Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The cyanogenic polymorphism in Trifolium repens L. (white clover)
Download PDF
Your article has downloaded

Similar articles being viewed by others

Carousel with three slides shown at a time. Use the Previous and Next buttons to navigate three slides at a time, or the slide dot buttons at the end to jump three slides at a time.

Variation among S-locus haplotypes and among stylar RNases in almond

17 January 2020

Shashi N. Goonetilleke, Adam E. Croxford, … Diane E. Mather

Breaking the tight genetic linkage between the a1 and sh2 genes led to the development of anthocyanin-rich purple-pericarp super-sweetcorn

19 January 2023

Apurba Anirban, Alice Hayward, … Tim J. O’Hare

Identification and mapping of quantitative trait loci for resistance to Liriomyza trifolii in romaine lettuce cultivar ‘Valmaine’

13 January 2021

Ramkrishna Kandel, Huangjun Lu & Germán V. Sandoya

Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum)

10 May 2019

Ryoma Takeshima, Takeshi Nishio, … Katsuhiro Matsui

A common phytoene synthase mutation underlies white petal varieties of the California poppy

12 August 2019

Andrew J. Pollack, Xue Gong & Jonathan R. Pollack

Identification and stacking of crucial traits required for the domestication of pennycress

13 January 2020

Ratan Chopra, Evan B. Johnson, … M. David Marks

Sorghum bicolor x S. halepense interspecific hybridization is influenced by the frequency of 2n gametes in S. bicolor

29 November 2019

George L. Hodnett, Sara Ohadi, … William L. Rooney

A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays

24 May 2019

Yongxian Lu, Samuel A. Hokin, … Mathew M. S. Evans

Genetics of distyly and homostyly in a self-compatible Primula

04 May 2018

Shuai Yuan, Spencer C. H. Barrett, … Dianxiang Zhang

Download PDF
  • Published: 01 February 1991

The cyanogenic polymorphism in Trifolium repens L. (white clover)

  • M A Hughes1 

Heredity volume 66, pages 105–115 (1991)Cite this article

  • 4708 Accesses

  • 100 Citations

  • 3 Altmetric

  • Metrics details

Abstract

The cyanogenic polymorphism in white clover is controlled by alleles of two independently segregating loci. Biochemical studies have shown that non-functional alleles of the Ac locus, which controls the level of cyanoglucoside produced in leaf tissue, result in the loss of several steps in the biosynthetic pathway. Alleles of the Li locus control the synthesis of the hydrolytic enzyme, linamarase, which is responsible for HCN release following tissue damage. Studies on the selective forces and the distribution of the cyanogenic morphs of white clover are discussed in relation to the quantitative variation in cyanogenesis revealed by biochemical studies. Molecular studies reveal considerable restriction fragment length polymorphism for linamarase homologous genes.

References

  • Angseeing, J A P. 1974. Selective eating of the acyanogenic form of Trifolium repens. Heredity, 32, 73–83.

    Article  Google Scholar 

  • Armstrong, H E, Armstrong, E F, and Horton, E. 1913. Herbage studies II - Variation in Lotus corniculatus and Trifolium repens (cyanophoric plants). Roy Soc (Lond) Proc B, 86, 262–269.

    Article  CAS  Google Scholar 

  • Askew, H O. 1933. Determination of hydrocyanic acid in white clover. NZJ Sci Techno I B, 14, 359–365.

    Google Scholar 

  • Bishop, J A, and Korn, M E. 1969. Natural selection and cyanogenesis in white clover, Trifolium repens. Heredity, 24, 423–430.

    Article  Google Scholar 

  • Boersma, P, Kakes, P, and Schram, A W. 1983. Linamarase and β-glucosidase activity in natural populations of Trifolium repens. Acta Bot Neerl, 32, 39–47.

    Article  CAS  Google Scholar 

  • Burgess, R S L, and Ennos, R A. 1987. Selective grazing of acyanogenic white clover: Variation in behaviour among populations of the slug Deroceras reticulatum. Oecologia, 73, 432–435.

    Article  CAS  Google Scholar 

  • Caradus, J R, MacKay, A C, Woodfield, D R, Van Den Bosch, J, and Wewala, S. 1989. Classification of a world collection of white clover cultivars. Euphytica, 42, 183–196.

    Article  Google Scholar 

  • Carvalho, F J P De C. 1981. Ph.D. Dissertation, University of California, Davis, CA, USA.

  • Chen, C-C, and Gibson, P B. 1972. Chromosome relationships of Trifolium uniflorum to T. repens and T. occidentale. Can J Genet Cytol, 14, 591–595.

    Article  Google Scholar 

  • Collinge, D B, and Hughes, M A. 1982a. In vitro characterisation of the Ac locus in white clover (Trifolium repens L.). Arch Biochem Biophys, 218, 38–45.

    Article  CAS  Google Scholar 

  • Collinge, D B, and Hughes, M A. 1982b. Developmental and physiological studies on the cyanogenic glucosides of white clover (Trifolium repens L.). J Exp Bot, 33, 154–161.

    Article  CAS  Google Scholar 

  • Collinge, D B, and Hughes, M A. 1984. Evidence that linamarin and lotaustralin, the two cyanogenic glucosides of Trifolium repens L., are synthesised by a single set of microsomal enzymes controlled by the Ac/ac locus. Plant Sci Lett, 34, 119–125.

    Article  CAS  Google Scholar 

  • Coop, I E. 1940. Cyanogenesis in white clover III Study of linamarase. NZJ Sci Technol B, 22–23, 71–83.

    Google Scholar 

  • Corkill, L. 1940. Cyanogenesis in white clover I Cyanogenesis in single plants. NZ J Sci Technol B, 22–23, 65–67.

    Google Scholar 

  • Corkill, L. 1942. Cyanogenesis in white clover (Trifolium repens L.) V. The inheritance of cyanogenesis. NZ J Sci Technol B, 23, 178–193.

    Google Scholar 

  • Crawford-Sidebothom, T J. 1972. The role of slugs and snails in the maintenance of the cyanogenesis polymorphisms of Lotus corniculatus and Trifolium repens. Heredity, 28, 405–411.

    Article  Google Scholar 

  • Daday, H. 1954a. Gene frequencies in wild populations of Trifolium repens I. Distribution by altitude. Heredity, 8, 61–78.

    Article  Google Scholar 

  • Daday, H. 1954b. Gene frequencies in wild populations of Trifolium repens II. Distribution by altitude. Heredity, 8, 377–384.

    Article  Google Scholar 

  • Daday, H. 1958. Gene frequencies in wild populations of Trifolium repens III. World distribution. Heredity, 12, 169–184.

    Article  Google Scholar 

  • Daday, H. 1965. Gene frequencies in wild populations of Trifolium repens L. IV. Mechanism of natural selection. Heredity, 20, 355–365.

    Article  Google Scholar 

  • De Araujo, A M. 1976. The relationship between altitude and cyanogenesis in white clover (Trifolium repens L.) Heredity, 37, 291–293.

    Article  Google Scholar 

  • Dirzo, R. 1984. Herbivory: A phytocentric view in perspectives. In: Dirzo, R. and Sarukhan, J. (eds) Plant Population Ecology, Sinauer, USA, pp. 141–156.

    Google Scholar 

  • Dirzo, R, and Harper, J L. 1982a. Experimental studies on slug-plant interactions III. Differences in the acceptability of individual plants of Trifolium repens to slugs and snails. JEcol, 70, 101–117.

    Google Scholar 

  • Dirzo, R, and Harper, J L. 1982b. Experimental studies on slug-plant interactions IV. The performance of cyanogenic and acyanogenic morphs of Trifolium repens in the field. J Ecol, 70, 119–138.

    Article  Google Scholar 

  • Dommee, B, Breakfield, P M, and MacNair, M R. 1980. Differential root growth of the cyanogenic phenotypes of Trifolium repens L. Oecol Plant, 1, 367–370.

    Google Scholar 

  • Dritschilo, W, Krummel, J, Nafus, D, and Pimentel, D. 1979. Herbivorous insects colonising cyanogenic and acyanogenic Trifolium repens. Heredity, 42, 49–56.

    Article  Google Scholar 

  • Dunn, M A, Hughes, M A, and Sharif, A L. 1988. Synthesis of the cyanogenic β-glucosidase, linamarase, in white clover. Arch Biochem Biophys, 243, 361–373.

    Google Scholar 

  • Ennos, R A. 1981a. Manifold effects of the cyanogenic loci in white clover. Heredity, 46, 127–132.

    Article  Google Scholar 

  • Ennos, R A. 1981b. Detection of selection in populations of white clover (Trifolium repens L.). Biol J Linn Soc, 15, 75–82.

    Article  Google Scholar 

  • Ennos, R A. 1982. Association of the cyanogenic loci in white clover. Genet Res, 40, 65–72.

    Article  Google Scholar 

  • Ennos, R A. 1985. Measuring the effects of genetic variation of plant fitness. In: Haeck, J. and Woldendorp, J. P. (eds) Structure and Functioning of Plant Populations, North-Holland Publishing Co., Amsterdam, pp. 153–160.

    Google Scholar 

  • Foulds, W, and Grime, J P. 1972. The influence of soil moisture on the frequency of cyanogenic plants in populations of Trifolium repens and Lotus corniculatus. Heredity, 28, 143–146.

    Article  Google Scholar 

  • Foulds, W, and Young, L. 1977. Effect of frosting, moisture stress and potassium cyanide on the metabolism of cyanogenic and acyanogenic phenotypes of Lotus corniculatus L. and Trifolium repens L. Heredity, 38, 19–24.

    Article  Google Scholar 

  • Frazer, J, and Nowak, J. 1988. Studies on variability in white clover: Growth habits and cyanogenic glucosides. Ann Bot, 61, 311–318.

    Article  Google Scholar 

  • Gibson, P B, Barnett, O W, and Gillingham, J T. 1972. Cyano-glucoside and hydrolysing enzyme in species related to Trifolium repens. Crop Sci, 12, 708–709.

    Article  CAS  Google Scholar 

  • Gliddon, C, and Trathan, P. 1985. Interactions between white clover and perennial ryegrass in an old permanent pasture. In: Haeck, J. and Woldendorp, J. W. (eds) Structure and Functioning of Plant Populations, North-Holland Publishing Co., Amsterdam, pp. 161–169.

    Google Scholar 

  • Hahlbrock, K, and Conn, E E. 1971. Evidence for the formation of linamarin and lotaustralin in flax seedlings by the same glucosyltransferase. Phytochemistry, 10, 1019–1023.

    Article  CAS  Google Scholar 

  • Halkier, B A, Olsen, C-E, and Moller, B L. 1989. The bio-synthesis of cyanogenic glucosides in higher plants J Biol Chem, 264, 19487–19494.

    CAS  PubMed  Google Scholar 

  • Horrill, J C, and Richards, J A. 1986. Differential grazing by the mollusc Arion hortensis Fer. on cyanogenic and acyanogenic seedlings of the white clover, Trifolium repens L. Heredity, 56, 277–281.

    Article  Google Scholar 

  • Hughes, M A. 1968. Studies on the β-glucosidase system of Trifolium repens L. J Exp Bot, 19, 427–434.

    Article  CAS  Google Scholar 

  • Hughes, M A, and Conn, E E. 1976. Cyanoglucoside biosynthesis in white clover (Trifolium repens L.). Phytochemistry, 15, 687–701.

    Article  Google Scholar 

  • Hughes, M A, and Dunn, M A. 1982. Biochemical characterisation of the Li locus, which controls the activity of the cyanogenic β-glucosidase in Trifolium repens L. Plant Mol Biol, 1, 169–181.

    Article  CAS  Google Scholar 

  • Hughes, M A, Dunn, M A, and Pearson, J R. 1985. A regulatory element controlling the synthesis of the cyanogenic β-glucosidase (linamarase) of white clover. Heredity, 55, 387–391.

    Article  CAS  Google Scholar 

  • Hughes, M A, Sharif, A L, Dunn, M A, and Oxtoby, E. 1988. The molecular biology of cyanogenesis. In: Cyanide Compounds in Biology. CIBA Foundation Symposium 140, J. Wiley & Sons, Chichester, pp. 111–130.

    Google Scholar 

  • Hughes, M A, Sharif, A L, Dunn, M A, Oxtoby, E, and Pancoro, A. 1990. Restriction fragment length polymorphism segregation analysis of the Li locus in Trifolium repens L. Plant Mol Biol, 14, 407–414.

    Article  CAS  Google Scholar 

  • Hughes, M A, and Stirling, J D. 1982. A study of dominance at the locus controlling cyanoglucoside production in Trifolium repens L. Euphytica, 31, 477–483.

    Article  CAS  Google Scholar 

  • Hughes, M A, Stirling, J D, and Collinge, D B. 1984. The inheritance of cyanoglucoside content in Trifolium repens L. Biochem Genet, 22, 139–151.

    Article  CAS  Google Scholar 

  • Jarvis, S S, and Hatch, D J. 1987. Differential effects of low concentration of aluminium on the growth of four genotypes of white clover. Plant Soil, 99, 241–253.

    Article  CAS  Google Scholar 

  • Jones, D A. 1981. Cyanide and coevolution. In: Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J. and Wissing, F. (eds) Cyanide and Biology, Academic Press, New York, pp. 509–516.

    Google Scholar 

  • Kakes, P. 1985. Linamarase and other β3-glucosidases are present in the cell walls of Trifolium repens L. leaves. Planta, 166, 156–160.

    Article  CAS  Google Scholar 

  • Kakes, P. 1987. On the polymorphisms for cyanogenesis in natural populations of Trifolium repens L. in the Netherlands I. Distribution of the genes Ac and Li. Acta Bot Neerl, 36, 59–69.

    Article  Google Scholar 

  • Kakes, P. 1989. An analysis of the costs and benefits of the cyanogenic system in Trifolium repens. Theoret Appl Genet, 77, 111–118.

    Article  CAS  Google Scholar 

  • Kakes, P, and Eeltink, H. 1985. The presence of a specialised β-glucosidase, linamarase, in the leaves of Trifolium repens L. is controlled by the gene Li. Z Naturforsch Sect C Biosci, 40, 509–513.

    Article  Google Scholar 

  • Lieberei, R, Biehl, B, Giesemann, A, and Junqueira, N T V. 1989. Cyanogenesis inhibits active defence reactions in plants. Plant Physiol, 90, 33–36.

    Article  CAS  Google Scholar 

  • Maher, E P, and Hughes, M A. 1973. Studies on the nature of the Li locus in white clover II. The effects of genotype on enzyme activity and properties. Biochem Genet, 8, 13–26.

    Article  CAS  Google Scholar 

  • Melville, J, and Doak, B W. 1940. Cyanogenesis in white clover II. Isolation of the glucoside constituents. NZJ Sci Technol B, 22, 67–70.

    Google Scholar 

  • Miller, J D, Gibson, P B, Cope, W A, and Knight, E E. 1975. Herbivore feeding on cyanogenic and acyanogenic white clover seedlings. Crop Sci, 15, 90–91.

    Article  Google Scholar 

  • Mirande, M. 1912. Sur la presence de l'acide cyanohydrique dans le trefle rampant (Trifolium repens L.). Compt Rend Acad Sci (Paris), 155, 651–653.

    Google Scholar 

  • Mowat, D J, and Shakeel, M A. 1989. The effect of different cultivars of clover on numbers of, and leaf damage by, some invertebrate species. Grass Forage Sci, 44, 11–18.

    Article  Google Scholar 

  • Nahrstedt, A, and Davis, R H. 1986. Uptake of linamarin and lotaustralin from their food plant by larvae of Zygaena trifolii. Phytochemistry, 25, 2299–2302.

    Article  CAS  Google Scholar 

  • Paim, N R, and Dean, C E. 1975. Characteristics of cyanogenic and acyanogenic white clover plants. Soil Crop Sci Soc Forida Proc, 35, 18–21.

    Google Scholar 

  • Poesi, I, Kiss, L, Hughes, M A, and Nanasi, P. 1989. Kinetic investigation of the substrate specificity of the cyanogenic β-D-glucosidase of white clover. Arch Biochem Biophys, 272, 496–506.

    Article  Google Scholar 

  • Poulton, J E. 1988. Localisation and catabolism of cyanogenic glycosides. In: Cyanide Compounds in Biology, CLBA Foundation Symposium 140, J. Wiley & Sons, Chichester, pp. 67–91.

    Google Scholar 

  • Raubenheimer, D. 1989. Cyanoglucoside gynocardin from Acraea horta L. J Chem Ecol, 15, 2177–2189.

    Article  CAS  Google Scholar 

  • Rogers, C F, and Frykolm, O C. 1937. Observations on the variations in cyanogenic power of white clover plants. J Agric Res, 55, 533–537.

    CAS  Google Scholar 

  • Selmar, D, Leiberei, R, Biehl, B, and Conn, E E. 1989. alpha;-Hydroxynitrile lyase in Hevea brasiliensis and its significance for rapid cyanogenesis. Physiol Plant, 75, 97–101.

    Article  CAS  Google Scholar 

  • Till, I. 1987. Variability of expression of cyanogenesis in white clover (Trifolium repens L.). Heredity, 59, 265–271.

    Article  Google Scholar 

  • Till-Bottraud, I, Kakes, P, and Dommee, B. 1988. Variable phenotypes and stable distribution of the cyanotypes of Trifolium repens L. in Southern France. Acya Oecologica, 9, 393–404.

    Google Scholar 

  • Turkington, R, Chan, M A, Vardy, A, and Harper, J L. 1979. The growth, distribution and neighbourhood relationships of T. repens in a permanent pasture III. The establishment and growth of T. repens in natural and perturbed sites. J Ecol, 67, 231–243.

    Article  Google Scholar 

  • Van Wyk, B-E. 1989. The taxonomic significance of cyanogenesis in Lotononis and related genera. Biochem Syst Ecol, 17, 297–303.

    Article  CAS  Google Scholar 

  • Vickery, P J, Wheeler, J L, and Mulcahy, C. 1987. Factors affecting the hydrogen cyanide potential of white clover (Trifolium repens L.). Aust J Agric Res, 38, 1053–1059.

    Article  CAS  Google Scholar 

  • Ware, W M. 1925. Experiments and observations on forms and strains of Trifolium repens L. J Agri Sci, 15, 47–50.

    Article  Google Scholar 

  • Whitman, R J. 1973. Herbivore feeding and cyanogenesis in Trifolium repens L. Heredity, 30, 241–245.

    Article  Google Scholar 

  • Wilkinson, H T, and Millar, R L. 1978. Cyanogenic potential of Trifolium repens L. in relation to pepper spot caused by Stemphylium sarciniforme. Can J Bot, 56, 2491–2496.

    Article  CAS  Google Scholar 

  • Zohary, M, and Heller, D. 1984. The Genus Trifolium. Israel Academy of Science, Jerusalem.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biochemistry and Genetics, The Medical School, The University, Newcastle upon Tyne, NE2 4HH

    M A Hughes

Authors
  1. M A Hughes
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hughes, M. The cyanogenic polymorphism in Trifolium repens L. (white clover). Heredity 66, 105–115 (1991). https://doi.org/10.1038/hdy.1991.13

Download citation

  • Received: 16 May 1990

  • Issue Date: 01 February 1991

  • DOI: https://doi.org/10.1038/hdy.1991.13

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cyanogenesis
  • polymorphism
  • Trifolium repens
  • white clover

This article is cited by

  • Associational effects against a leaf beetle mediate a minority advantage in defense and growth between hairy and glabrous plants

    • Yasuhiro Sato
    • Hiroshi Kudoh

    Evolutionary Ecology (2016)

  • Frequency-dependent herbivory by a leaf beetle, Phaedon brassicae, on hairy and glabrous plants of Arabidopsis halleri subsp. gemmifera

    • Yasuhiro Sato
    • Tetsuhiro Kawagoe
    • Hiroshi Kudoh

    Evolutionary Ecology (2014)

  • Variation in Cyanogenic Glycosides Across Populations of Wild Lima Beans (Phaseolus lunatus) Has No Apparent Effect on Bruchid Beetle Performance

    • J. Gwen Shlichta
    • Gaetan Glauser
    • Betty Benrey

    Journal of Chemical Ecology (2014)

  • Searching for the bull’s eye: agents and targets of selection vary among geographically disparate cyanogenesis clines in white clover (Trifolium repens L.)

    • N J Kooyers
    • K M Olsen

    Heredity (2013)

  • Glucosinolate polymorphism in wild cabbage (Brassica oleracea) influences the structure of herbivore communities

    • Erika L. Newton
    • James M. Bullock
    • Dave J. Hodgson

    Oecologia (2009)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity) ISSN 1365-2540 (online) ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited