 0 n1 n2
(b) n1 0 n2

1 (x—u1.)2
f1(x)= exp — 2

0,
and

i,j= 1,2.

Therefore the likelihood function can be written as

LB(l2,22, a12,
a, r) = [ fM2(x)] [, fM221)]

for the entire backcross generation, and as

LD(ll,22, ui,
a22, r) = [n fM(x)] [ fc22()]

for the entire doubled haploid population.
The logarithm functions of (5) will be, respectively,

LB(r)= lnfM2(xI)+ fM22()=ln(nl+n2)
i=1 j1

for the backcross, and as
2 2 2 2 2

511 —(1 — r)[(11 —
X11) + a11] + r{(22 —X11) + a22]

(2b)
2 2 2 2 2S22 = r[(1u11

—X22) + a11] + (1 — r)[(t22 —
X22) + 022]

for the doubled haploids.
The composite distribution densities of the relevant

marker classes can be written as (Hasselblad, 1966;
Day, 1969)

fM2(X) = (1- r)f12(x) + Ff22(X)

(3a)
fM22(x)

=
1f12(X) + (1- r)f22(x)

for the backcross design; and as

fM(x)(1 — r)fll(x)+ 1f22(X)

(3b)
fM22(x)= rJ(x)+(1 - r)f22(x)

for the doubled haploids, where

(4)

(5a)

(Sb)

(2a)
2 2 2 2 2S22 = r[(1u12 — X22) + a12] + (1 — r)[(s22

— X22) + a22]

+ lnj-_-1exp[_
(xe—

L12)]1=1 a12 2a
r+

exp[__22)2]}a22 2a
r (x1_,u12)2]+ in —exp—

j=1 l2 2a
I —r

[+ exp —_______
a22 2a22

(6a)
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and

LD(r)= lnfM()+ lnfM22()lfl(nl+fl2)i1 1=1

n 1—r (x—11)2+1n —exp — 2

i=1 a11 2a
r (x—p22)2+—exp — 2

022 2022

+ in{_exp[_1_11)2]j=l a11 2ai
1—r (x.—u22)2+—exp— 2
022 2022

Equation 6(a and b) include the other four unknown
parameters besides r. However, following the method
used to analyse the F2 generation, equations (la) and
(2a) provide the following solutions to the unknowns in
(6a)

1
[(1— r)XM2— TXM22]P2212

I12 {XM,, + X'M2} 22

and

2 1
[(1—r)e2—re1]

(7b)

0122 e + e2 — (7122

where
2 2 2

e1=S12—[(1—r)(1u12—.X12) +r(u22—X12)

— r)(s22—X22)2]

while equations (ib) and (2b) yield the corresponding
solutions to the means and variances of the QTL geno-
types in the doubled haploid design (6b)

22
1 [(1)XX]1—2r (8a)

= {XM,, + XM22} —

and

2 1
022 {(1—r)e2—re1J1—2r

2
e1 =S11 —Ri — r)(p11 —X11)2 +r(22—X11)2]

e2 = — [r(j11 —X22)2 + (1— r)(j22 — X22)2].

When these estimates of the means (p,) and variances
(o,) obtained from equations (7) or from (8) are incor-
porated into the log likelihood functions (6a) and (6b)
for these two designs, respectively, then these functions
will involve only one unknown parameter, the recom-
bination fraction r. Searching these functions numeri-
cally for their maximum values with respect to i will
yield the maximum likelihood estimates of r for each
design. Since the means and variances of the quantita-
tive trait have been expressed as the monotomc func-

(6b) tions about r, according to the invariant property of the
maximum likelihood estimator (Mood et al., 1974), i.e.
jf 0 is the maximum likelihood estimate of 0 in the
distribution density f(x1; 0) and r() is a transformation
of the parameter space ®, then a maximum likelihood
estimate of v(0) is r(0). Thus formulae (7) and (8)
directly give maximum likelihood estimates of the
means and variances of the quantitative trait in the two
different designs.

/7
Furthermore, the two QTL genotypes, i.e. Q1 Q2 and

a1 Q2 Q2, in the backcross generation and the two corre-
sponding genotypes, i.e. Q1 Q2 and Q2 Q2, in the
doubled haploid population, should have the same
environmental variances. We can therefore use the
following

2 l 2 2 2
ObN 012+ N 022

and

2 2 2 2
0d l1 022

to approximate the environmental variances for the
two populations respectively, where N represents the
total experimental size of backcross design but repre-
sents the number of families for the doubled haploids.

In the last section, it has been demonstrated that the
likelihood functions [LB(r) or L0(r)} involve only one
unknown parameter r. This greatly simplifies the
algorithm to search the likelihood surface for the
relevant maximum likelihood estimates. In our
previous paper (Luo & Kearsey, 1989), an iterative

'8b algorithm was described to obtain the estimates from
F2 populations. The same numerical algorithm will be
employed here.

where

Description of the algorithm

0121 e1+ e2 — (1122
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Simulation of the two designs and data analysis

Two F0RTRAN-77 computer programs were designed
both to simulate the genetic behaviour of linkage
between a marker locus and a QTL and to work out
the required maximum likelihood estimates folowing
the algorithms described in the previous discussion.
The principle of the simulation of genetic behaviour of
the marker-QTL linkage is described in detail else-
where (Luo, 1989; Luo & Kearsey, 1989).

All possible combinations of three recombination
fractions between the marker gene and the QTL
(r=0.15, 0.25, 0.35), two narrow heritabilities
(h=0.1, 0.5) and three dominance ratios (dr=0.0,
0.5, 1.0) for the QTL (these genetic parameters are
defined by using an F2 population as a standard) were
simulated for both designs with fixed size of 500 while
each of the 500 doubled haploid families has a size of
5. These are the same parameter combinations used
for the F2 generation by Luo & Kearsey (1989).

Results
The maximum likelihood estimates of the recombina-
tion fraction between the marker locus and the QTL

and the corresponding standard errors, given a sample
size of 500, are recorded in Table 2 for the doubled
haploid population and in Table 3 for the backcross
generation. The maximum likelihood estimates of the
means of the two possible genotypes at the QTL can be
found, together with their standard errors, in Tables 4
and 5 for the doubled haploids and the backcross
generation, respectively. The maximum likelihood esti-
mates of the environmental variances and their stand-
ard errors for the two designs are given in Table 6.

It is clear from Table 2 that there is no significant
difference between the maximum likelihood estimates
of the recombination fraction obtained from the data of
means of doubled haploid families and their true
values. The standard errors of these estimates consis-
tently decrease as the heritability of the QTL increases,
but neither the dominance ratio of the QTL nor the
true values of the estimated parameter has any obvious
influence on the estimates or their standard errors.

Table 3 shows that the recombination fractions can
also be estimated adequately by use of the backcross
data. However, when the heritability is low, these frac-
tions are slightly underestimated at its true value of
0.15 but are slightly overestimated when the true value
is equal to or higher than 0.25. The standard errors of

Table 2 The maximum likelihood estimates of the recombination fraction between
the marker and QTL, where h and dr represent narrow heritability and dominance
ratio of the QTL respectively (doubled haploid families)

h dr

True recombination fraction

0.15 0.25 0.35

0.1
0.1
0.1
0.5
0.5
0.5

0.0
0.5
1.0
0.0
0.5
1.0

0.1800 0.0458
0.1218 0.0316
0.1731
0.1550±0.0200
0.1470±0.0224
0.1561±0.0245

0.2856 00374
0.2880 0.0469
0.2849±0.0469
0.2666±0.0332
0.2581 0.0374
0.2427±0.0265

0.3564 0.0447
0.3742 0.0648
0.3821±0.0400
0.3603±0.0316
0.3559±0.0300
0.3750±0.0283

Table 3 The maximum likelihood estimates of the recombinatiori fraction between
the marker and QTL, where h and dr represent narrow heritability and dominance
ratio of the QTL respectively (backcross generation)

h dr

True recombiriation fraction

0.15 0.25 0.35

0.1
0.1
0.1
0.5
0.5
0.5

0.0
0.5
1.0
0.0
0.5
1.0

0.1287 0.0700
0.1105±0.0721
0.0854 0.0656
0.1644 0.0361
0.1554 0.0361
0.1575 0.0332

0.2742 0.0557
0.2796±0.0529
0.2817 0.0510
0.2588 0.0480
0.2627 0.0353
0.2554 0.0374

0.3807 0.0500
0.3720±0.0633
0.3720 0.0633
0.3690 0.0400
0.5392 0.0300
0.3428 0.0283
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Table 4 The maximum likelihood estimates and expected values of the means of the two QTL genotypes for different genetic
situations, where h, dr, p and rare narrow heritability, dominance ratio, expected means of the QTL genotypes and true
recombination fraction between the genetic marker and QTL respectively (doubled haploid families)

dr r

h=0.1 h=0.5

/22 Pu /22

0.0 0.15 109.63 1.1091 99.31 1.0488 119.87 0.6633 100.08 0.5568
0.25 109.63 0.8775 98.68 1.0392 115.85 5.3768 100.17 0.9434
0.35 109.23 1.0100 99.70 1.0247 116.45 5.2900 99.97 1.3266

108.94 100.00 120.00 100.00
0.5 0.15 109.13 2.5436 99.91 1.0 198 118.94 0.5745 100.09 0.4583

0.25 109.76 1.2042 99.20 1.1533 117.19 3.3601 100.05 0.5658
0.35 109.16 1.4071 99.58 116.08 5.0665 100.23 0.9434

p 108.44 100.00 118.86 100.00
1.0 0.15 110.39 2.1111** 99.60 0.7000 117.01 0.6083 100.33 0.5000

0.25 109.98 1.0440** 99.16 1.0583 118.64 3.2655 100.25 0.3873
0.35 109.14± 1.1091 99.61 119.03 2.8160 99.75 0.9185

p 107.30 100.00 116.32 100.00

Table 5 The maximum likelihood estimates and expected values of the means of the two QTL genotypes for different genetic
situations, where h, dr, p and rare narrow heritability, dominance ratio, expected means of the Oil genotypes and true
recombination fraction between the genetic marker and QTL respectively (backcross generation)

dr r

h=0.1 h=0.5

P12 P22/212 P22

0.0 0.15 102.80±0.9434** 99.52±0.9274 109.91±0.5657 99.89±0.5657
0.25 101.06 99.45 1.6462 110.41 0.5292 99.65 0.3000
0.35 106.61 2.3706 98.77 2.3706 110.14 0.7280 99.77 0.7746

p 104.47 100.00 110.00 100.00
0.5 0.15 106.02 1.0149 100.17 0.7348 114.27 0.5385 100.06 0.6481

0.25 107.40±1.1446 98.96±1.1402 113.26±1.6817 100.01±0.8718
0.35 107.64 1.2000 98.75 1.3000 113.84 0.9381 100.34 0.9747

p
1.0 0.15

106.33
112.52 3.4380

100.00
100.68 0.6083

114.14
111.24 0.5385

100.00
99.93 0.4243

0.25 105.81±1.4213 99.02±1.2961 111.09±0.6557 99.97±0.6403
0.35 106.17 1.6026 99.14± 1.3528 110.73 1.3038 100.41±0.7211

p 107.30 100.00 116.32 100.00

the estimates obtained from this design are mostly
higher than those obtained from doubled haploid
family means, suggesting that using the doubled
haploid family means can yield a more accurate esti-
mate of the recombination fraction for a fixed sample
size. Of course each family mean of the doubled
haploids with respect to the quantitative trait was based
on five individuals.

The phenotypic means of the two genotypes of the
QTL are denoted by ,u and P22 in the doubled
haploid population and by 1u12 and p22 the backcross
generation. The maximum likelihood estimates of these

means are listed in Tables 4 and 5 for the two designs.
It is clear that these estimates do not deviate signifi-
cantly from their expected values when the quantitative
trait has a high heritability (h = 0.5). Moreover, these
means can also be estimated with a moderate herit-
ability (h=0.1). The effect of the level of dominance
of the increasing allele at the QTL on the accuracy of
these estimates differs in the two designs. As can be
seen from Tables 4 and 5, increasing dominance makes
the expected values of Mu and P22 more alike but Pu
and /212 more unlike. The effect of dominance on the
doubled haploids is an artefact of the model since, with
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Table 6 The maximum likelihood estimates of the environmental variances
associated with the QTL, where h, dr EVE are narrow heritability, dominance
ratio and expected variance of the quantitative trait for doubled haploids and back-
crosses

h dr EVE

True recombination fraction

0.15 0.25 0.35

Doubled haploids
0.1 0.0 90.00 79.73±9.0500 75.19±12.2593 83.44±9.2952
0.1 0.5 90.00 87.87±8.7178 72.72±10.2387 81.00±10.7624
0.1 1.0 90.00 77.83±11.3309 78.44±8.7304 79.52±12.3778

0.5 0.0 50.00 49.20±4.2661 65.20±10.2401 61.64±10.6300
0.5 0.5 50.00 49.25±3.6810 54.83±4.6750 60.82±11.3978
0.5 1.0 50.00 47.95 3.3985 53.42 7.7188 49.10±6.1237

Backcrosses
0.1 0.0 90.00 79.79±5.8915 82.79±5.7879 73.82±14.1421
0.1 0.5 90.00 85.04±11.4873 75.20±9.9600 72.92±9.7783
0.1 1.0 90.00 72.53 4.3336** 80.20 7.9869 76.08 10.9316

0.5 0.0 50.00 46.70±3.9370 44.44±5.3413 46.48±6.6588
0.5 0.5 50.00 48.37±3.6986 52.19±7.5050 49.88±8.6742
0.5 1.0 50.00 46.03±3.4395 48.82±4.3070 50.54±7.6551

fixed phenotypic variance and heritability, increasing
dominance effectively reduces additivity. As a result,
with dominance the means are estimated less well in
the doubled haploids but better with the backcrosses.
The reverse is true with no dominance. The standard
errors of the estimates also decline with increasing
heritability for both designs.

The maximum likelihood estimates of the environ-
mental variance, a2, do not differ significantly from
their true values in the doubled haploid families and
only one of the 18 situations simulated in the backcross
design.

In terms of their abilities to provide accurate
estimates of marker-QTL linkage, aS well as the pheno-
typic means and variances of the QTL genotypes,
neither of the two designs is consistantly superior to the
other over all possible genetic backgrounds of the
QTL. The above results do, however, suggest that at
low heritabilities the doubled haploid families would
be more powerful than the backcross design when the
dominance ratio is low.

Discussion

This paper has concentrated on the use of maximum
likelihood techniques to estimate the marker-QTL
recombination fraction and the relevant genetic and
environmental effects of the QTL. The results obtained
from the simulation experiments with 20 replications

of each of 18 different combinations of genetic para-
meters indicate that recombination fractions could be
well estimated using these designs. In fact, none of the
estimates differed significantly from their expected
values for all combinations of genetic parameters con-
sidered with experimental size of 500. However, some
significantly biased estimates were observed in the F2
generation design for both the heritabilities simulated
(Luo & Kearsey, 1989).

Accurate estimates of the means and variances of
the two QTL genotypes were regularly found from
both the designs and the frequency of significantly
biased estimates was again lower than that in the F2
experiments. The maximum likelihood estimates of the
environmental variances associated with the QTL were
rarely observed to be different from their actual values
in the simulated backcross and doubled haploid
experiments, while biased estimates for this parameter
were commonly observed in the simulated F2.

The estimation problem, discussed here and in our
previous work, is statistically equivalent to resolving a
single mixed normal distribution into a few component
distributions with common variance. As we have noted
in the previous discussion, if the putative QTL is linked
with the co-dominant marker gene, the phenotypic
distribution of the quantitative trait in each marker
class will be an unequal component mixture of two
component normal distributions for the backcross and
doubled haploids, but of three component normal
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distributions for the F2 population. The power of any
algorithm leading to a solution to the relevant para-
meters of a composite distribution depends on the
absolute difference between the means of the compo-
nent distribution for a fixed common variance. For a
given heritability, it is obvious that the absolute differ-
ence between the means of the homozygous and
heterozygous genotypes (e.g. two of the three compo-
nent distributions) at the QTL in the F2 generation is
much less than that between the two means of the two
possible genotypes (e.g. two component distributions)
at the same QTL in either the backcross or the doubled
haploid family designs. This would explain why the lat-
ter two designs always exhibit higher efficiency in pro-
ducing the relevant estimates than the F2 generation
design. In the present studies, the heritability of the
quantitative trait plays an important role in determin-
ing the mean difference and variance of the component
distributions, i.e. the higher the heritability the larger
the difference between the means, the smaller the var-
iance and therefore the more efficient the algorithm.
Furthermore, it is interesting to note that the marker-
QTL linkage estimates obtained from the F2 generation
regularly have smaller standard errors than those
yielded by the other two designs; i.e. the F2 data supply
more information about linkage for a fixed experi-
mental size (Mather, 1936; 1938).

So far, there have been three basic approaches
developed respectively by Hasselbiad (1966), Bhatta-
charya (1967) and Cohen (1967) to carry out dissec-
tion of mixed distributions. As a specific genetic
application to the problem of separating the mixed
distributions, the algorithms developed in the present
studies have used the genetic characteristics to provide
useful information. This has effectively simplified the
estimation procedure and in turn increased the
efficiency of the algorithm. Firstly, the proportions of
the component distributions were completely deter-
mined by the recombination fraction between the
marker gene and the linked QTL. Secondly, if the
phenotypic means and variances of the recombinant
genotypes, estimated from the experimental sample,
were used as unbiased estimates of the corresponding
population parameters of the composite distributions,
then the means and variances of the relevant genotypes
at the QTL were uniquely determined by the recom-
bination fraction and these estimates. This results in
the maximum likelihood function involving only one
unknown parameter, i.e. the recombination fraction.
The maximum likelihood estimates of the remaining
parameters, including the means and environmental
variances of the relevant QTL genotypes, could easily
be obtained directly from their functional relationships
to the means and variances of the marker genotypes,

thus avoiding use of the complicated iterative algo-
rithm suggested by previous authors. In fact, the
present algorithms obviously show higher efficiency
than the general methods. Hasselbiad (1966) claimed
that it was extremely difficult to dissect three sub-
distributions by use of his maximum likelihood algo-
rithm, which was considered by Tan & Chang (1972)
to be the best of the three approaches mentioned
before, when the means were separated by less than 2
standard deviation units even with an experimental size
of 1,000. However, using the algorithms developed in
this and our previous paper (Luo & Kearsey, 1989),
the component distributions were regularly well-
estimated even though the means were separated by
much less than one standard deviation, for example
h 0.1 with an experimental size of 500.

In the previous discussion, we have assumed
normality of the distributions of the phenotypes among
the marker groups. This assumption is at odds with the
fact that incomplete linkage between the marker and
the QTL will result in skewness in these marker
groups. This assumption may be a source of bias in the
estimates of the basic parameters.
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